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Abstract
Background: Somatostatin receptor (SSTR) expression is positively correlated with tumor size
and inversely correlated with epidermal growth factor receptor (ErbB) levels and tumor
differentiation. In the present study, we compared SSTR1-5 and ErbB1-4 mRNA and protein
expression in two breast cancer cell lines: MCF-7 (ER+) and MDA-MB-231 (ERα-).

Results: All five SSTRs and four ErbBs were variably expressed as both cell surface and cytoplasmic
proteins. In both cell lines, SSTR4 and SSTR1 were highly expressed, followed by SSTR2 and SSTR5
with SSTR3 being the least expressed subtype, at the protein level. ErbBs were variably expressed
with ErbB1 as the predominant subtype in both cell lines. ErbB1 is followed by ErbB3, ErbB2 and
ErbB4 in MCF-7 at both the protein and mRNA levels. In MDA-MB-231 cells, ErbB1 is followed by
ErbB2, ErbB4 and ErbB3. Our results indicate significant correlations at the level of mRNA and
protein expression in a cell and receptor-specific manner. Using indirect immunofluorescence, we
found that, in MCF-7 cells, SSTR5 was the most prominent subtype coexpressed with ErbBs
followed by SSTR3, SSTR4, SSTR1 and SSTR2, respectively. In MDA-MB-231 cells, SSTR1
colocalized strongly with ErbBs followed by SSTR5, SSTR4, SSTR3 and SSTR2. ErbBs displayed
higher levels of colocalization amongst themselves in MCF-7 cells than in MDA-MB-231 cells.

Conclusion: These findings may explain the poor response to endocrine therapy in ER-cancer.
Differential distribution of SSTR subtypes with ErbBs in breast cancer cells in a receptor-specific
manner may be considered as a novel diagnosis for breast tumors.

Background
Somatostatin (SST) is an endogenously produced peptide
in neuroendocrine and immune cells. It exists as two bio-
logically active forms, SST-14 and SST-28, which are pro-
duced by tissue-specific proteolytic processing of a
common precursor [1]. SST is a potent inhibitor of hor-
mone and growth factor secretion as well as a modulator
of cell proliferation [2,3]. These actions are mediated by a

family of G protein-coupled receptors (GPCR) with five
known subtypes (SSTR1-5). SST exerts antiproliferative
effects on normal dividing cells, such as intestinal
mucosal cells, activated lymphocytes and inflammatory
cells as well as on solid tumors and cultured cells derived
from both endocrine and epithelial tumors. These effects
include cytostatic (growth arrest) and cytotoxic (apop-
totic) actions and are mediated (i) directly by SSTRs
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present on tumor cells, and (ii) indirectly via SSTRs
present on non-tumor cell targets. SST inhibits the secre-
tion of hormones and growth factors that promote tumor
growth, inhibits growth factor-induced DNA synthesis,
inhibits angiogenesis, promotes vasoconstriction and
modulates immune cell function [1]. Moreover, immuno-
reactive SST has been identified, by immunohistochemis-
try, in 30% of breast cancer samples and in several breast
cancer cell lines [4,5]. Whether SST is synthesized and
secreted from these cells and acts as a paracrine/autocrine
growth inhibitor remains to be established.

All five SSTRs have been implicated in antiproliferative
signaling in a subtype selective manner. When studied as
individual isotypes, four of the receptors (SSTR1, 2, 4, 5)
induce cell cycle arrest whereas SSTR3 uniquely triggers

apoptosis [3,6]. Previous studies have demonstrated the
presence of SSTRs in a large variety of tumors and cancer
cell lines [7-9]. In addition, 15–66% of primary human
breast tumors are SSTR-positive by binding analysis [10-
14]. Consistent with previous studies, we have recently
shown that SSTRs are expressed in breast cancers in varia-
ble amounts and are correlated with various histological
markers in a receptor-specific manner [15]. We have also
shown the effects of estradiol and tamoxifen on SSTR1
and SSTR2 expression in breast cancer cells [16].

Epidermal growth factor receptors, members of the type I
receptor tyrosine kinase (RTK) family commonly known
as ErbBs, are also variably distributed in breast tumors and
breast cancer cell lines as are SSTRs [17,18]. ErbBs can be
detected in all tumors with variable degrees of expression.
There are currently four known ErbB receptors with ErbB1
(also known as EGFR) and ErbB2 (also known as Neu or
HER2) being the most likely to be overexpressed in can-
cers, and, therefore, the most studied [19-22]. ErbB3 and
ErbB4 (also known as HER3 and HER4, respectively) have
been investigated the least. ErbBs exist as monomers and,
upon ligand activation or when overexpressed, form
homo- and heterodimers [23,24].

Previous studies showed that ErbB1 is expressed in 40–
50% of breast cancer cases and is inversely related with
estrogen receptor (ER) levels and survival [25-27]. This is
associated with more aggressive proliferation and unre-
sponsiveness to hormone treatment [12,14,27]. Similarly,
ErbB2 is present in 10–40% of breast cancer cases and is
associated with poor survival [19,21,25,26]. ErbB3 is also
expressed in breast cancer [28,29]. Associations with
ErbB1 and ER have been shown in some studies but not
in others [20]. This discrepancy may be due to the tech-
niques employed, antibodies used, sample size or tumor
type. In contrast with ErbB1-3, ErbB4 is generally reported
to be associated with favorable prognostic factors
[20,21,25,30,31].

While ErbBs are involved in tumor growth and cell prolif-
eration and are often associated with poor response to
endocrine therapy and reduced survival, SSTRs play a
major role in the control of tumor growth and tumor cell
proliferation [32-34]. SSTR expression is positively corre-
lated with tumor size and inversely correlated with ErbB
levels and tumor differentiation [12,14]. Several recent
reports have shown GPCRs to directly interact with RTKs
via scaffolding proteins when both receptors are present
together in the large signaling complexes [35-37]. Alterna-
tively, GPCRs can indirectly transactivate RTKs via G pro-
teins which ultimately lead to increased intracellular
calcium levels and activation of PKC [38]. Indirect RTK
transactivation has also been reported to occur via mem-
brane-bound metalloproteinases (MMPs) or metallopro-

Semi-quantitative analysis of SSTR1-5 and ErbB1-4 mRNA and protein expression in MCF-7 and MDA-MB-231 breast cancer cellsFigure 1
Semi-quantitative analysis of SSTR1-5 and ErbB1-4 mRNA 
and protein expression in MCF-7 and MDA-MB-231 breast 
cancer cells. A. Upper panel shows western blot analysis of 
SSTR1-5 in MCF-7 (left) and MDA-MB-231 (right) cells. 
Membrane protein (25 µg) was fractionated by SDS-PAGE 
and probed with affinity-purified SSTR antibodies. Major pro-
tein bands of 53 (SSTR1), 57 (SSTR2), 60 (SSTR3), 44 
(SSTR4) and 58 kDa (SSTR5) were obtained. Lower panel 
shows RT-PCR anlaysis of SSTR1-5 mRNA expression in 
both cell lines. 5 µg of DNA-free RNA was reverse tran-
scribed and coamplified with primers specific for SSTR1-5 
and β-actin. 8 µL of PCR products were fractionated on aga-
rose gels stained with ethidium bromide, visualized under UV 
lighting and photographed. B. Western blot (upper panel) 
and RT-PCR (lower panel) analysis of ErbB1-4 expression in 
MCF-7 (left) and MDA-MB-231 (right) breast tumor cells. 
Major protein bands of 170 (ErbB1), 185 (ErbB2), 200 
(ErbB3) and 175 kDa (ErbB4) were obtained. Experimental 
conditions were the same as described for panel A except 
for the specific antibodies and primers.
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teinase-disintegrin proteins (ADAMs) which process ErbB
transmembrane ligands [35,39,40]. In general, RTK trans-
activation by GPCRs results in altered mitogen activated
protein kinase (MAPK) signaling and, subsequently, in
altered cell growth and proliferation [39,41,42]. It is not
known if SSTRs (GPCR) and ErbBs (RTK) are coexpressed
within the same cells. Hence, before defining the mecha-
nisms for functional interactions between ErbBs and
SSTRs, it is essential to determine if this occurs. We have
therefore determined, in the current study, SSTR1-5 and
ErbB1-4 expression at the protein and mRNA levels. In
addition, since ER has been shown to be associated with
ErbB levels, we investigated their colocalization in ER-
positive (ER+) and negative (ER-) breast cancer cells. Our
data showed that SSTRs and ErbBs are well expressed in
both cell lines and, significantly, exhibited variable colo-
calization.

Results
Expression of SSTRs mRNA and protein in MCF-7 and 
MDA-MB-231 cells
Using semi-quantitative RT-PCR, we determined SSTR1-5
mRNA expression in MCF-7 (ER+) and MDA-MB-231
(ERα-) human breast cancer cells (Fig. 1A). We found sig-
nificant differences in overall receptor expression levels
between ER+ and ERα – cells. Although SSTR mRNA levels
were greater in MDA-MB-231 than in MCF-7 cells, both
cells lines showed similar patterns of expression. SSTR3
was highly expressed, followed by SSTR4, SSTR2 and
SSTR5 while SSTR1 was the least expressed subtype, at the
level of the mRNA.

We further determined SSTR1-5 protein expression using
western blot and indirect immunofluorescence analyses.
Consistent with mRNA results and as detected by western
blot, all SSTR subtypes were expressed at their representa-
tive molecular sizes at the protein level (53, 57, 60, 44 and
58 kDa for SSTR1-5, respectively) (Table 1 and Fig. 1A).
Indirect immunofluorescence analysis of SSTR subtypes
revealed a significant but variable cellular expression of
multiple SSTRs with all five receptor subtypes expressed as
both membrane and cytoplasmic proteins (Figs. 2, 3, 4, 5,
6, 7, 8, 9). Notably, SSTR1 and 4 were more highly

expressed in MCF-7 cells than in MDA-MB-231 cells while
SSTR3 was poorly expressed in both cell lines.

Expression of ErbBs mRNA and protein in MCF-7 and 
MDA-MB-231 cells
All ErbB subtypes are well expressed at the mRNA level in
a significant proportion of breast tumor tissues; however,
expression in breast cancer cells is variable [22,43,44].
MCF-7 cells expressed all four ErbBs at the level of the
mRNA with ErbB1 and ErbB3 being the dominant sub-
types (Fig. 1B). MDA-MB-231 cells expressed all four
ErbBs in a comparable manner, also displaying higher
expression at the mRNA level for ErbB1 and ErbB3. Inter-
estingly, in MCF-7 cells, ErbB3 mRNA expression was the
strongest while, in MDA-MB-231 cells, ErbB1 mRNA was
the most abundant. These results are in agreement with a
report by Bièche et al. [43] where MCF-7 cells displayed
lower ErbB1 mRNA levels, higher ErbB2 and ErbB3 levels
and equivalent ErbB4 mRNA expression in comparison to
MDA-MB-231 cells.

Using western blot analysis, ErbB subtypes in MCF-7 and
MDA-MB-231 cells displayed variable expression at the
protein level whereby all ErbBs were expressed at their
representative molecular sizes (170, 185, 200 and 175
kDa for ErbB1-4, respectively). ErbB1 and ErbB3 were the
predominant subtypes followed by ErbB2 and ErbB4 in
MCF-7 cells as determined by western blot analysis (Table
2 and Fig. 1B). In contrast, in MDA-MB-231 cells, ErbB1
was predominantly expressed followed by ErbB2, ErbB4
and ErbB3. Consistent with previous reports, ErbB3 pro-
tein expression was strongest in ER+ cells while ErbB1 was
more abundant in ER-cells [22]. However, our results con-
tradict another report with regards to relative ErbB3
expression levels [28]. Protein expression was further con-
firmed by immunocytochemistry revealing that all ErbB
subtypes were well expressed as membrane and cytoplas-
mic proteins in MCF-7 and MDA-MB-231 cells (Figs. 2, 3,
4, 5, 6, 7, 8, 9, 10, 11).

Colocalization of SSTRs and ErbBs in MCF-7 cells
Colocalization between SSTRs and ErbBs revealed signifi-
cant variations in a receptor and cell-specific manner.
Four different cell populations were detected in MCF-7

Table 1: Semiquantitative analysis of relative protein expression levels of SSTR1-5 in MCF-7 and MDA-MB-231 cells as determined by 
western blot analysis.

MCF-7 MDA-MB-231

SSTR1 ++ +++
SSTR2 +++ ++
SSTR3 + +
SSTR4 ++++ ++++
SSTR5 + +

++++ strong +++ moderate ++ mild + weak
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AFigure 2
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB1 and SSTR1-5 in MCF-7 cells. 
Localization of ErbB1 (red staining) was visualized using monoclonal antibodies with Cy3-conjugated goat anti-mouse IgG (a-e). 
The same cells were incubated with polyclonal SSTR1-5 antibodies and visualized (green staining) using FITC-conjugated goat 
anti-rabbit IgG (f-j). Colocalization of ErbB1 and SSTR1-5 was determined by merging individual red and green images to give 
orange-labelled cells (k-o). All receptors are expressed as membrane and cytoplasmic protein. Arrows indicate colocalization 
at the cell surface. Scale bar = 25 µm. B. Quantitative analysis of MCF-7 cells showing colocalization of ErbB1 with SSTR1-5. 
Cells expressing two receptors together were counted from at least 8 randomly selected vertical and horizontal fields from 
each coverslip. Data are from three different experiments performed in duplicate and are presented as mean ± SEM for each 
receptor combination. C. Quantitative analysis of cells showing ErbB1 and SSTR1-5 in distinct locations within the same cell. 
Data were analyzed as described in B.
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AFigure 3
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB2 (red staining) and SSTR1-5 
(green staining) in MCF-7 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MCF-7 cells 
showing colocalization of ErbB2 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells showing 
ErbB2 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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AFigure 4
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB3 (red staining) and SSTR1-5 
(green staining) in MCF-7 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MCF-7 cells 
showing colocalization of ErbB3 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells showing 
ErbB3 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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AFigure 5
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB4 (red staining) and SSTR1-5 
(green staining) in MCF-7 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MCF-7 cells 
showing colocalization of ErbB4 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells showing 
ErbB4 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.



Cancer Cell International 2006, 6:5 http://www.cancerci.com/content/6/1/5

Page 8 of 19
(page number not for citation purposes)

AFigure 6
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB1 (red staining) and SSTR1-5 
(green staining) in MDA-MB-231 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MDA-
MB-231 cells showing colocalization of ErbB1 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells 
showing ErbB1 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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AFigure 7
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB2 (red staining) and SSTR1-5 
(green staining) in MDA-MB-231 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MDA-
MB-231 cells showing colocalization of ErbB2 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells 
showing ErbB2 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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AFigure 8
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB3 (red staining) and SSTR1-5 
(green staining) in MDA-MB-231 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MDA-
MB-231 cells showing colocalization of ErbB3 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells 
showing ErbB3 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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AFigure 9
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB4 (red staining) and SSTR1-5 
(green staining) in MDA-MB-231 cells (for details see legend to Figure 2). Scale bar = 25 µm. B. Quantitative analysis of MDA-
MB-231 cells showing colocalization of ErbB4 with SSTR1-5 (for details see legend to Figure 2). C. Quantitative analysis of cells 
showing ErbB4 and SSTR1-5 in distinct locations within the same cell. Data were analyzed as described in Figure 2.



Cancer Cell International 2006, 6:5 http://www.cancerci.com/content/6/1/5
cells: one expressing SSTRs alone (≤ 7%), a second popu-
lation expressing only ErbBs (≤ 15%), a third population
expressing both receptors in distinct locations within the
same cell (27–70%) and a fourth population of cells dis-
playing colocalization (18–62%).

In MCF-7 cells, SSTR1 colocalized with ErbB1 (22% of
cells) at the cell membrane and intracellularly (Table 3
and Fig. 2). SSTR2 and SSTR4 exhibited similar patterns of
colocalization with ErbB1 with only 21% of cells coex-
pressing both receptors. SSTR3 and SSTR5 colocalized
with ErbB1 in a greater proportion (30%) of cells. All
SSTR subtypes colocalized with ErbB2 in a comparable
manner at the cell surface as well as intracellularly (Table
3 and Fig. 3). ErbB2 and SSTRs colocalized in 40–51% of
cells with SSTR5 displaying the strongest colocalization
with ErbB2. ErbB3 was coexpressed with SSTR1-5 in a
comparable manner to ErbB1 (Table 3 and Fig. 4). SSTR1
and SSTR2 colocalized with ErbB3 in 22% of cells whereas
SSTR3 and SSTR4 were coexpressed in 28 and 18% of
ErbB3-positive cells, respectively. In contrast, SSTR5 colo-
calized with ErbB3 in about 41% of cells. In MCF-7 cells,
ErbB4 colocalized with all SSTR subtypes (Table 3 and Fig.
5). ErbB4 was coexpressed with SSTR2, SSTR3, and SSTR4
in a comparable manner (36–39% of cells). On the other
hand, SSTR1 and SSTR5 colocalized with ErbB4 in 47 and
63% of cells, respectively. Further colocalization studies
revealed that SSTR5 was the most prominent SSTR sub-
type to colocalize with ErbB1-4 in MCF-7 cells (Table 3
and Figs. 2, 3, 4, 5).

Colocalization of SSTRs and ErbBs in MDA-MB-231 cells
In comparison with MCF-7 (ER+) cells, MDA-MB-231
(ERα-) cells exhibited significantly variable colocalization
of SSTR1-5 with ErbB1-4. Furthermore, a lower percentage

of cells coexpressed both SSTRs and ErbBs in MDA-MB-
231 than in MCF-7 cells. Interestingly, using immunocy-
tochemistry, 100% of MDA-MB-231 cells expressed
ErbB1-3. Subsequently, there were no cells that only
expressed SSTRs when the cells were double-labeled for
SSTRs and ErbB1-3. In contrast, up to 3% of cells showed
staining for SSTRs alone while up to 20% of cells only
expressed ErbB4 in cells double-labeled for SSTR1-5 and
ErbB4. Furthermore, there was a small cell population (≤
1%) lacking both receptors.

As illustrated in Table 3 and Figure 6, 19% of MDA-MB-
231 cells displayed strong colocalization between SSTR1
and ErbB1. On the other hand, SSTR2-5 colocalization
with ErbB1 occurred in only 10–16% of cells (Table 3 and
Fig. 6). In MDA-MB-231 cells, ErbB2 weakly colocalized
with all SSTR subtypes at the cell surface in only 11–18%
of cells (Table 3 and Fig. 7). SSTR1 was coexpressed with
ErbB3 in 24% of cells (Table 3 and Fig. 8). SSTR2, SSTR3
and SSTR4 colocalized with ErbB3 at the cell surface and
intracellularly in approximately 12, 20 and 14%, respec-
tively, of the cell population (Table 3 and Fig. 8). Mean-
while, SSTR5 displayed colocalization (17% of cells) with
ErbB3 mainly at the cell surface. In MDA-MB-231 cells,
SSTR1-4 colocalized with ErbB4 at the cell surface in 8–
12% of cells (Table 3 and Fig. 9). In contrast, SSTR5 and
ErbB4 colocalization was seen in 31% of cells. Notably,
colocalization of SSTRs with ErbB4 occurred mainly in the
"apical" endings of the cells.

Colocalization of ErbBs in MCF-7 cells and MDA-MB-231 
cells
To better understand whether there is any preferential and
selective colocalization between ErbB subtypes in ER+ and
ER-cells, we determined the colocalization of ErbBs in

Table 2: Semiquantitative analysis of relative protein expression levels of ErbB1-4 in MCF-7 and MDA-MB-231 cells as determined by 
western blot analysis.

MCF-7 MDA-MB-231

ErbB1 ++++ ++++
ErbB2 ++ +++
ErbB3 +++ +
ErbB4 ++ ++

++++ strong +++ moderate ++ mild + weak

Table 3: Colocalization of SSTR1-5 with ErbB1-4 in MCF-7 and MDA-MB-231 cells.

MCF-7 MDA-MB-231
ErbB1 ErbB2 ErbB3 ErbB4 ErbB1 ErbB2 ErbB3 ErbB4

SSTR1 + ++ + +++ ++ + +++ +
SSTR2 + ++ + ++ + + + +
SSTR3 +++ ++ ++ ++ ++ + ++ +
SSTR4 + +++ + ++ ++ ++ + +
SSTR5 +++ +++ +++ ++++ + + ++ +++
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AFigure 10
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB1-3 and ErbB2-4 in MCF-7 
cells. Localization of ErbB1-3 (red staining) was visualized using monoclonal antibodies with Cy3-conjugated goat anti-mouse 
IgG (a-f). The same cells were incubated with polyclonal ErbB2-4 antibodies and visualized (green staining) using FITC-conju-
gated goat anti-rabbit (g-l). Colocalization of ErbB1-3 and ErbB2-4 was determined by merging individual red and green images 
to give orange-labelled cells (m-r). All receptors are expressed as membrane and cytoplasmic protein. Arrows indicate colocal-
ization at the cell surface. Scale bar = 25 µm. B. Quantitative analysis of MCF-7 cells showing colocalization of ErbB1-3 with 
ErbB2-4 (for details see legend to Figure 2). C. Quantitative analysis of cells showing ErbB1-3 and ErbB2-4 in distinct locations 
within the same cell. Data were analyzed as described in Figure 2.
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AFigure 11
A. Representative photomicrographs illustrating double immunofluorescence localization of ErbB1-3 and ErbB2-4 in MDA-MB-
231 cells (for details see legend to Figure 10). Scale bar = 25 µm. B. Quantitative analysis of MDA-MB-231 cells showing colo-
calization of ErbB1-3 with ErbB2-4 (for details see legend to Figure 2). C. Quantitative analysis of cells showing ErbB1-3 and 
ErbB2-4 in distinct locations within the same cell. Data were analyzed as described in Figure 2.
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MCF-7 and MDA-MB-231 cells. As shown in MCF-7 cells
(Fig. 10), ErbB2, ErbB3 and ErbB4 colocalized with ErbB1
in 23%, 31% and 26% of cells, respectively. Furthermore,
ErbB3 and ErbB4 were coexpressed with ErbB2 in 26%
and 39%, respectively, while ErbB3 and ErbB4 colocalized
in 22% of MCF-7 cells. In contrast, MDA-MB-231 cells
demonstrated lesser degrees of colocalization than MCF-7
cells with the exception of ErbB1 and ErbB3 (Fig. 11).
ErbB1 colocalized with ErbB2, ErbB3 and ErbB4 in 11%,
39% and 19% of cells, respectively. Meanwhile, ErbB3
and ErbB4 colocalized with ErbB2 in 15% and 20% of
cells, respectively, and ErbB3 and ErbB4 were coexpressed
in 14% of the cell population.

Discussion
The present study represents the first comprehensive
description showing SSTR1-5 and ErbB1-4 colocalization
in ER+ and ER-breast cancer cells. All five SSTRs were
detected in MCF-7 and MDA-MB-231 with a rich expres-
sion of subtypes 1 and 4, moderate expression of SSTR2
and relatively weak expression of subtypes 3 and 5. Our
data also demonstrate a potential correlation between
SSTR and ErbB expression and estrogen dependency. We
found higher levels of expression of ErbB1 and lower lev-
els of SSTR1, SSTR4 and ErbB3 in ERα – (MDA-MB-231)
cells when compared to ER+ (MCF-7) breast cancer cells.
In addition, we showed that there was more colocaliza-
tion of SSTRs with ErbBs in MCF-7 cells than in MDA-MB-
231 cells. We also detected preferential colocalization
among ErbBs in both MCF-7 and MDA-MB-231 cells.

Overall expression levels of SSTR subtypes in cultured
breast cancer cell lines were comparatively less than in
solid tumors. Significantly, SSTR3, which is well expressed
in breast tumor tissues, was relatively poorly expressed in
these cell lines [15]. These results indicate that the various
breast cancer cell lines, although useful for studying SSTR
biology, do not necessarily reflect endogenous tumor
SSTR expression or function. Possible explanations for the
difference are the probable induction of SSTR expression
in solid tumors by circulating hormones, or, locally, by
growth factors, cytokines, and other mediators produced
from peritumoral structures such as the stroma, blood ves-
sels and immune cells [45]. Increasing evidence points to
the occurrence of multiple SSTR subtypes in many differ-
ent types of tumor cells as well as normal cells [46,47]. All
five SSTR isoforms bind the natural ligands SST-14 and
SST-28 with nanomolar affinity and share common sign-
aling pathways, such as the inhibition of adenylyl cyclase,
making the functional significance of expressing more
than one SSTR subtype in the same cell unclear [2].
Whether the different SSTRs subserve different biological
roles in the same cell or cooperate through dimerization
to create greater signaling diversity remains to be deter-
mined. In this regard, we have recently shown that SSTR1

and SSTR5 heterodimerization, in stably transfected HEK
and CHO-K1 cells, results in a new receptor with
enhanced signaling properties [48,49]. We further antici-
pate such a possibility of heterodimerization between
SSTR1 and SSTR5 and, additionally, between SSTRs and
ErbBs in breast cancer cells.

Whereas SSTRs have been associated with antiprolifera-
tive signaling, several previous studies, using a variety of
tumors including MCF-7 and MDA-MB-231 cells, have
correlated ErbBs with tumor progression and poor prog-
nosis [19,22,50,51]. However, the data have been incon-
sistent and controversial [52-54]. These inconsistencies
may have arisen due to the techniques employed, the var-
iation between cell stocks studied in different laboratories
and, most significantly, the different passages at which the
cells were used [45]. In this regard, we have seen signifi-
cant variation in receptor expression/levels at different
passages (data not shown). In keeping with ErbBs roles in
tumor progression and poor prognosis, overexpression of
ErbBs in breast carcinomas has been correlated with a lack
of ER [44,52]. Furthermore, blocking ER using antisense
strategies resulted in increased ErbB1, no change in ErbB2
and a slight decrease in ErbB3 expression in breast cancer
cells [22]. Consistent with these observations, we found
higher levels of expression of ErbB1 and decreased levels
of ErbB3 in ERα – (MDA-MB-231) than in ER+ (MCF-7)
cells. In accordance with previous studies, our findings
strongly support the concept that the presence of ER could
be a determining factor in ErbB expression in both breast
cancer cells and tumors.

Previous reports state that specific ErbB heterodimers, i.e.,
ErbB1/ErbB2 and ErbB2/ErbB3, result in increased tumor
growth and cell proliferation. We report that, in MCF-7
and MDA-MB-231 cells, there is preferential colocaliza-
tion of ErbBs with other ErbBs. We found greater colocal-
ization between ErbB1 and ErbB3 in both MCF-7 and
MDA-MB-231 cells. We also detected a high degree of
colocalization between ErbB2 and ErbB4 in MCF-7 cells.
These data strongly support previous observations
whereby heterodimerization between ErbB1 and ErbB2
was correlated with tumor progression [22,51]. These
alternate heterodimer pairs, i.e., ErbB1/ErbB3 and ErbB2/
ErbB4, may account for the less aggressive proliferation
rates reported for both cell lines. Furthermore, in agree-
ment with previous studies, we detected fewer cells show-
ing ErbB colocalization in ERα – cells (MDA-MB-231)
than in ER+ (MCF-7) cells with the exception of those
coexpressing ErbB1 and ErbB3. Altogether, the higher
degree of colocalization of ErbBs in MCF-7 cells than in
MDA-MB-231 cells may be partially associated with
slower tumor growth and better response to hormonal
therapy. Our data provide direct evidence that ErbB1 and
ErbB3 are the prominent subtypes which may interact as
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heterodimers, in these cells. Nothing is currently known
regarding the physiological responses and functional con-
sequences of these observations suggesting that further
studies are required in this direction.

In addition to heterodimerization within receptor sub-
families, there have been several reports demonstrating
that crosstalk between RTKs and GPCRs modulates down-
stream signaling pathways [35-37]. Even so, direct evi-
dence for functional interactions between ErbBs and
SSTRs have not yet been demonstrated despite the critical
roles they play in tumor progression. We showed here that
there was increased colocalization of SSTRs with ErbBs in
MCF-7 cells (ER+) compared with MDA-MB-231 (ERα-)
cells. This may help elucidate why estrogen-sensitive
tumors show less aggressive proliferation than estrogen-
insensitive tumors. This pattern of colocalization may
also explain the superior response of ER+ patients to SST
analog therapy [55]. In MCF-7 cells, the preferentially
greater colocalization of SSTRs with ErbB2 may serve to
counteract any deleterious effects of ErbB2. Whether this
colocalization exists in vivo and is lost during tumor pro-
gression needs to be determined. Furthermore, colocaliza-
tion of SSTR1 and SSTR5 with ErbB4 supports the
antiproliferative effects of both SSTRs. SSTR interactions
with ErbB4 may also serve to potentiate ErbB4's previ-
ously reported role in differentiation and apoptosis [30].
Furthermore, by preventing ErbB4's downregulation,
SSTRs may be indirectly circumventing ErbB1-3's growth
promoting effects. However, whether such interactions
exist in vivo in solid tumors needs to be determined.

Despite SSTR and ErbB colocalization, low abundance of
SSTRs alongside high expression of ErbBs within the same
cell may account for the failure of SST treatment of breast
tumor or other ErbB-expressing tumors. Furthermore, it is
anticipated but not yet proven that SSTRs would reverse
the effects of ErbBs with respect to MAPK activation and
subsequent cell proliferation [56-58]. In addition, some
reports suggest that the ER is involved in MAPK activation
[59-61]. Previous studies have also demonstrated that ER
presence is required for cbl-induced ubiquitination of
ErbB1 and that ubiquitination of ErbB1 results in its deg-
radation [62]. This could result in different levels of acti-
vation of downstream pathways in ER+ (MCF-7) and ERα
– (MDA-MB-231) breast cancer cells. In addition, SST-
induced internalization and subsequent downregulation
of SSTR2-5 on the membrane may release ErbBs from
complexes and result in cell proliferation [63-65]. Alto-
gether, this suggests that not only do we need to activate
SSTRs to counteract ErbBs effects on cell proliferation but
we also need a mechanism to upregulate, or at least main-
tain, SSTRs on the membrane in order to reduce or modify
ErbB signaling.

Conclusion
In summary, the present results have important func-
tional and therapeutic implications. Predominant SSTR1
expression and weak SSTR5 expression in breast cancer
cells may help explain their poor sensitivity to hormonal
therapy. These data may also explain the differential
effects of the SST analog octreotide in breast cancer ther-
apy. Since there is evidence of crosstalk between GPCRs
and RTKs, cells displaying SSTR colocalization with ErbB
suggest that, within these cells, both receptor families may
functionally interact through hetero-oligomerization. If
such a process exists, it may account for the diversification
of receptor signaling. Most significantly, developing a new
therapeutic agent that could both activate SSTRs and
inhibit ErbB overexpression could potentially be a way to
block tumor progression.

Materials and methods
Materials and reagents
RPMI 1640 and L-15 culture media were purchased from
Invitrogen (Burlington, Ontario). Fetal bovine serum
(FBS) and Antibiotic-Antimycotic solution were pur-
chased from Wisent (St. Bruno, Quebec). The protease
inhibitor cocktail used for protein extraction was supplied
by Sigma-Aldrich Canada Ltd (Oakville, Ontario). Nor-
mal goat serum (NGS) was purchased from Vector Labo-
ratories (Burlington, Ontario). Polyclonal rabbit anti-
SSTR antibodies were developed in the lab and their spe-
cificity has been previously described [66,67]. Purified
mouse anti-ErbB1 (sc-101), ErbB2 (sc-08), ErbB3 (sc-
7390), rabbit anti-ErbB1 (sc-03), ErbB2 (sc-284), ErbB3
(sc-285), ErbB4 (sc-283) and goat anti-ErbB4 (sc-283-G)
were purchased from Santa Cruz Biotechnology (Santa
Cruz, California). The secondary FITC- and Cy3-conju-
gated goat anti-mouse or anti-rabbit and Cy3-conjugated
donkey anti-sheep IgG antibodies were obtained from
Jackson ImmunoResearch Laboratories (West Grove, Pen-
sylvania).

Cell culture
MCF-7 cells were maintained in RPMI 1640 medium sup-
plemented with 0.35 µM insulin, 10% (v/v) FBS and 1%
(v/v) Antibiotic-Antimycotic solution at 37°C in an
atmosphere of 5% CO2/95% air. MDA-MB-231 cells were
maintained in L-15 medium supplemented with 10% FBS
and 1% Antibiotic-Antimycotic solution at 37°C in flasks
with phenolic caps.

Expression of SSTR1-5 mRNA in MCF-7 and MDA-MB-231 
breast cancer cells
SSTR1-5 and ErbB1-4 mRNA levels were measured by
semi-quantitative RT-PCR in MCF-7 (ER+) and MDA-MB-
231 (ERα-) breast cancer cells as previously described with
some modifications [15,68]. Briefly, 5 µg of DNA-free
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RNA was reverse transcribed and the resulting cDNA sam-
ples were amplified by PCR using the following primers:

hSSTR1 forward 5'-TGGTGGGCTTCGTGTTGT-3'

reverse 5'-GATGACCGACAGCTGACTCA-3'

hSSTR2 forward 5'-ATCTGGGGCTTGGTACACAG-3'

reverse 5'-GAAGACAGCCACCACGAT-3'

hSSTR3 forward 5'-TCATCTGCCTCTGCTACCTG-3'

reverse 5'-TTGAAGCGGTAGGAGAGGAA-3'

hSSTR4 forward 5'-CGCTCGGAGAAGAAAATCAC-3'

reverse 5'-CCCACCTTTGCTCTTGAGAG-3'

hSSTR5 forward 5'-CTCTCTCTGGACCTTGTGCC-3'

reverse 5'-ACGAGCAAACAGGTACGCTT-3'

hErbB1 forward 5'-AGTCGCCCAAAGTTCCGTGAGT-3'

reverse 5'-TGGGAGGAAGGTGTCGTCTATG-3'

hErbB2 forward 5'-AACTCACCTACCTGCCCACCAA-3'

reverse 5'-GTGGTATTGTTCAGCGGGTCTC-3'

hErbB3 forward 5'-CAGGTCTACGATGGGAAGTTTG-3'

reverse 5'-CTCACGATGTCCCTCCAGTCAA-3'

hErbB4 forward 5'-ACCCTTCAGCACCCAGACTACC-3'

reverse 5'-GACCACCAGAGAAAGAGAGGGG-3'

β-actin forward 5'-ATCATGAAGTGTGACGTGGAC-3'

reverse 5'-AACCGACTGCTGTCACCTTCA-3'

The PCR products were separated by electrophoresis on
1.5% agarose gels stained with ethidium bromide, visual-
ized under UV illumination and photographed using an
Alpha Innotech FluorChem 8800 (Alpha Innotech Co.,
San Leandro, CA).

Western blot analysis
Crude membrane extracts from MCF-7 and MDA-MB-231
cells were prepared using a glass homogenizer in 20 mM
Tris-HCl, pH 7.5 (1:300 protease inhibitor cocktail) as
previously described [69]. Membrane protein (25 µg) was
solubilized in Laemmli sample buffer containing 62.5

mM Tris-HCl (pH 6.8), 25% glycerol, 2% SDS, 0.01%
bromophenol blue and 5% β-mercaptoethanol. Samples
were placed in boiling water for 5 min and fractionated by
electrophoresis on a 10% SDS-polyacrylamide gel as
described by Laemmli [70]. The fractionated proteins
were transferred by electrophoresis to a 0.2 µm nitrocellu-
lose membrane (Trans-Blot Transfer Medium, Bio-Rad) in
transfer buffer consisting of 0.025 M Tris, 0.19 M glycine
and 15% methanol. Western Blot analysis was performed
as previously described with slight modifications [71].
Briefly, membranes were blotted with anti-SSTRs polyclo-
nal (dilution 1:400) and anti-ErbB polyclonal (dilution
1:600–1500) antibodies. Blocking of membranes, incuba-
tion with primary and secondary antibodies and detection
by chemiluminescence were performed with the Western-
Breeze® kit according to manufacturer's instructions.
Molecular weights were estimated using the MagicMark
XP Western Protein Standard (Invitrogen). Images were
captured using an Alpha Innotech FluorChem 8800 gel
box imager.

Immunocytochemistry
MCF-7 and MDA-MB-231 cells were plated on glass cover-
slips in 24-well plates and processed for indirect immun-
ofluorescence for colocalization as previously described
with slight modifications [16]. Cells were washed once in
PBS and fixed with 4% paraformaldehyde on ice for 20
minutes. After two subsequent washes in PBS, cells were
incubated with 5% NGS (diluted in PBS) for 1.5 hours fol-
lowed by incubation with SSTR (1:500) and ErbB (1:150)
antibodies in 1% NGS (in PBS) for 48 h at 4°C. Cells were
then washed twice in PBS followed by incubation with
Cy3-conjugated goat anti-mouse (1:500) or Cy3-conju-
gated donkey anti-sheep (1:500) and FITC-conjugated
goat anti-rabbit (1:100) secondary antibodies for 3 hours.
After two subsequent washes in PBS, cells were mounted
and viewed under a Leica DMLB microscope attached to a
CoolSnap CCD camera. Adobe Photoshop was used, in a
consistent manner, to create the overlays and to adjust the
contrast and brightness of all images.

Quantitative analysis
Counting of SSTR-, ErbB- and SSTR+ErbB-positive cells
was performed directly at high magnification (40×) under
a Leica DMLB microscope. At least 8 horizontal and 8 ver-
tical fields per coverslip were randomly selected for each
receptor combination. Total number of cells positive for
either one or both receptors was considered as 100% and
percent colocalization was calculated accordingly. Total
number of cells counted per coverlip ranged from 205 to
877.

Abbreviations
SSTR, somatostatin receptor; ErbB, epidermal growth fac-
tor receptor; ER, estrogen receptor; SST, somatostatin;
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GPCR, G protein-coupled receptor; RTK, receptor tyrosine
kinase; MAPK, mitogen activated protein kinase; FBS, fetal
bovine serum; NGS, normal goat serum
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