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Eribulin activity in soft tissue sarcoma 
monolayer and three-dimensional cell line 
models: could the combination with other 
drugs improve its antitumoral effect?
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Abstract 

Background: Eribulin has shown antitumour activity in some soft tissue sarcomas (STSs), but it has only been 
approved for advanced liposarcoma (LPS).

Methods: In this study, we evaluated the effect of eribulin on proliferation, migration and invasion capabilities in 
LPS, leiomyosarcoma (LMS) and fibrosarcoma (FS) models, using both monolayer (2D) and three‑dimensional (3D) 
spheroid cell cultures. Additionally, we explored combinations of eribulin with other drugs commonly used in the 
treatment of STS with the aim of increasing its antitumour activity.

Results: Eribulin showed activity inhibiting proliferation, 2D and 3D migration and invasion in most of the cell line 
models. Furthermore, we provide data that suggest, for the first time, a synergistic effect with ifosfamide in all models, 
and with pazopanib in LMS as well as in myxoid and pleomorphic LPS.

Conclusions: Our results support the effect of eribulin on LPS, LMS and FS cell line models. The combination of 
eribulin with ifosfamide or pazopanib has shown in vitro synergy, which warrants further clinical research.
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Background
Soft tissue sarcomas (STSs) represent approximately 
1% of all adult cancers. This heterogeneous group of 
tumours is currently subclassified by the World Health 
Organization (WHO) into approximately 80 histologi-
cal subtypes [1]. From a genetic point of view, STSs are 
classified into 2 categories: those considered to harbour 
simple genetic alterations and those with complex kar-
yotypes. Liposarcoma (LPS), one of the most common 
STSs, has been classically subclassified into 4 subtypes: 
well-differentiated (WDLPS), dedifferentiated (DDLPS), 
myxoid (MLPS) and pleomorphic (PLPS), although the 
most recent WHO classification has included a fifth 
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subtype: myxoid pleomorphic LPS [2]. WDLPS and 
DDLPS together comprise the largest subgroup of lipo-
sarcomas, constituting a histologic and behavioural spec-
trum of one disease, and sharing a genetic alteration: 
the amplification of the chromosomal region 12q14-15, 
which involves the MDM2 and CDK4 genes [3]. MLPS 
is characterised by the presence of a recurrent transloca-
tion, t(12;16)(q13;p11), with the implication of FUS and 
DDIT3 genes, and PLPS has no characteristic molecular 
alteration [4]. Leiomyosarcoma (LMS) is characterised by 
high chromosomal instability [5–7]. Finally, adult fibro-
sarcoma (FS) shows multiple nonspecific chromosomal 
abnormalities [8].

Treatment of advanced STS is mainly based on chemo-
therapy and other systemic treatments, although surgery 
and radiotherapy can also be used with palliative inten-
tion in some patients. Doxorubicin is usually admin-
istered as first-line treatment. Other drugs, such as 
ifosfamide, trabectedin, pazopanib, eribulin, gemcitabine 
(in combination) and dacarbazine are options for subse-
quent treatment lines [9]. Additionally, in WDLPS and 
DDLPS, palbociclib has shown promising clinical activity 
[10].

Eribulin is an antitumour agent acting mainly as a 
microtubule dynamics inhibitor. Other mechanisms of 
action have also been proposed, such as vascular remod-
elling, reversion of the epithelial to mesenchymal transi-
tion (EMT) and suppression of migration and invasion 
[11–14]. Eribulin clinical activity was initially assessed in 
a phase II trial of patients with STS with several histolo-
gies, including LPS, LMS, synovial sarcoma and a mixed 
group of less common STSs [15]. Based on the higher 
activity level in LPS and LMS subtypes, a phase III trial 
was developed to compare eribulin with dacarbazine 
in pre-treated patients with these two histologies. This 
study achieved its primary endpoint, showing a benefit 
in overall survival (OS) for eribulin. However, regulatory 
agencies only approved eribulin for advanced LPS based 
on the results of the subgroup analysis, which did not 
demonstrate an OS benefit for the LMS cohort [16].

The rarity of sarcomas makes it difficult to design clini-
cal trials or make clinical decisions regarding specific 
subtypes. In this context, cellular models are a valuable 
approach, particularly for drug testing studies, which can 
provide useful preclinical data to help with the design of 
further clinical research. Most current studies are per-
formed on monolayer two-dimensional (2D) cell models, 
which are still the most commonly used due to their high 
standardisation and cost effectiveness. However, they 
have a number of limitations, particularly important for 
drug studies. The main disadvantage is that cells are cul-
tured on flat dishes, where there is no spatial complexity, 
and they are all equally exposed to compounds, which is 

not representative of a real cancer cell environment [17]. 
This scenario has led to the emergence of three-dimen-
sional (3D) models, including spheroids, which more 
faithfully represent the tumour’s phenotypic characteris-
tics and mimic its structure [18].

In this study, we explored the activity of eribulin in a 
STS cell line panel: LPS and LMS, which were the target 
of the phase III clinical trial, and FS, a rare sarcoma, in 
which eribulin was previously tested in vitro and in xen-
ografts [19]. We investigated the effect on proliferation, 
migration and invasion capabilities, in 2D and 3D condi-
tions. Finally, we studied the possible synergistic effect 
of eribulin with other drugs commonly used in the treat-
ment of STS.

Methods
Lines, compounds and cell culture
LIPODL221 (MLPS), LPS224 (DDLPS) and LPS246 
(DDLPS) cell lines were obtained from the MD Anderson 
biobank core facility. SW872 (PLPS), SK-UT-1 (LMS), 
HT1080 (FS) and 93T449 (WDLPS) were kindly provided 
by Dr.Carnero from the Biomedicine Institute (Seville, 
Spain). The cell lines were tested routinely for myco-
plasma, and authenticated by genetic profiling using pol-
ymorphic short tandem repeat loci from the Geneprint 
10 kit (Promega, USA).

All culture media were supplemented with a con-
centration of 10% foetal bovine serum (v/v), 1% L-glu-
tamine (v/v) and antibiotics (100 units/ml of penicillin 
and 100  µg/ml of streptomycin), all from Merck (Ger-
many). SK-UT-1 (LMS), SW872 (PLPS), LIPODL221 
(MLPS), LPS224 (DDLPS) and LPS246 (DDLPS) were 
cultured in DMEM, SW872 (PLPS) supplemented 
with 0.01% sodium pyruvate (PyrNa); and SK-UT-1 
(LMS) supplemented with 0.01% non-essential amino 
acids (NEAA) + 0.001% 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES) + 0.001% pyruvate. 
HT1080 (FS) and 93T449 (WDLPS) were grown in F-10 
medium. Cultures were maintained at 37  ºC in a humid 
atmosphere and 5%  CO2. Cells were regularly tested for 
mycoplasma infection. All media and supplements were 
purchased from Sigma-Aldrich (USA).

Eribulin was kindly provided by Eisai Inc. (USA). Doxo-
rubicin, ifosfamide, gemcitabine, trabectedin, pazopanib 
and palbociclib were obtained from Selleckchem (UK).

Proliferation and cell cycle assyas
The monolayer experiment cells were seeded in 96-well 
plates (MW96) (Corning, USA) at a variable density, 
previously established for each cell line (detailed infor-
mation included in Additional file  1: Table  S1). Cel-
lular confluence was measured at various time points 
by sulphorhodamine B (SRB) staining, as previously 
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described [20]. Absorbance was measured at 564  nm 
on a Synergy 4 spectrophotometer using the Gen5 pro-
gram (BioTek, USA).

For 3D experiments, cells were seeded in ultra-low 
attachment (ULA) round bottom plates The optimal 
spheroid size relies on the specific assay requirements, 
but is usually within a 200–500 µm diameter range We 
established a pre-set density for each cell line, to obtain 
a spheroid diameter around 300  µm at day 4, as pre-
viously described in ULA plates [21, 22]. Growth was 
tracked measuring spheroid diameter at days 4, 7, 10 
and 14. Image acquisition and analyses were performed 
with a Celigo S plate cytometer (Nexcelom, USA).

The drug screening experiments were performed in 
MW96 plates. The design of the plate was as follows: 
all border wells contained phosphate buffered saline 
(PBS), to avoid evaporation issues. The rest of the plate 
contained the pre-set number of cells for each cell line 
and condition. With this design, 9 columns with 6 rep-
licates each will be exposed to increasing concentra-
tions of the explored drug, and one column will be used 
as control. For monolayer cultures, cells were exposed 
24  h after seeding to 1:2 dilutions of drug concentra-
tions (detailed in Additional file  1: Table  S1) of eribu-
lin and the other tested drugs (doxorubicin, ifosfamide, 
gemcitabine, trabectedin, pazopanib and palbociclib) 
for 72 h. Inmediately after, cell viability was measured 
by SRB staining as was performed for the proliferation 
assays. For the 3D experiments, after 4 days of culture, 
the spheroids were exposed to 1:2 dilutions of drug 
concentrations, for 72  h. Cell viability was measured 
after this period using a CellTiter-Glo Luminescent 
assay (Promega) according to the manufacturer’s pro-
tocol and bright field images were taken. At least two 
experiments were performed for each cell line.

We calculated 2D and 3D growth inhibitory concen-
tration by 50%  (GI50) using non-linear regression with 
GraphPad Prism 7 software (GraphPad Software, USA).

For cell cycle and apoptosis assays, cells were seeded as 
described previously for proliferation assays (Additional 
file 1: Table S1), and exposed, 24 h after seeding, to their 
corresponding eribulin  GI50 concentrations (Table  1) 
for 72 h. For analysis, cells are previously fixed with 70% 
ethanol and nuclei were stained with propidium iodide 
(Merck). The distribution of integrated intensity was 
visualized and quantified by the Celigo S plate cytometer 
(Nexcelom) gating tool, as counts and percentage over 
the total cell count. Experiments were performed twice 
and including at least two replicates.

2D and 3D migration and invasion assays
We employed 8-μm pore transwell inserts for migration 
(Ref.354578, Corning), and Matrigel coated inserts for 
invasion experiments (Ref. 354480, Corning). The insert 
was fixed and stained 24 h after seeding using the Diff-
Quick method (QCA, Spain). Two different fields were 
photographed at 20 × magnification for the subsequent 
cell count using the ImageJ program (National Institutes 
of Health, USA).

For the study of migration and invasion capacity in 3D, 
4  day spheroids were placed on a previously solidified 
Matrigel layer for migration, or embedded in Matrigel for 
invasion assays.. The images were taken and quantified 
after 3 to 7  days using ImageJ (NIH).Two experiments 
were performed and the measures obtained in two fields 
are represented as a ratio with the non-treated control 
cells.

Establishment of eribulin‑resistant cell lines 
and exploratory antibody array analysis
Eribulin-resistant cell line was established from 93T449 
LPS cells by continuous exposure to eribulin  (GI50 value, 
1.24 nM) over a period of three months.

Semi-quantitative detection of 1000 human pro-
teins was performed using the RayBio C-series Human 
Cytokine Antibody Array C1000 (RayBiotech, USA) fol-
lowing manufacturer’s instructions. Dots detection was 

Table 1 Eribulin 2D and 3D  GI50 values (nM). Concentration is displayed as ± standard deviation. 3D/2D ratio is also shown

FS Fibrosarcoma, LMS Leiomyosarcoma, PLPS Pleomorphic liposarcoma, MLPS Mixoid liposarcoma, WDLPS Well-differentiated liposarcoma, DDLPS Dedifferentiated 
liposarcoma, NE Not evaluable

Cell line Sarcoma subtype Eribulin  GI50 2D Eribulin  GI50 3D GI50 3D/  GI50 2D

HT1080 FS 5.07 ± 2.37 4.67 ± 1.75 0.92

SK‑UT‑1 LMS 0.17 ± 0.04 0.39 ± 0.13 2.29

SW872 PLPS 2.18 ± 0.18 3.54 ± 2.49 1.62

LIPODL221 MLPS 1.03 ± 0.22  > 100 NE

93T449 WDLPS 1.24 ± 0.17 47.93 ± 16.92 38.65

LPS224 DDLPS 11.75 ± 0.86  > 100 NE

LPS246 DDLPS 1.25 ± 0.12  > 100 NE
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performed with the GenePix 4100A Microarray scan-
ner and quantified by GenePix Pro 7 Software System 
(Molecular Devices, USA). The raw numerical intensity 
data were extracted and subjected to background sub-
traction before normalising the signal for each cytokine 
against the positive control signals in each array. Dupli-
cate discordant results were eliminated for the analysis. 
A fold change over 2 times and pvalues < 0.05 were used 
as cutoff.

Drug combinations
Drug combination studies were performed in pairs, com-
bining eribulin with the other drugs. Treatment was 
established for 72 h, with a maximum concentration up 
to 10  mM (specific concentrations for each cell line are 
based on single drug experiments and summarized in 
Additional file 1: Table S1), and 1:3 dilutions. According 
to a 6 × 6 dose–response matrix design, both, the effect of 
the single drugs, as well as the combination, were tested. 
Experiments were first analysed using Synergy-Finder R 
package (http:// bioco nduct or. org/ packa ges/ relea se/ bioc/ 
html/ syner gyfin der. html) [23, 24].

We used 4 available algorithms to test the synergy 
between drugs: the Bliss model (BLISS), Highest Sin-
gle Agent (HSA), Loewe additivity model (LOEWE) and 
Zero Interaction Potency (ZIP) [25]. The effect was con-
sidered synergistic only when the 4 algorithms produced 
a positive scores [26]. Additionally, to evaluate the overall 
efficacy of a drug combination, drug combination sen-
sitivity scores were determined by using a Combination 
Sensitivity Score (CSS) approach, which is based on the 
area under their dose–response curves at relative  GI50 
values of compounds [27]. A top drug combination was 
assumed only if all the synergy scores had a positive value 
and CSS was > 60. Experiments for each combination 
were performed at least two times.

Statistical analysis
The averages and standard deviations of the data, as well 
as the Student T tests, were performed using Microsoft 
Office Excel 2007 (Microsoft, USA). As previously indi-
cated,  GI50 calculation was performed by non-linear 
interpolation using GraphPad Prism 7 software (Graph-
Pad Software).

Results
Cell characterisation
The morphology of the cells is shown in Fig.  1A. All 
cell lines grew with a mesenchymal morphology under 
2D culture. Regarding 3D, SK-UT-1 (LMS) and all the 
LPS cell lines grew as compact spheroids. LIPODL221 
(MLPS) had the peculiarity of growing as multispheres. 
HT1080 (FS) formed less compact spheroids. The 

experimental schedule and growth rates are illustrated in 
Fig. 1B, C, showing that SW872 appears to growth faster 
compared to the other cell lines, under 2D and 3D condi-
tions, although it does not reach statistical significance.

Effect of eribulin and other drugs on proliferation
The most sensitive cell line to eribulin in 2D and 3D con-
ditions was SK-UT-1 (LMS). HT1080 (FS) and SW872 
(PLPS) keep similar values of sensitivity in both condi-
tions, while the rest of the cells showed increases in their 
 GI50 when grown in 3D conditions. Values in 2D were in 
the nanomolar range for all cell lines, and also for 4 of 
them in 3D conditions. The other 3 lines did not reach 
their  GI50 values with a 100  nM exposure (Table  1). 
Examples of growth curves under eribulin exposure of 
each line, as well as a representation of  GI50 values can be 
seen on Additional file 2: Fig. S1.

Additionally, eribulin promoted morphological changes 
in all lines except LPS246 (DDLPS), changing their basal 
mesenchymal morphology to a more rounded one (Addi-
tional file 3: Fig. S2).

The effect of other drugs was also tested on the cell 
lines. The cells were exposed to various drug concen-
trations (up to 10  mM). Pazopanib and palbociclib 
presented a  GI50 at a micromolar range. Doxorubicin, 
gemcitabine and trabectedin presented  GI50 at a nanomo-
lar range, and ifosfamide presented  GI50 at a millimolar 
range (Additional file 4: Table S2).

Effect of eribulin on cell cycle
Cell cycle and apoptosis were also explored by DNA 
content quantification of cells. A general increase in the 
percentage of cells in sub G0 and S-phase was observed 
in all cell lines, indicating that eribulin treatment led to 
apoptosis and S-phase arrest. Regarding checkpoints, a 
decreased G0/G1-phase was observed, and G2/M-phase 
variations seemed to be dependent on the cell line (Addi-
tional file 5: Fig. S3).

Effects of eribulin on migration and invasion in both 2D 
and 3D cultures
In the LMS and FS cell lines, an overall decrease in migra-
tion and invasion was observed. Migration decreased 
between 40 and 90%, and invasion was abolished in 20% 
to 90%. The effects were greater in 3D than in monolayer 
cultures. A representative experiment is shown in Fig. 2.

However, decreased migration and invasion was less 
visible in LPS cell lines, and not statistically significant. 
Some cells did not migrate or invade in basal condi-
tions (LIPODL221, MLPS), whereas others (LPS224 
and LPS246, both DDLPS), showed a high increase in 
their  GI50 values in 3D, so they were as well excluded 
from this part. In the 2 remaining lines, 93T449 and 

http://bioconductor.org/packages/release/bioc/html/synergyfinder.html
http://bioconductor.org/packages/release/bioc/html/synergyfinder.html
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SW872, only a modest decrease in both properties was 
observed (data not shown).

Exploratory identification of pathways implicated 
in eribulin action
We next sought to determine potential action modes 
for eribulin. To do so, we used 93T449 LMS cell line to 
generate an eribulin-resistant line through continuous 
drug exposure. An exploratory analysis of deregulated 
proteins included and enriched pathways, pointed can-
didate pathways to explore, as is protein metabolism 
(Additional file 6: Fig. S4).

Effect of eribulin combinations in 2D cultures
Combinations of eribulin and a second drug were studied 
to establish potential synergies. We selected drugs com-
monly used in STS (doxorubicin, ifosfamide, trabectedin, 
pazopanib and gemcitabine) plus palbociclib, as possible 
agents for LPS.

Of all the tested combinations, 2 showed synergy 
using our restrictive criteria (a positive score in all 4 
algorithms) with SynergyFinder (http:// syner gyfin der. 
org). First, the combination of eribulin and pazopanib 
was synergistic for SK-UT-1 (LMS), SW872 (PLPS) and 
LIPODL221 (MLPS) cell lines (Fig.  3A and Table  2). 
Second, and more impressively, the combination of 

Fig. 1 Basal morphology and growth of cell lines tested. A Bright field micrographs for 2‑ and 3D culture. B 2D growth and C. 3D growth, including 
experiment schedules and growth curves. Each cell line growth is normalised to seeded cells at time 0 for 2D culture, and to day 4 spheroid 
diameter for 3D

http://synergyfinder.org
http://synergyfinder.org
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eribulin and ifosfamide showed consistent synergistic 
action in all the cell lines tested (Fig. 3B and Table 2). 
These results were confirmed with Tidycomb, with the 
exception of the LIPODL221 (MLPS) cell line (Addi-
tional file 7: Fig. S5).

Discussion
Fewer new therapies or drug combinations with clini-
cally relevant efficacy have been identified for STS than 
for other tumours, in part because these tumours occur 
less frequently and are highly heterogeneous. Conse-
quently, most clinical trials have included all (or many) 
STS subtypes together. These entities are different from a 
histological and molecular point of view, and they do not 
necessarily share the same drug sensitivity [28].

Cellular models are a useful tool with which to per-
form drug testing, especially in rare entities such as STS, 
given that they can serve as the basis for new clinical trial 
designs. Traditionally, the most commonly performed 
experiments have been based on cell proliferation or 
apoptosis in 2D conditions. Currently, we can analyse 
the effect of drug exposure on other aspects that are 
important for cancer progression, such as migration and 
invasion. Moreover, we already know that the classical 
monolayer culture, although it has a low cost and is easy 
to handle, does not reflect the architectural situation in 
the tumour. Spheroids are tridimensional structures that 
mimic the spatial architecture of tumour cells, and they 

more accurately represent the pattern of drug diffusion 
as it actually occurs in the tumour from the surrounding 
vasculature [18]. Although various techniques have been 
proposed for 3D culture experiments, the use of non-
adherent plates is particularly interesting for drug testing. 
These plates work in high throughput conditions, with an 
elevated number of replicates, all with the same size, and 
allow the study not only of proliferation, but also migra-
tion and invasion [21, 22]. We have employed all of these 
approaches to better characterise the action of eribulin in 
these cell lines.

Eribulin has been previously studied in sarcomas in 
2D culture models. There are positive data with pre-
clinical models of Ewing’s sarcoma, rhabdomyosarcomas 
and osteosarcoma cell lines [29]. Regarding the subtypes 
examined in this study, eribulin has been reported to 
exert an antiproliferative effect and to induce apoptosis 
in primary and established DDLPS lines grown in mon-
olayer. An effect on cell growth in cell lines correspond-
ing to LMS (SK-L-MS1) and FS (HT1080) has also been 
observed. Similarly, in our study eribulin also produced 
an inhibitory effect on cell growth in LPS, LMS and FS 
cell lines [30–32].

A modification of cell morphology was observed in 
the majority of cell lines, which is consistent with one 
of the mechanisms of action of eribulin. This mecha-
nism involves the suppression of microtubule dynamics 
and EMT, which can prompt changes in cell morphology 

Fig. 2 Eribulin effect on migration and invasion in FS and LMS cell lines in both 2D and 3D cultures. A Micrographs for 2D of a representative 
experiment of HT1080 and SK‑UT‑1 (upper panel) and bar plot for quantification of eribulin‑treated cells vs control (lower panel). B Micrographs 
for 3D of a representative experiment of HT1080 and SK‑UT‑1 (upper panel) and bar plot for quantification of eribulin‑treated cells vs control (CT) 
nontreated cells (lower panel). *p < 0.05, **p < 0.005
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[33]. These changes have also been observed in other 
cellular models, and particularly in LPS and LMS cell 
lines, it has been related to cellular differentiation [34, 
35]. Effects on apoptosis and cell cycle have been also 
reported, and associated to apoptosis and mitotic arrest 

in osteosarcoma and breast cell lines [36, 37]. In our 
models, eribulin led to significantly increased apoptosis 
rate and S-phase arrest, while G2/M arrest seemed to be 
dependent on each cell line.

Fig. 3 Effect of synergistic combinations in cell growth. SK‑UT‑1 cell line plots are presented as example. A Eribulin plus pazopanib. B Eribulin plus 
ifosfamide. Representative experiments are shown. First plot represents the drug effect on cell proliferation, as follows: grey line for ifosfamide or 
pazopanib alone, black line for eribulin, and red line for combinations. Second plot corresponds to the 3D synergy map obtained by HSA algorithm 
with SynergyFinder 2.0 software. Red colours represents synergy areas and green colours represent non‑synergistic areas
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There have been few studies of the effect of eribulin on 
3D STS cell models. A previous report with a 3D LM8 
osteosarcoma model suggested an impact on prolifera-
tion [38]. Eribulin’s action has not been explored previ-
ously under 3D conditions in LMS, FS or LPS, nor has it 
been compared with 2D. While the HT-1080 FS cell line 
maintained similar  GI50 values as the monolayer culture, 
the LPS and LMS models showed an increase in their 
 GI50 values, primarily to nanomolar values, and even to 
a micromolar range in some cases. This increase could be 
due to the spheres’ architecture, given that HT-1080 had 
a less compact structure. A loose aggregate is more simi-
lar to a 2D culture, in which all cells are equally exposed 
to oxygen, nutrients and drugs. The rest of the cell lines, 
which had a more compact structure, were hindered by 
a diffusion gradient through the inner layers. They prob-
ably required a subsequent increase in the  GI50 values, 
given that not all the cells were equally exposed.

Additionally, in compact spheroids, only the outer ring 
proliferates, while the rest of the cells are quiescent, and 
some drugs need proliferation of cells for their activity. 
These findings could favour an increase in  GI50 values 
that would better represent the situation in the tumour 
[22, 39]. Differences in 2D and 3D sensitivities have been 
reported previously in sarcomas, which generally grow 
in a very tight structure in 3D. For example, chondro-
sarcoma cell line monolayers sensitive to doxorubicin 
displayed a high level of resistance under 3D conditions 
[40].

Eribulin has been reported to affect migration and 
invasion of breast cancer cell lines in 2D conditions [13]. 
It has also been reported to inhibit migration in scratch 
assays in primary WDLPS and DDLPS lines. We achieved 
similar results in these subtypes, but no effect was 
observed on the PLPS cell line subtype. The most impres-
sive results were observed in the LMS and FS cell lines, 

with an important decrease in migration and invasion in 
2D and 3D conditions. There are no previous reports on 
this finding [32]. These findings are consistent with the 
morphological changes observed under eribulin expo-
sure involving a mesenchymal to epithelial switch, which 
could be related to a decrease in migration and invasion 
on STS models [35].

LPS is one sarcoma subtype were eribulin has been 
approved and the understanding of resistance mecha-
nisms is increasingly important. Some mechanisms has 
been already implicated, as the activation of PI3K [41]. 
We have generated a resistant cell line from the paren-
tal 93T449 by eribulin exposure and we have explored 
dysregulated molecules under a pathway enrichment 
approach. Our findings suggest that protein metabolism 
is an over-represented process in this resistant cell line. 
Nowadays is considered that cellular metabolic rewir-
ing is essential for tumor development, and that meta-
bolic alterations are related to sensitivity (or resistnace) 
of chemotherapeutics agents. Our preliminary findings 
suggest that this process could be implicated in Eribulin 
response, although further experiments will be required 
to confirm this data [42].

Once the effects of eribulin were observed, studying 
combinations of eribulin with other drugs commonly 
used in STS became an attractive option. Few combina-
tions have been previously explored in STS cell line mod-
els [32, 43]. Regarding eribulin combinations, a recent 
study was published suggesting activity with an AKT 
inhibitor (MK-2206) in FS and LMS cell lines [31].

Synergy indicates that 2 drugs combined exert a greater 
effect than that expected from the 2 drugs individually. 
In vitro studies are the basis for rational drug combina-
tion experiments, but they are not easy to evaluate and 
translate into clinical use [44]. Many methods have been 
developed to evaluate synergy between drugs in  vitro, 

Table 2 Combination scores for eribulin‑ifosfamide and eribulin‑pazopanib calculated by Synergy finder. Mean of two experiments 
and SD are included for each algorithm

ZIP Zero Interaction Potency, HSA Highest Single Agent, LOEWE Loewe additivity model, BLISS Bliss model

Cell line Combination ZIP HSA BLISS LOEWE

HT1080 Eribulin + Ifosfamide 7.27 ± 2.41 10.08 ± 1.94 8.22 ± 2.37 4.39 ± 1.29

SK‑UT‑1 3.74 ± 0.76 7.07 ± 1.26 4.18 ± 0.84 0.7 ± 2.63

SW872 7.49 ± 4.24 8.75 ± 5.07 7.8 ± 4.32 4.48 ± 4.31

LIPODL221 1.31 ± 1.55 6.07 ± 1.33 2,90 ± 0.34 1.99 ± 0.50

93T449 5,19 ± 0.28 7.74 ± 2.48 6.48 ± 2.38 2.55 ± 1.61

LPS224 6,98 ± 0.04 7.77 ± 0.99 7.81 ± 0.44 4.26 ± 0.34

LPS246 2.27 ± 1.15 5.28 ± 0.17 2.68 ± 1.25 1.69 ± 0.32

SK‑UT‑1 Eribulin + Pazopanib 4.08 ± 4.34 10.25 ± 0.50 5.17 ± 2.49 5.53 ± 1.31

SW872 8.81 ± 1.92 13.97 ± 0.03 9.19 ± 1.41 8.00 ± 0.03

LIPODL221 3.38 ± 2.29 11.07 ± 1.40 3.37 ± 2.24 7.67 ± 1.98
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and using more than 1 scientific evaluation method 
should provide more consistent results. In our study, we 
have explored the combination of eribulin with a com-
plete panel of drugs commonly used in STS with restric-
tive synergy requirements. All of the 4 scores obtained by 
the Synergy Finder analysis had to show a positive value, 
whereas other studies usually consider synergy to have 
occurred when only one of the algorithms is positive [45, 
46]. Our approach helped us obtain greater certainty in 
the results.

We found 2 interesting combinations. First, eribu-
lin and pazopanib appeared to be synergistic for LMS, 
MLPS and PLPS, but not for other LPSs. Pazopanib is 
a potent and selective multitargeted receptor tyrosine 
kinase inhibitor that showed efficacy in a phase III trial 
in STS, and it is currently approved for the treatment of 
advanced STS (except LPS) pretreated with anthracy-
clines [47, 48]. Additionally, the combination of eribulin 
and ifosfamide was consistently synergistic in all lines 
and subtypes tested. Ifosfamide is an alkylating agent 
classically used in neo/adjuvant treatment or for first 
line treatment of advanced STS in combination with an 
anthracycline. It is also used at high doses as monother-
apy in second-line treatment of STS. Due to the consist-
ency of results among the STS subtypes analysed in our 
study, this combination needs further exploration. From 
a clinical point of view, the eribulin-pazopanib combina-
tion would need careful investigation due to the toxicity 
profile of each drug. In addition, ifosfamide is associ-
ated with high haematological toxicity, which could be 
increased with eribulin. Therefore, a hypothetical phase I 
clinical trial to explore this combination should start with 
a low dose of ifosfamide.

Conclusions
We have proved eribulin’s effect on proliferation, migra-
tion and invasion in STS cell line models. The preclinical 
results we have obtained are sufficiently robust to consol-
idate its antitumour effect in this context. Additionally, 
the combination of eribulin with pazopanib or ifosfamide 
has a synergistic effect in STS, which warrants further 
clinical research.
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