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Abstract
Background: Prostate cancer is the second leading cause of male death in the United States. The
incidence increases most rapidly with age, and multiple genetic and epigenetic factors have been implicated
in the initiation, progression, and metastasis of the cancer. Nevertheless, scientific knowledge of the
molecular mechanisms underlying the disease is still limited; and hence treatment has only been partially
successful. The objective of the current studies was to examine the role of caspase 3 (CPP32) and
NAD(P)H:quinone oxidoreductase (NQO1) in the signaling of genistein-and β-lapachone (bLap)-induced
apoptosis in human prostate carcinoma cells PC3.

Results: Both genistein and bLap produced dose-dependent growth inhibition and treatment-induced
apoptosis in PC3. Treatment with caspase 3 inhibitor, DEVD-fmk before exposure to genistein,
significantly inhibited caspase 3 expression and treatment-induced apoptosis; implicating CPP32 as the
main target in genistein-induced apoptosis in PC3. Contrary to this observation, inhibition of CPP32 did
not significantly influence bLap-induced apoptosis; implying that the major target of bLap-induced
apoptosis may not be the caspase. Treatment with NQO1 inhibitor, dicoumarol (50 µM), prior to
exposure of PC3 to bLap led to significant decrease in bLap toxicity concurrent with significant decrease
in treatment-induced apoptosis; thus implicating NQO1 as the major target in β-lapachone-induced
apoptosis in PC3. In addition, the data demonstrated that NQO1 is the major target in bLap-genistein
(combination)-induced apoptosis. On the contrary, blocking NQO1 activity did not significantly affect
genistein-induced apoptosis; implying that NQO1 pathway may not be the main target for genistein-
induced apoptosis in PC3 cells. Furthermore, blocking NQO1 and CPP32 did not confer 100% protection
against genistein-induced or bLap-induced apoptosis.

Conclusion: The data thus demonstrate that both genistein-and bLap-induced apoptosis are mostly but
not completely dependent on CPP32 and NQO1 respectively. Other minor alternate death pathways may
be involved. This suggests that some death receptor signals do not utilize the caspase CPP32 and/or the
NQO1 death pathways in PC3. The demonstrated synergism between genistein and bLap justifies
consideration of these phytochemicals in chemotherapeutic strategic planning.
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Background
Prostate cancer is the most common non-skin malignancy
and the second leading cause of male death in the United
States [1]. The incidence of prostate cancer increases most
rapidly with age, and multiple genetic and epigenetic fac-
tors have been implicated in the initiation, progression,
and metastasis of prostate cancer. Nevertheless, scientific
knowledge of the molecular mechanisms underlying the
disease is still limited.

The problem often faced with the clinical management of
prostate cancer is derived not only from the fact that no
single gene or molecule can serve as a reliable marker
[2,3], but also that there is still no effective therapeutic
regimen available without serious, sometimes fatal side
effects. Unfortunately, at the time of clinical diagnosis,
human prostate cancers mostly present themselves as het-
erogeneous entities – hormone-dependent and hormone-
independent, and proliferating and non-proliferating. The
tumor re-growth that occurs after post-treatment remis-
sion is largely due to progression of initially androgen-
dependent to androgen-independent cancer cell [4] and/
or non-proliferating to proliferating tumor cells. There-
fore chemotherapeutic strategies should focus on eradi-
cating all cancer cells irrespective of state of growth or
sensitivity to hormone. This calls for a search for drug
combination treatment that works through different
mechanism of action. The facts that prostate cancer cells
retain the inherent apoptotic machinery potentially sub-
ject them to an appropriate efficacious chemotherapeutic
intervention.

The molecular mechanism(s) and intracellular mediators
of both spontaneous-and treatment-induced apoptosis
are not fully elucidated. However, evidence from several
research investigations seem to indicate that a variety of
stimuli, including physiological, pathologic, environmen-
tal or cytotoxic, can trigger the process of apoptosis in
many mammalian cells [5,6], and that both apoptosis and
necrosis may share some upstream events in the molecu-
lar pathways that lead to induction of apoptosis [7-11].
An emerging strategy for cancer chemotherapy is the
choice of drugs that induce apoptosis and/or disruption
of angiogenesis with eventual elimination of the cancer. It
is suggested that blocking of caspase activation in an
apoptotic process may divert apoptotic cell death to a
necrotic demise [10]; implying that apoptosis and necro-
sis may share some upstream events in the molecular
pathways of apoptosis induction. Among the dietary phy-
tochemicals of potential therapeutic significance, are gen-
istein isoflavone and β-lapachone, both of which induce
apoptosis and also inhibit angiogenesis (genistein) in an
array of cancer cells [6,12,13].

Genistein isoflavone [4',5',]-trihydroxyisoflavone) is a
metabolite of soy [14] and has a heterocyclic, diphenolic
structure similar to estrogen [14]. The phytochemical iso-
flavonoid family to which genistein belongs is a group of
plant chemicals that resemble steroid estrogens and
mimic their biological reactions [15,6,16]. Several clinical
studies indicate that genistein has some chemoprotective
and chemotherapeutic potential against many tumors,
including prostate, breast, and colon cancers through sev-
eral mechanisms of action including: apoptosis induc-
tion; modulation of cell cycle activity by arresting cell
cycle at the G2-M stage [17]; inhibition of DNA topoi-
somerase-II and tyrosine protein kinase [18]; competitive
inhibitor of ATP binding to the catalytic domain of tyro-
sine kinase [14,18]; stimulating the production of sex hor-
mone-binding globulin (SHBG), which may lower the
risk of hormone related cancers by decreasing the amount
of free and active hormones in the blood [19,20].

The other phytochemical of potential therapeutic signifi-
cance is β-lapachone [3, 4-dihydro-2, 2-dimethyl-2H-
naphtol (1,2-b) pyran-5,6-dione], a simple plant product
with a chemical structure different from currently used
anti-cancer drugs. It has been previously demonstrated
that the primary mode of cytotoxicity of β-Lapachone is
through the induction of apoptosis [21,22]. Structural
similarities between β-lapachone and other members of
the naphthoquinone family, such as menadione, suggest
that the enzyme, NAD(P)H:Quinone oxidoreductase
enzyme (NQO1) may be involved in the activation or
detoxification of β-lapachone [23-25].

While a number of in vitro effects of β-lapachone and gen-
istein have been described, knowledge of the key intracel-
lular targets of β-lapachone and genistein is limited.
Recent reports have suggested that by β-lapachone-
induced apoptosis is non-caspase mediated in breast [26]
and prostate cancer cells [21,34], and that the cytotocxic-
ity of this compound is dependent on the activity of
NAD(P)H:Quinone oxidoreductase enzyme (NQO1/
xip3) [26,27]. B-Lapachone has been shown to be an
inhibitor of DNA repair that sensitizes cells to DNA-dam-
aging agents [28,29]. It directly inhibits DNA topoisomer-
ase I and II [30-32] and induces a cell-cycle delay in G1
and/or S phase followed by apoptotic and/or necrotic cell
death [13]. The apoptosis induced by β-lapachone is p53
independent [21], and has been associated with upregula-
tion of Bak as well as cleavage of caspase-7 [33] and cas-
pase 3 in a variety of mammalian cells [13,33].

The objective of this study was to determine the potential
chemosensitivity of human prostate adenocarcinoma,
PC3 cells to β-lapachone and Genistein and the role of
caspase 3 (CPP32) and NAD(P)H:Quinone oxidoreduct-
ase enzyme (NQO1) in the signaling of β-Lapachone and
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genistein-induced apoptosis in PC3 cells. The hypothesis
is that combination treatment with the two phytochemi-
cals will be strongly preventive and/or interceptive against
prostate cancer by modulating epigenetic events (apopto-
sis) associated with the progression of active and latent
cancer cells to clinical malignancy.

Results
Genistein and β-lapachone inhibit growth and 
proliferation of human prostate carcinoma cells, PC3
Human prostate carcinoma cells PC3, was used to deter-
mine the chemosensitivity of prostate cancer to genistein
isoflavone and β-lapachone in vitro using Trypan blue
exclusion, LDH and MTS bioassays. In single and combi-
nation treatments, both genistein and β-lapachone inhib-
ited cell growth and decreased cell survival through
induction of cell death [Figures. 1,2,3]. The data indicated
that PC3 sensitivity to both single and combination treat-
ment is dose-dependent, and that PC3 was significantly
more sensitive (P < 0.05) to the combination treatment
than to the single treatment; indicating a potential syner-
gism between genistein and β-lapachone [Figures 2,3].

Genistein and β-lapachone induce apoptosis in human 
prostate cancer cells
Extensive cell death was observed in proliferating human
prostate cancer cells after treatment with β-lapachone and
genistein isoflavone. To determine if the treatment-
induced cell occurred through cytotoxic necrosis and/or
apoptosis, cells were harvested and assayed for apoptosis
induction with Annexin V-FITC and TUNEL apoptosis

assays to detect early and late apoptosis respectively. Aliq-
uots of cells were also stained with acridine orange/ethid-
ium bromide nuclear stain to distinguish between
apoptotic and necrotic cells. The results revealed that in
both single and combination treatments, cell death was
mostly through apoptosis in a dose-dependent manner
[Figures 4,5]. With increasing concentration of the agents,
cell death through necrosis increased correspondingly.
Furthermore, combination treatment induced
significantly more apoptosis in PC3 (p <0.01) than indi-
vidual treatment with either agent.

Dicoumarol enhanced the survival of human prostate 
cancer cells (PC3) following single treatments with β-
lapachone (bLap) and Gn/bLap combination but not in 
PC3 cells treated with genistein alone
To determine the potential role of the enzyme
NAD(P)H:quinone oxidoreductase (NQO1) in β-lapa-
chone (bLap)-and genistein (Gn)-induced apoptosis in
PC3, the cells were exposed to Gn and bLap in the pres-
ence or absence of dicoumarol in single and combination
treatments; and then assayed for apoptosis by the Annexin
V-FITC and TUNEL assays. Dicoumarol is a specific inhib-
itor of NQO1. The results revealed that blocking NQO1
activity with dicoumarol (50 µM) significantly reduced
bLap-induced apoptosis [Figure 6]; indicating that bLap-
induced apoptosis requires involvement of NQO1 target.
However, dicoumarol did not appear to have significant
effect on Gn-induced apoptosis [Fig 7]; indicating that
NQO1 did not play significant role in Gn-induced apop-
tosis. [Figures 6,7]. The degree of apoptosis induction was
highest in the Gn-bLap combination treatment without

β-lapachone-induced growth inhibition in PC3Figure 1
β-lapachone-induced growth inhibition in PC3. PC3 cells (1 × 
104 cells/well) were cultured in 24-well plates for 48 hr to 
allow 85–90% confluence; treated with varyingconcentra-
tions of bLap and assessed for post-treatment viabilitywith 
the MTS assay. Note the dose-dependent growth inhibitionin 
PC3. Data points represent means ± SEM of three independ-
entexperiments performed in triplicates
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Genistein (Gn)/β-Lapachone combination treatment of PC3Figure 2
Genistein (Gn)/β-Lapachone combination treatment of PC3. 
Cells were treated as described in the methods and sub-
jected to post-treatment viability with MTS colorimetric 
assay. Data points represent the means ± SEM of three inde-
pendent experiments performed in triplicates.
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inhibiting NQO1 activity with dicoumarol [Figure 7];
implying that a possible synergy between Gn and bLap
may be due to NQO1 activity.

Activation of CPP32 in genistein-induced apoptosis in PC3 
but not in β-lapachone-induced apoptosis in PC3
To determine if apoptosis induced by β-lapachone and/or
genistein involved activation of caspase 3 protease
(CPP32), the PC3 cells, were subjected to treatments with
Gn and/or bLap co-administered with or without CPP32

Single and combination of PC3 cells with genistein (Gn) and β-lapachone (bLap) βLapFigure 3
Single and combination of PC3 cells with genistein (Gn) and 
β-lapachone (bLap) βLap. Briefly, PC3 cells were seeded at 1 
× 104 cells/well in 48-well MTP and co-cultured with Gn0-70 
with/without bLap (1.2 µM); followed by determination of 
treatment-induced cytotoxicity as described in the methods. 
Data points represent means ± SEM of three experiments 
performed in triplicates

βLap)-induced cell death in PC3 cellsFigure 4
βLap)-induced cell death in PC3 cells. PC3 cells were co-cul-
tured with varying concentrations of bLap; and and the 
degree of treatment-induced apoptosis and/or necrosis 
assessed with the Annexin V-FITC assay, as described in the 
methods. Data points are means ± SEM of three independent 
experiments performed in triplicates.
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Combination treatment-induced cell death in PC3 cellsFigure 5
Combination treatment-induced cell death in PC3 cells. PC3 
cells were co-cultured with varying concentrations of Gn 
(Gn0-70) with or without bLap (1.2 µM), and apoptotic/
necrotic cell death assessed with theAnnexin V-FITC assay as 
described in the methods. Data points are means ± SEM of 
three independent experiments performed in triplicates

Role of NQO 1 in β-Lapaphone-mediated apoptosis in PC3 cellsFigure 6
Role of NQO 1 in β-Lapaphone-mediated apoptosis in PC3 
cells. PC3 cells were treated with bLap alone or in combina-
tion with 50 µM dicoumarol (NQO 1 inhibitor) as described 
in the methods; and TUNEL assays performed to monitor 
apoptosis. Data points represent means + SEM of three inde-
pendent experiments performed in triplicates.
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inhibitor (DEVD-fmk), and then cultured as previously
described. Post-treatment apoptosis was determined as
previously described. As shown in Figures 8 and 9, block-

ing the release of caspase 3 significantly decreased genis-
tein induced apoptosis but not bLap-induced apoptosis;
indicating the significant role of CPP32 in the molecular
pathway of Gn-induced apoptosis; and minor involve-
ment of CPP32 in bLap-induced apoptosis in PC3.
Furthermore, blocking CPP32 activity did not signifi-
cantly affect combination treatment-induced apoptosis
(Figure not shown).

Discussion and Conclusions
In this study, we determined the role of caspase 3 (CPP32)
and the enzyme NAD(P)H:quinone oxidoreductase
(NQO1) in the signaling of β-lapachone (bLap)-and
genistein (Gn)-induced apoptosis in human prostate ade-
nocarcinoma, PC3 cells. Data from this study
demonstrate significant inhibition of cell growth and pro-
liferation in PC3 cells, with significant difference in chem-
osensitivity of PC3 to genistein and β-lapachone (P <
0.01). Furthermore, growth inhibition of PC3 cells
strongly correlated with the MTS and LDH assay results.
The pattern of response and percent post-treatment live
cells was consistent with previous results [6,37-39]. The
genistein-and bLap-induced morphological changes
observed in the cells were identical in pattern but differed
in severity at a given exposure time; indicative of differ-
ences in chemosensitivity of PC3 to genistein and β-lapa-
chone. These observations were consistent with previous
results [5,6]. Furthermore, previous studies have shown
that β-lap [22] induces morphologic changes indicative of
apoptosis in human breast cancer cells. Similar alterations
in morphology including cell shrinkage and chromatin

NQO1 is the main target in bLap/Gn-induced apoptosis in PC3 cellsFigure 7
NQO1 is the main target in bLap/Gn-induced apoptosis in 
PC3 cells. Cells were treated with genistein (Gn) and Gn/
bLap combination with or without 50 µM dicoumarol as 
described in the methods; and TUNEL assays performed to 
monitor apoptosis. Data points represent means ± SEM of 
three independent experiments performed in triplicates.

Caspase-3 (CPP32) activity in genistein-induced apoptosis in PC3 cellsFigure 8
Caspase-3 (CPP32) activity in genistein-induced apoptosis in 
PC3 cells. PC3 cells (2.5 × 103 cells/well) were cultured; then 
treated with/without 100 µM caspase inhibitor (zVAD-fmk) 
for 2 hr; and then with 10–70 µg/mL genistein for 4 hr as 
described in the methods. Cells were thenanalyzed for cas-
pase (CPP32) activity and corresponding apoptosis in the 
cells. Data points were the means ± SEM of two independent 
experiments performed in triplicates.
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CPP32 is the major pathway in genistein-induced apoptosis in PC3 cellsFigure 9
CPP32 is the major pathway in genistein-induced apoptosis in 
PC3 cells. PC3 cells (2.5 × 103 cells/well) were cultured in 
48-well culture plates; treated with/without 100 µM caspase 
inhibitor (zVAD-fmk) for 2 hr; then with 1–8 µM β-Lapa-
chone (bLap) for 4 hr as described in the methods. Cells 
were then analyzed for caspase (CPP32) activity and corre-
sponding apoptosis. Data pointsare the means ± SEM of two 
independent experiments performed in triplicates
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condensation in the PC3 cells following single and
combination treatment with β-lapachone and genistein
isoflavone.

The present data also implicates caspase-3 protease,
CPP32, in the molecular pathway of genistein-induced
apoptosis in prostate PC3 cancer cells, consistent with
previous investigations [10,11,39]. Using the caspase
inhibitor DEVD-fmk, caspase activity was arrested concur-
rent with significant decrease in genistein-induced
apoptosis in PC3 cells. However, it is noteworthy that
inhibition of caspase did not confer 100% protection
against genistein-induced apoptosis; implying alternative
death pathways, which suggests that some death receptor
signals do not utilize the caspase CPP32 death pathways
in PC3. We have previously demonstrated the significant
role of caspase-3 protease in the genistein-induced apop-
tosis pathway in both testes and prostate (PC3) cancer
cells [38,39].

The present data indicate a possible alternate CPP32 path-
way in bLap-induced apoptosis in PC3. However, unlike
the observation in genistein-induced apoptosis, blocking
the CPP32 activity with the specific caspase inhibitor,
DEVD-fmk, did not significantly change the percentage of
bLap-induced apoptosis in PC3 cells; indicating that
CPP32 many not be the main death pathway of bLap-
induced apoptosis in PC3 cells. Activation of the caspase
3 in bLap-induced apoptosis has been reported in previ-
ous studies [10].

The potential role of NAD(P)H:quinone oxydoreductase
(NQO1) activity in genistein-and bLap-induced apoptosis
in PC3 was investigated. Co-culture of PC3 cells with
dicoumarol, a specific inhibitor of NQO1 activity, signifi-
cantly reduced the cytotoxicity of β-Lapachone in PC3
cells, as reflected in the significant reduction in the
percentage of treatment-induced apoptosis. Dicoumarol
increased cell survival. These results implicate NQO1 as
the main target in bLap-induced apoptosis in PC3, con-
sistent with previous observations [26,34,40]. However,
the fact that blocking of NQO1 did not confer 100% pro-
tection against induction of apoptosis indicates a possible
alternate pathway in bLap-induced apoptosis. The present
data indicate some involvement of caspase protease
CPP32, though not with the same significance as NQO1.
The activation of cysteine protease has been observed after
bLap treatment [26]. Pink et al [26] reported activation of
the cysteine protease in MCF-7 and T4D breast cancer cells
in bLap-induced apoptosis.

Contrary to the observation in bLap-induced apoptosis,
blocking NQO1 activity did not significantly influence
genistein-induced apoptosis in PC3 cells; implying NQO1
may not be the major target in genistein-induced apopto-

sis in PC3 cells. However, the overall data indicate a
synergistic effect of genistein-bLap combination treat-
ment of PC3 and, that the major target in the combination
treatment-induced apoptosis in PC3 cells is NQO1. Inves-
tigation into genistein/bLap synergism in a number
human cancer cells is on-going.

Conclusion
It is concluded from the data obtained that: i) both genis-
tein and bLap exert growth inhibition effects in PC3 cells,
with significant differences in chemosensitivity of PC3 to
the two agents; ii) there is a manifestation of synergism
between genistein-bLap combination treatment; iii) both
genistein and bLap induce apoptosis in PC3 cells; iv) the
major target in genistein-induced apoptosis in PC3 cells
seems to be CPP32; v) the major molecular target in bLap-
induced apoptosis in PC3 cells appear to be NQO1; vi)
the major target in the genistein-bLap combination treat-
ment-induced apoptosis appears to be NQO1; and vii)
combination treatment appears significantly more effica-
cious than single treatments. More extensive studies are
ongoing to delineate and clarify the molecular mecha-
nisms underlying the combination effects.

Materials and Methods
Chemicals
Genistein isoflavone (Indoline Chemical Co. Summer-
ville, NJ, USA) was constituted in DMSO (dimethylsulfox-
ide) solvent as 10, 20, 30, 50 and 70 µg/ml solutions (G10-

70) and frozen at -37°C until used. β-lapachone (Sigma
Scientific (St. Louis, MO, USA) was constituted in DMSO
solvent as 1, 2, 3, 5 and 8 µM/ml solutions (bL1-8) and
stored at -37°C. Dicoumarol (Sigma Scientific St. Louis,
MO, USA) was constituted in DMSO as 50 µM/ml and fro-
zen at -37°C until used. The caspase 3 inhibitor, DEVD-
fmk and substrate DEVD-afc were purchased from
Biovision (Palo Alto, CA). Culture media (RPMI 1640),
antibiotics, trypsin-EDTA, and other reagents were pur-
chased from Sigma scientific (St. Louis, MO, USA).

Cell lines
Human prostate adenocarcinoma (PC3) was a generous
donation from Rambaugh-Goodwin Cancer Research
Institute, Plantation FL.

Cell Culture
To assess the chemosensitivity of human prostate cancer
cells to single and combination treatment with genistein
(Gn) and β-lapachone (bLap), cells were sub-cultured
under 5% CO2 at 37°C for 48 hrs to reach 80–90% con-
fluence. All cells were grown and maintained as monolay-
ers in 25 m2 tissue culture flasks (Sigma Scientific, St.
louis, MO, USA) in RPMI 1640 containing 15 mM HEPES,
and supplemented with 0.45% glucose (w/w), 5.0% FBS
and 100 U. mL-1 penicillin + 100 mg. ml-1 streptomycin.
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The cells were then harvested by gentle scraping with a cell
scraper. The cell suspensions were then grown at a density
of 2.5 × 103 cells/well in 24-well microtiter plates (MTP)
for 36 hr to allow adherence. The supernatants were dis-
carded and the agents (Gn or bLap) were added over a
range of 5 cytotoxic concentrations in single and combi-
nation treatments. In preliminary studies with bL1-8, the
IC50 ranged between 1.8–3 µM for a number of cells.
Therefore in the present studies, 2.0 µM (bL2) was used in
the combination studies with varying concentrations of
genistein. All treatments were in triplicates. Dicoumarol
was added to the cells and incubated for 4 hr before treat-
ment with either genistein or β-lapachone alone or in
combination. All plates were then incubated at 37°C in a
humidified atmosphere of 5% CO2 in air for a maximum
of 72 hr. At 12, 24 and 36 hr of incubation, 100 µl of the
supernatant from each well was gently aspirated and
replenished with 100 µl of fresh media. The supernatants
were stored at -37°C until assayed for lactate dehydroge-
nase (LDH) enzyme activity. At 36 hr incubation, the cells
were harvested by trypsinization with trypsin-EDTA, and
processed for post-treatment metabolic activity using cell
viability and apoptotic assays as described.

A. Cell Viability Assays
A1.1 MTS assay
MTS assay depends on mitochondrial enzyme reduction
of MTS solution to detect and determine cell viability. The
MTS cell proliferation assay is a colorimetric method for
determining the number of viable cells in proliferation. It
is composed of solutions of a tetrazolium compound [3-
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and
an electron coupling reagent (phenazine ethosulfate;
PES). MTS is bioreduced by the cells into formazan prod-
uct that is soluble in cell culture medium. Following cell
culture as described above, 100 µL of cells were harvested
from each treatment group and added to a 96 MTP fol-
lowed by addition of 20 µl of MTS (2.5 mg/mL: Sigma
Chemical Co) stock solution to each well. After 2 hr incu-
bation under standard conditions of 5% CO2 and 37°C,
the purple formazan product (indicative of reduction of
MTS) was visible. The absorbance was read on Multiskan
biochromatic automated microplate reader (Multiskan,
DC) at 490 nm. The signal generated (color intensity) is
directly proportional to the number of viable (metaboli-
cally active) cells in the wells. Relative cell numbers can
therefore be determined based on the optical absorbance
(optical density, OD) of the sample. The blank values
were subtracted from each well of the treated cells and
controls; and the mean and standard error for each treat-
ment (singles and combination) were calculated relative
to the control:

where AC = absorbance of the control (mean value): AT =
absorbance of the treated cells (mean value)

AB = absorbance of the blank (mean value)

A1.2 Trypan Blue exclusion assay
For the Trypan blue exclusion test, cells were treated and
cultured as described. They were harvested and Trypan
blue dye solution was added to the cell suspensions. Total
cell counts and viable cell number (survival rate) were
determined by a standard hemocytometer procedure.
Live-viable cells were seen as colorless (impermeable to
the dye due to intact cell membrane) and dead cells were
seen as blue (permeable to dye due to disruption of cell
membrane):

A2. LDH assay
Lactase dehydrogenase activity was measured by a non-
radioactive protocol using the LDH cytotox kit (Cat. #.
1644 793: Boehringer-Mannheim GmbG, Bochemica).
The previously frozen supernatants were thawed for LDH
determination. Briefly, 100 µL/well of each cell-free
supernatant was transferred in triplicate into wells in a 96-
well microtiter plate (MTP) and 100 µL of LDH-assay reac-
tion mixture (Kit: dye-catalyst mixture) added to each
well. After 90 min incubation under standard conditions
the absorbance of the color generated was read on Multi-
skan biochromatic automatic microplate reader at 490
nm. The mean absorbance/optical density (OD) for each
treatment group was calculated. The blank values were
subtracted from each well and the mean percent treat-
ment-induced cytotoxicity for each cell line and treatment
type (single and combination) was calculated as:

Where:

ABSexpt = mean absorbance from the treated cells: ABSlow =
mean absorbance from controls (untreated cells)(sponta-
neous release of LDH)

ABShi = mean absorbance from Triton X-100 treated cells
(standard/maximum LDH release)(positive control).

% of viable cells
A A

A A
T B

C B
= −

−
×100

% Live Recovery rate
Live cells counted
Total cells counte

( ) =
dd

×100

% treatment-induced cytotoxicity
ABS ABS

ABS ABS
expt low

hi lo
=

−
− ww

×100
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B. Detection of Treatment-induced Apoptosis
Treatment-induced apoptosis was assessed by two inde-
pendent assays, Annexin V-FITC assay and the DNA Frag-
mentation (TUNEL) assay. PC3 cells were treated and co-
cultured with the test agents as previously described in
this study; and the subjected to the apoptosis determina-
tion assays as below:

B1.1 Annexin V-FITC assay
Apoptosis-associated translocation of phosphatidylserine
from the inner to the outer leaflet of the plasma
membrane in GC27 and K833 cells was assessed with the
use of FITC-labeled Annexin V, a calcium-dependent
phospholipid-binding protein with a high affinity for
phosphatidylserine; using AnnexinV-FITC Staining Kit
(Boehringer Mannheim). Briefly, 100 µl aliquots of the
previously prepared cell suspensions were centrifuged,
and the cell pellets re-suspended in Annexin binding
buffer, incubated with AnnexinV-FITC substrate; then
cells were smeared onto microscope slides and either eval-
uated immediately with fluorescence microscope, or
smears were fixed with 4% depolymerized paraformalde-
hyde and stored at -40°C for later examination as previ-
ously described [35]. Percentage of apoptosis in the cells
was quantified based on morphological and fluorescence
characteristics of apoptotic cells as previously described
[5,35,36]. All tests were run in triplicates.

B1.2 DNA Fragmentation (TUNEL) assay
The presence of apoptosis was determined by terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP nick
end labeling (TUNEL), using the ApopTagR kit (Boe-
hringer Mannheim Co, Indianapolis, IN) as previously
described [37]. The kit reagents detect apoptotic cells in
situ by specific end labeling and detection of DNA frag-
ments produced by the apoptotic process. To perform the
TUNEL assay, slides of the PBS suspended cells were fixed
with 4% paraformaldehyde for 30 minutes. The cells
(slides) were then permeabilized with Triton X-100 at 4°C
for 2 min; then flooded with TdT enzyme and digoxi-
genin-dUTP reaction buffer (TUNEL) reagent for 60 min
in a humidity chamber at 37°C, washed with distilled
water, incubated for 10 minutes with streptavidin-horse-
radish peroxidase complex. The stained mounted cells
were examined at 100×, 200× and 400× magnification of
the microscope (Olympus BH-2). Cell death was quanti-
fied by counting 150 cells in 5–7 separate fields of view
per slide, and noting the percentage of apoptotic cells
based on morphological appearance, as previously
described [5,36].

C Potential mechanism(s) of action
The potential involvement of caspase-3 protease (CPP32)
and/or the enzyme NQO1 [NAD(P)H:quinone oxidore-
ductase] in the molecular pathways of β-lapachone-and/

or genistein-induced growth inhibition and apoptosis in
PC3 cells were determined, after treatment of the cells as
already described.

C1.1 Caspase-3 expression/activity in treatment-induced 
apoptosis
In order to determine the potential role of caspase-3 pro-
teases (CPP32) in the common pathways of β-lapachone
and genistein-induced growth inhibition and apoptosis,
human prostate cancer cell lines were treated as previously
described above. The activity of caspase 3 was determined
using a the fluorometric substrate DEVD-afc and caspase
3 inhibitor DEVD-fmk according to the protocol of the
Caspase Activity Assay kit.

Briefly, PC3 cells were treated and incubated as previously
described. At 24, 48 and 72 hr cells were scrapped into
suspension and centrifuged at 10,000 rpm for 10 min. The
pellet was resuspended in 100 µl of lysis buffer and incu-
bated at 4°C for 10 min, followed by centrifugation at
10,000 rpm for 10 min. Fifty µl aliquots of the
supernatants were removed and placed in a 96-well
microtiter plate (MTP) containing reaction buffer. The
DEVD-afc substrate was added and the MTP was incu-
bated at 37°C for 30 min. Activity was monitored with the
linear cleavage and release of the afc side chain; and com-
pared with a linear standard curve generated by the con-
trols on the same MTP.

C1.2 NQO1 Activity in treatment-induced apoptosis
In order to determine the potential role of enzyme NQO1
[NAD(P)H:quinone oxidoreductase] in the molecular
pathways of β-lapachone-and genistein-induced growth
inhibition and apoptosis in human prostate cancer, PC3
cell lines were treated as previously described. Dicou-
marol (3-3'-methylene-bis (4-hydroxycou-marin) is a
commonly used inhibitor of NQO1, which competes
with NADH or NADPH for binding to the oxidized form
of NQO1. Dicoumarol thereby prevents reduction and
activation of various target quinines like β-lapachone. The
cells, cultured as previously described, were treated con-
comitantly in single and combination treatments of
varying concentrations β-lapachone (bLap), genistein
(gen), and bLap-Gn combination with and without 50
µM dicoumarol as previously described. The treated cells
were harvested and tested for treatment-induced apopto-
sis by the methods previously described in this study.
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