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Robust machine−learning based prognostic 
index using cytotoxic T lymphocyte evasion 
genes highlights potential therapeutic targets 
in colorectal cancer
Xu Wang1†, Shixin Chan1†, Jiajie Chen2†, Yuanmin Xu1†, Longfei Dai1, Qijun Han1, Zhenglin Wang1, 
Xiaomin Zuo1, Yang Yang1, Hu Zhao1, Ming Wang1, Chen Wang2, Zichen Li2, Huabing Zhang3,4* and Wei Chen1* 

Abstract 

Background  A minute fraction of patients stands to derive substantial benefits from immunotherapy, primarily 
attributable to immune evasion. Our objective was to formulate a predictive signature rooted in genes associated 
with cytotoxic T lymphocyte evasion (CERGs), with the aim of predicting outcomes and discerning immunotherapeu-
tic response in colorectal cancer (CRC).

Methods  101 machine learning algorithm combinations were applied to calculate the CERGs prognostic index 
(CERPI) under the cross−validation framework, and patients with CRC were separated into high− and low−CERPI 
groups. Relationship between immune cell infiltration levels, immune−related scores, malignant phenotypes 
and CERPI were further analyzed. Various machine learning methods were used to identify key genes related 
to both patient survival and immunotherapy benefits. Expression of HOXC6, G0S2, and MX2 was evaluated 
and the effects of HOXC6 and G0S2 on the viability and migration of a CRC cell line were in−vitro verified.

Results  The CERPI demonstrated robust prognostic efficacy in predicting the overall survival of CRC patients, 
establishing itself as an independent predictor of patient outcomes. The low−CERPI group exhibited elevated levels 
of immune cell infiltration and lower scores for tumor immune dysfunction and exclusion, indicative of a greater 
potential benefit from immunotherapy. Moreover, there was a positive correlation between CERPI levels and malig-
nant tumor phenotypes, suggesting that heightened CERPI expression contributes to both the occurrence 
and progression of tumors. Thirteen key genes were identified, and their expression patterns were scrutinized 
through the analysis of single−cell datasets. Notably, HOXC6, G0S2, and MX2 exhibited upregulation in both CRC cell 
lines and tissues. Subsequent knockdown experiments targeting G0S2 and HOXC6 resulted in a significant suppres-
sion of CRC cell viability and migration.
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Introduction
Colorectal cancer (CRC) constitutes a significant global 
menace to human health, emerging as the third most 
prevalent malignancy and the second foremost contribu-
tor to cancer−associated fatalities on a worldwide scale. 
It is widely recognized as a significant medical and health 
issue [1]. By 2030, the amount of CRC cases is expected 
to approach 2.2 million, with over 1.1 million deaths [2]. 
Data gleaned from cancer surveys reveals a persistent 
rise in CRC incidence in China. This malignancy has 
ascended to become the fourth most prevalent cancer 
and the fifth primary contributor to cancer−related mor-
talities in the country [3]. As of now, the precise mecha-
nisms driving the development of CRC remain elusive. 
Empirical findings in the realm of evidence−based medi-
cine propose a nuanced interconnection between CRC 
incidence and various factors, including genetic muta-
tions, a diet rich in fats, inflammatory processes, immune 
responses, and perturbations in the gut microbiota [4]. 
With advancements in CRC diagnostic techniques and 
treatment options, patients diagnosed with early−stage 
CRC can attain a 5−year survival rate of up to 90% [5]. 
However, the symptoms of early stage CRC are often 
overlooked, and most patients are diagnosed at interme-
diate or advanced stages. Even after the removal of the 
primary tumor, 30–50% of cases with tumor recurrence 
were still observed [6]. In recent years, the emergence 
of targeted therapeutic modalities and the implementa-
tion of immunotherapy approaches have expanded the 
array of treatment alternatives available to CRC patients. 
Immunotherapy with the immune checkpoint inhibitor 
(ICI) Programmed Death Receptor 1 (PD−1) has shown 
efficacy in patients with mismatch repair deficiency or 
high microsatellite instability (MSI) in metastatic CRC 
[7]. However, these treatment methods benefit a min-
ute fraction of patients. Enhancing the effectiveness of 
treatment for intermediate− and advanced−stage CRC 
is challenging for researchers. Therefore, conducting in−
depth studies on the potential mechanisms underlying 
CRC development, identifying early diagnostic markers, 
and exploring treatment targets remains essential.

T cells exhibit distinctive characteristics in their anti−
cancer localization, demonstrating both direct effec-
tor functions and the ability to elicit auxiliary responses 
through the recruitment of other immune components. 
Additionally, T lymphocytes can expand in  vitro and 
establish memory compartments, which are pivotal 

attributes in anti−tumor surveillance [8]. Previous stud-
ies have advanced the notion that CD4+ and CD8+ T 
cells infiltrated into malignant tumors not only signi-
fies the ongoing host−driven anti−tumor response, 
but also bears a direct association with the prognosis of 
patients with cancer [9, 10]. Cytotoxic T lymphocytes 
(CTL), often identified as CD8+ T cells, stand as pivotal 
agents in anti−cancer immunity and constitute the pri-
mary focus of efforts in cancer immunotherapy [11]. The 
resistance to immune checkpoint inhibitors arises when 
there is an excessive activation of CD8+ T cells, lead-
ing to their differentiation into an exhausted phenotype 
within the immune system [12]. In most immunothera-
peutic approaches, the precise recognition and targeted 
elimination of tumor cells by CD8+ T cells are impera-
tive, with immune evasion standing as the predominant 
factor contributing to resistance in immunotherapeu-
tic interventions.[13]. Several previous researches have 
focused on exploring the potential mechanisms of 
immune evasion in various solid tumors. Zhang et  al. 
[14] demonstrated that retinoic acid−inducible gene−I 
contributes to immune evasion by regulating the ubiquit-
ination of PD−L1 in colon cancer. Travelli et al. [15] sug-
gested that T cell immune evasion in breast cancer could 
be counteracted by extracellular nicotinamide phospho-
ribosyltransferase. ZNF652 acts as a potential biomarker 
for immunotherapy in triple−negative breast cancer 
because its loss is related to PD−L1−mediated immune 
evasion [16]. FBXL6 overexpression in hepatocytes acti-
vates immune evasion in hepatocellular carcinoma [17]. 
In a recent investigation [18], an extensive genome−wide 
CRISPR screening was conducted on diverse genetically 
modified mouse cancer cell lines, cultured in conjunc-
tion with CTL; they identified 182 CTL evasion−related 
genes (CERGs), which can increase either the susceptibil-
ity or resilience of cancer cells to CTL−induced toxicity 
in mouse cancer models, were identified.

In recent decades, there has been rapid advancement in 
the field of machine learning. It is not only widely applied 
in healthcare−related fields, such as drug discovery and 
disease diagnosis, its utilization also extends widely to 
other domains, including mechanics, robotics, and image 
recognition [19–23]. Furthermore, machine learning 
has been widely used in emerging technologies, such as 
pathomics and radiomics. Some researches [24–28] also 
used the combination of machine learning algorithms 
instead of traditional method to construct models using 

Conclusion  We developed the CERPI for effectively predicting survival and response to immunotherapy in patients, 
and these results may provide guidance for CRC diagnosis and precise treatment.
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transcriptomic data for predicting outcome or therapeu-
tic responses in patients with malignant tumors, and the 
prediction efficiency of these models was significantly 
improved.

This study used 31 core CERGs to perform consensus 
clustering for identifying two CERG−related molecular 
subtypes of CRC and prognosis−related differentially 
expressed genes (DEGs) between the two subtypes. A 
combination of 10 machine methods was applied to 
develop a prognostic signature and calculate the CTL 
evasion−related prognostic index (CERPI) using seven 
CRC cohorts. CERPI was significantly correlated with 
patient survival, clinical characteristics, immune cell 
infiltration, and malignant cancer phenotypes. To iden-
tify the key signature genes, data from seven immuno-
therapy clinical cohorts were used. The expression of 13 
key signature genes was analyzed using bulk and single−
cell data. G0S2, HOXC6, and MX2 expression was vali-
dated using qRT−PCR and immunohistochemistry, and 
the effects of G0S2 and HOXC6 on CRC cell viability and 
migration were verified in vitro.

Materials and methods
Data collection and processing
Transcription data, single−cell sequencing data and 
relevant clinical information were retrieved from The 
Cancer Genome Atlas (TCGA, ID: TCGA-COAD and 
TCGA-READ), Gene Expression Omnibus (GEO, 
ID: GSE17536, GSE17537, GSE29621, GSE38832, 
GSE39582, GSE72970, GSE100797, GSE179351, 
GSE35640, GSE78220, and GSE91061), Tumor Immune 
Dysfunction and Exclusion (TIDE) (https://​tide.​dfci.​
harva​rd.​edu/, ID: PRJEB25780), iMvigor210 (http://​
resea​rch-​pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies, 
ID: iMvigor210), Firehose (http://​gdac.​broad​insti​
tute.​org), the Xena Browser (https://​xenab​rowser.​
net/​datap​ages/), and Tumor Immune Single-cell 
Hub 2 (TISCH2, http://​tisch.​comp-​genom​ics.​org/​
home/, ID: EMTAB8107, GSE108989, GSE146771, 
and GSE166555) databases. Among these datasets, 
seven (TCGA-CRC, GSE17536, GSE17537, GSE29621, 
GSE38832, GSE39582, and GSE72970) with com-
plete follow-up information of patients with CRC 
were used to calculate the CERPI using a combina-
tion of machine learning algorithms and to evaluate 
the correlation between clinical characteristics, tumor 
microenvironment (TME), and CERPI. Seven immu-
notherapy-related datasets (GSE100797, GSE179351, 
GSE35640, GSE78220, and GSE91061, PRJEB25780, 
and iMvigor210) were used to construct the model for 
predicting immunotherapy benefits using abundant 
machine learning methods in patients with various 
cancer types. mRNA expression, copy number, DNA 

methylation, and mutation data of 20 cancer types were 
used to investigate the genetic aberrations of CERGs 
and evaluate the relationship between signature genes 
and malignant prototypes in cancers using z-score 
algorithms. Four single-cell datasets (EMTAB8107, 
GSE108989, GSE146771, and GSE166555) were used 
to analyze the expression levels of key genes of prog-
nostic and predictive signatures in different single cell 
types. Transcription data from TCGA database were 
transformed from fragments per kilobase million into 
transcripts per million using R software (version 4.2.1). 
TCGA-COAD and TCGA-READ datasets were merged 
into TCGA-CRC cohort, six CRC datasets were merged 
into the GEO-Meta cohort, batch effects were miti-
gated through the implementation of the Combat algo-
rithm, and the normalization and transformation of 
expression data were carried out using the log2 formula 
with the assistance of the sva R package. Patients with 
incomplete clinical information or survival times were 
excluded from this study.

Comprehensive analyses of genetic alterations 
and biological functions of CERGs in cancers
CERGs were extracted from a previous study [18] and 
immune-related genes (IRGs) were retrieved from the 
ImmPort database (https://​www.​immpo​rt.​org/​shared/​
home), and the insertion genes between these two gene 
sets were identified as core CERGs. The locations of these 
core CERGs on the human chromosomes were analyzed 
and further visualized using RCircos package. Copy 
number variation (CNV), mRNA expression levels, dif-
ferential methylation, and Pearson’s correlation between 
the expression and methylation levels of the core CERGs 
were also analyzed. The assessment of the relationship 
between copy number segment values and expression 
values for each gene involved the computation of Pear-
son’s correlation coefficient. To ascertain the mutual 
exclusivity of genes within each cancer type, a signifi-
cance threshold of q value 0.05 was applied. The differ-
ential methylation status of individual genes in tumor 
and normal samples was determined through the Wil-
coxon signed rank test, with genes exhibiting significant 
hypomethylation or hypermethylation identified based 
on a p−value cutoff of 0.05. The correlation between the 
transcriptional expression of CERGs and the Beta value 
of the promoter DNA methylation was investigated using 
Pearson’s correlation, with significance determined by a 
p−value < 0.05. Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analyses were exe-
cuted to delve deeper into the biological functions and 
pathways pertinent to these CERGs using xiantao online 
website (www.​xiant​aozi.​com).

https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
http://gdac.broadinstitute.org
http://gdac.broadinstitute.org
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
https://www.immport.org/shared/home
https://www.immport.org/shared/home
http://www.xiantaozi.com
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Identification of CERG‑related molecular subtypes
Consensus clustering is an unsupervised clustering 
method, it is a common research method for cancer 
subtype classification. Samples can be divided into sev-
eral subtypes according to different omics data, so as to 
identify new disease subtypes or compare and analyze 
between different subtypes. Utilizing the expression 
profiles of the 31 fundamental CERGs, the TCGA-CRC 
cohort underwent a stratification into two distinct clus-
ters through the application of the consensus cluster-
ing method. Principal Component Analysis (PCA) was 
employed, utilizing the stats R package, to assess the dis-
cernibility between the two clusters. Subsequently, clini-
cal attributes and the expression patterns of core CERGs 
within the identified clusters were visually represented in 
a heatmap, constructed using the pheatmap R package. 
Single−sample gene set enrichment analysis (ssGSEA) 
was conducted, employing the gsva R package, to scru-
tinize pathways associated with the two clusters. The 
immune landscape within CERG-related subtypes were 
explored involved the implementation of the movics R 
package, assessing immune-related scores, expression 
of immune checkpoints, and levels of immune cell infil-
tration between CERG-related subtypes A and B. DEGs 
between these subtypes were pinpointed using the limma 
package, with criteria set at |Fold Change| > 1.5 and an 
adjusted p−value < 0.05. Further insights into the biologi-
cal functions and pathways of DEGs were gained through 
GO and KEGG analyses. Univariate Cox regression was 
applied to identify prognosis−related DEGs, warranting 
subsequent analysis.

Calculation of CERPI using combination of machine 
learning algorithms
Transcription data of seven CRC datasets were used to 
calculate the CERPI via combination of machine learn-
ing methods, comprising Coxboost, partial least squares 
Regression for Cox (plsRcox), least absolute shrinkage 
and selection operator (Lasso), Elastic Network (Enet), 
Ridge, StepCox, Random Survival Forest, Supervised 
Principal Components, survival Support Vector Machine 
(survival−SVM), and Generalized Boosted Regression 
Modeling (GBM). The area C-index of each algorithm 
was computed and shown in the heatmap, sorted by the 
average C-index values in seven CRC cohorts. The algo-
rithm demonstrating the highest average C-index values 
was recognized as the optimal method for predicting the 
overall survival (OS) of patients, which was calculated 
based on this optimal method using the predict func-
tion of R software. Patients within each cohort, and the 
GEO-Meta cohort, were stratified into high− and low-
CERPI groups according to the median CERPI values. 
The OS of CRC patients across the seven cohorts was 

then compared using the Kaplan–Meier method and log-
rank tests. Meta−analysis was performed to determine 
whether there was significant heterogeneity among the 
seven datasets. We also collected 56 published articles 
(Additional file 1: Table S1) that constructed prognostic 
signatures for survival prediction in patients with CRC 
and compared the AUC values of our CERPI with those 
of published signatures using two-sided t-tests.

CERPI for clinical application
Four datasets, TCGA−CRC, GSE39582, GSE17536, and 
GSE72970, contain complete clinical data, including 
the TNM staging information, Chi−Square tests were 
employed to compare the clinical characteristics between 
groups categorized as high and low based on CERPI 
values and presented using pie charts. TCGA-CRC and 
GSE39582 datasets have the largest number of CRC 
patients, uni− and multi−variate cox regression analyses 
were performed in these two datasets to screen out inde-
pendent prognostic factors, and significant factors were 
included to construct the nomogram model, calibration 
plots were utilized to assess disparities between actual 
survival rates and predicted survival probabilities.

TME in Different CERPI Groups
Tracking Tumor Immunophenotype (http://​biocc.​

hrbmu.​edu.​cn/​TIP/) is a website which uses ’ssGSEA’ 
and ’CIBERSORT’ methods to evaluate the anti-cancer 
immunity and immune cell abundance in malignant 
tumors across seven-step Cancer-Immunity Cycle. Pro-
filing the status of anti-cancer immunity across seven-
step Cancer-Immunity Cycle including release of cancer 
cell antigens (Step 1), cancer antigen presentation (Step 
2), priming and activation (Step 3), trafficking of immune 
cells to tumors (Step 4), infiltration of immune cells into 
tumors (Step 5), recognition of cancer cells by T cells 
(Step 6) and killing of cancer cells (Step 7). The expres-
sion levels of biomarkers in these seven steps were 
compared and visualized. Cases of four TCGA-CRC rep-
resentative immune subtypes [29] in two CERPI groups 
were drawn into a block diagram and compared using 
the Chi-squared method. Spearman analyses were per-
formed to analyze the correlation between immune cell 
abundance, the seven-step Cancer-Immunity Cycle, and 
the calculated CERPI values.

CERPI for predicting immunotherapy benefits in patients 
with CRC​
Tumor microenvironment (TME) scores, encompassing 
stromal, immune, and ESTIMATE scores, were assessed 
in both low− and high−CERPI groups through the appli-
cation of the Wilcoxon signed-rank test. TIDE scores 
were obtained from the TIDE website, while IPS data 
were acquired from The Cancer Immunome Atlas (TCIA, 

http://biocc.hrbmu.edu.cn/TIP/
http://biocc.hrbmu.edu.cn/TIP/
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https://​tcia.​at/). The assessment of tumor immune escape 
probability utilized the TIDE score, where a higher score 
indicated an elevated likelihood of immune escape and 
reduced efficacy of immunotherapy. Immune Cell Pro-
portion Scores (IPS) was employed to anticipate patient 
responses to diverse immune checkpoint inhibitor (ICI) 
therapies, encompassing PD-1/PD-L1/PD-L2, CTLA-4, 
and combination therapies such as PD-1/PD-L1/PD-L2 
and CTLA-4 blockade, these scores between the two 
groups were also compared. To validate these findings, 
HE−stained images of TCGA-CRC cohort were retrieved 
from TCGA website, and the infiltrated immune cell 
abundance in low− and high−CERPI samples was visual-
ized and compared.

Evaluation of CERPI in Pan−cancer using Z−score method
Gene sets related to cancer hallmarks, including angio-
genesis, epithelial to mesenchymal transition (EMT), and 
cell cycle were extracted from a previous study [30], and 
the gene sets were applied for z−score calculation using 
the gsva R package. The quantification of each gene set 
was expressed in terms of angiogenesis z−score, EMT 
z−score, Cell Cycle z−score, and CERPI z−score, respec-
tively. Associations between CERPI and malignant bio-
logical processes in various cancers were analyzed using 
Pearson’s correlation method.

Identification of Immunotherapy−related signature genes 
using abundant machine learning methods
Seven public datasets containing complete RNA−seq 
data and immunotherapy response information were 
applied to construct a binary classification model for 
predicting immunotherapy responses in patients with 
malignant tumors, patients with different immunother-
apy responses were classified into Complete Response 
(CR)/Partial Response (PR) and Stable Disease (SD)/
Progressive Disease (PD) groups. Twelve algorithms, 
namely, Lasso, Ridge, Enet, Stepglm, SVM, glmBoost, 
Linear Discriminant Analysis, plsRglm, RandomForest, 
GBM, XGBoost, and NaiveBayes, were used to construct 
the model. The C−indices of each combination of these 
algorithms were calculated and sorted by the Area Under 
Curve (AUC) value, and the genes contained in the algo-
rithm with the highest average AUC were identified as 
immunotherapy−related genes. Insertion genes between 
the prognostic signature and immunotherapy−related 
genes were identified as key genes related to both patient 
prognosis and immunotherapy outcomes, Wilcoxon tests 
were employed to compare the mRNA expression levels 
of these genes between tumor and adjacent normal sam-
ples in the TCGA−CRC cohort.

Analysis of the expression of key genes in different cell 
types using single−cell datasets
Single−cell expression matrices of the EMTAB8107, 
GSE108989, GSE146771, and GSE166555 datasets were 
downloaded from the TISCH database (http://​tisch.​
comp-​genom​ics.​org/​home/). Cellular classifications were 
ascribed based on the expression levels of distinct marker 
genes utilizing the Monaco Immune Database within 
the Celldex package. Subsequently, the visualization of 
immunotherapy−related signature genes across various 
cell types was undertaken for further elucidation.

Cell culture
A human intestinal epithelial and five CRC cell lines 
(NCM-460, HT-29, RHO, SW620, HCT-116, and SW480) 
were purchased from the American Typical Culture 
Center. We incubated the cells in Dulbecco’s modified 
Eagle’s medium (DMEM) containing 10% fetal bovine 
serum (FBS; Lonsera, Austria) and 1% double antibiotics 
(streptomycin and penicillin) in 5% CO2 at 37 °C.

RNA Isolation and qRT−PCR
Total RNA extraction was executed through the utiliza-
tion of TRIzol reagent (Life Technologies, Carlsbad, CA, 
USA), with subsequent complementary DNA (cDNA) 
synthesis facilitated by a PrimeScript RT kit (Vazyme, 
Nanjing, China). The concentration of cDNA was quanti-
fied using TB Green Premix Ex Taq II (GenStar, Guang-
dong, China) and a LightCycler480 System (Applied 
Biosystems, Waltham, MA, United States). Relative 
expression levels of HOXC6, G0S2, and MX2 were deter-
mined employing the 2−ΔΔCt method, with GAPDH 
serving as the internal control. Differential gene expres-
sion across distinct cell lines was assessed utilizing Stu-
dent’s t−test. Primer sequences are shown in Additional 
file 1: Table S2.

Sample collection and immunohistochemistry staining
Nineteen normal colorectal tissues and 20 tumor tissues 
were acquired from patients who underwent surgical 
resection at the First Affiliated Hospital of Anhui Medi-
cal University, and subsequently preserved in formalin. 
Ethical approval for all experiments was granted by the 
Ethics Committee. Xinle Biological Company conducted 
the embedding, sectioning, and staining with hematoxy-
lin and eosin. Subsequently, the sections were treated 
with xylene and ethanol and hydrated under running 
water. Antigen retrieval was conducted with a sodium 
citrate antigen retrieval solution (Solarbio, China). Tissue 
sections were subjected to incubation using a universal 
two−step assay kit (pv-9000; ZSGB-BIO, China) in con-
junction with antibodies sourced from Zenbio, China. 

https://tcia.at/
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
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Subsequently, the antibody complexes were visualized 
using DAB, and the sections were counterstained with 
hematoxylin.

Cell transfection
For the transfection of si−RNAs (TsingkeBiotech, Bei-
jing, China) (Additional file 1: Table S3), RKO cells were 
cultivated until they reached 60% confluency, and trans-
fection was carried out using Lipofectamine 3000 (Inv-
itrogen, Shanghai, China), following the manufacturer’s 
recommended protocols. After a 72−h incubation period 
and thorough washing, the cells were prepared for subse-
quent experimental procedures.

Western blotting
Protein extraction was performed using RIPA buffer 
(Beyotime, China), supplemented with protease and 
phosphatase inhibitors. Western blotting procedures 
adhered to established protocols, as previously described 
[31]. The primary antibodies sourced from Zenbio, 
China, comprised anti-G0S2 and anti-HOXC6.

Cell viability assay
A total of 1500 cells were meticulously dispensed into 
individual wells of 96−well plates. Subsequently, the cells 
were cultured for 0, 24, 48, or 72  h in the presence of 
siRNA. Following that, the cells were subjected to expo-
sure to the CCK-8 solution (C0038, Beyotime, Shanghai, 
China) for an additional hour. Cell viability was evaluated 
by quantifying the optical density at 450 nm. The results 
were analyzed using t−tests in GraphPad Prism software 
(version 9.4).

Colony formation assay
To elucidate the impact of G0S2 and HOXC6 expression 
on the proliferation of human CRC cells, RKO cells that 
had undergone transfection (1000 cells per well) were 
seeded into six−well plates. After a 10−day incubation 
period, colony formation was quantified.

Wound healing assay
RKO cells were plated in six−well plates at a density of 
1.5 × 106 cells per well. Upon cellular adhesion to the 
well surface, a precise scratch was made using the tip of 
a 200 μL pipette. Throughout the experiment, cells were 
cultured in DMEM supplemented with 2% FBS. Obser-
vations and photomicrographs of the scratch areas were 
captured at distinct time points, specifically at 0 and 24 h 
post PBS wash. To quantitatively assess cell migration, 
the distances covered within the scratch after 24 h were 
computed using ImageJ software.

Transwell assay
Transwell chambers (Corning, NY, USA) were used to 
conduct the migration experiments. RKO cells, having 
undergone prior transfection, were prepared at a con-
centration of 5 × 104 cells and suspended in 200 μL of 
serum−free medium. Subsequently, these cells were 
introduced into the upper chambers of the Transwell sys-
tem, while the lower chambers were filled with medium 
containing 10% FBS. After a 48−h incubation period, the 
cells residing in the upper chambers were meticulously 
eliminated, and the cells on the opposing side of the 
membrane were fixed using a 4% formaldehyde solution. 
Following fixation, the cells were stained with crystal vio-
let, and their microscopic images were captured.

Results
Genetic alterations and biological functions of CERGs 
in cancers
A total of 182 CTL−evasion−related genes and 1793 
IRGs were observed (Additional file 1: Table S4), 31 core 
CERGs were screened, and the locations of CNVs in 
these genes on human chromosomes are shown (Fig. 1A). 
The findings revealed a pervasive trend with somatic 
copy number alterations manifesting at notably elevated 
frequencies, affecting a substantial portion of the samples 
across a wide spectrum of cancer types (Fig.  1B). Our 
investigation also revealed that most core CERGs exhib-
ited distinct expression profiles in at least one cancer 
type. Notably, certain genes displayed consistent expres-
sion patterns when subjected to the cross−cancer analy-
sis. Specifically, TAP1, TAP2, TAPBP, PSMB8, and CALR 
were significantly upregulated in 17, 14, 13, 15, and 15 
distinct cancer types, respectively (Fig.  1C). Conversely, 
JAK2 was downregulated in 17 cancer types. The DNA 
methylation patterns of core CERGs in the 20 cancer 
types were also observed, and some of these genes, such 
as IKBKG and TNFRSF1B, showed consistent hypometh-
ylation (Fig. 1D). While variations in the methylation pat-
terns of core CERGs were evident, a consistent inverse 
correlation was observed between gene expression levels 
and DNA methylation status (Fig. 1E). Results of GO and 
KEGG analyses unveiled that these 31 genes predomi-
nantly participated in biological functions and pathways 
associated with the immune system (Fig. 1F). Moreover, 
Expression and prognostic significance of 31 core CERGs 
in TCGA−CRC dataset are shown in Additional file  1: 
Figure S1.

Identification of CERGs−related molecular subtypes
Based on the expression of 31 core CERGs, patients 
from TCGA-CRC datasets were divided into two dis-
tinct subtypes, A and B (Fig. 2A). PCA revealed a good 



Page 7 of 21Wang et al. Cancer Cell International           (2024) 24:52 	

distinction between the two subtypes (Fig. 2B). Associa-
tions between the subtypes, CERGs expression, and clini-
cal features are shown in a heatmap (Fig.  2C). Subtype 
B showed higher expression levels of CERGs, and many 
cancer− and immune−related pathways were enriched in 
subtype B (Fig. 2D). The TME status of the two subtypes 
was also evaluated, and subtype B showed higher TME 
scores, immune checkpoint expression, and immune 
cell infiltration levels (Fig.  2E). DEGs between the two 
subtypes were screened out (Fig. 2F). These DEGs were 
mainly related to immune−related biological functions, 
cellular components, molecular functions, and path-
ways (Fig.  2G). 31 prognosis−related DEGs were finally 

identified after selection using Univariate Cox method 
(Fig. 2H).

Calculation of CERPI using combination of 10 machine 
learning algorithms
A comprehensive analysis involving 101 machine learn-
ing algorithms was conducted to compute the CERP. 
The algorithms were organized based on their average 
C−index values in colorectal cancer cohorts (Additional 
file  1: Table  S5). Coxboost + plsRcox had the highest 
average C−index value, 0.667, and was selected as the 
optimal method, and CERPI was calculated based on 
this algorithm (Fig. 3A). Patients within the CRC cohorts 

Fig. 1  Genetic alterations and biological functions of CERGs in cancers. A The locations of CNVs in these genes on human chromosomes; B The 
findings revealed a pervasive trend with somatic copy number alterations manifesting at notably elevated frequencies, affecting a substantial 
portion of the samples across a wide spectrum of cancer types; C Most core CERGs exhibited distinct expression profiles in at least one cancer type; 
D DNA methylation patterns of core CERGs in the 20 cancer types; E Correlation between gene expression levels and DNA methylation status; F 
GO and KEGG analyses unveiled that these 31 genes predominantly participated in biological functions and pathways associated with the immune 
system
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were stratified into groups categorized as low−CERPI 
and high−CERPI based on the median value of CERPI. 
Patients within the high−CERPI group exhibited sig-
nificantly shorter OS durations compared to those in the 
low−CERPI group across multiple datasets (HR = 5.59, 
p < 0.001, Fig.  3B), GEO-Meta (HR = 1.91, p < 0.001, 
Fig.  3C), GSE17536 (HR = 2.15, p = 0.001, Fig.  3D), 

GSE17537 (HR = 3.75, p = 0.006, Fig.  3E), GSE29621 
(HR = 2.23, p = 0.046, Fig.  3F), GSE38832 (HR = 4.13, 
p < 0.001, Fig.  3G), GSE39582 (HR = 1.78, p < 0.001, 
Fig.  3H), and GSE72970 (HR = 1.47, p = 0.062, Fig.  3I) 
datasets. Moreover, the results of the meta−analysis did 
not show any evidence of heterogeneity among these 
seven CRC cohorts (Fig. 3J). Furthermore, we conducted 

Fig. 2  Identification of CERGs−related molecular subtypes. A Patients from TCGA−CRC datasets were divided into two distinct subtypes, A and B; 
B PCA revealed a good distinction between the two subtypes; C Associations between the subtypes, CERGs expression, and clinical features; D 
Subtype B showed higher expression levels of CERGs, and many cancer− and immune−related pathways were enriched in subtype B; E The TME 
status of the two subtypes; F DEGs between the two subtypes were screened out; G These DEGs were mainly related to immune−related biological 
functions, cellular components, molecular functions, and pathways; H 31 prognosis−related DEGs were finally identified after selection using 
Univariate Cox method
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a comparative analysis of the C-index for the CERPI in 
relation to the other 56 published signatures (Fig.  4). 
Remarkably, the CERPI consistently outperformed nearly 
all other models across all examined datasets. the major-
ity of models exhibited commendable performance 

within their respective training datasets but displayed 
relatively diminished performance in external datasets. 
This observation may be ascribed to the limited gener-
alizability of the models, often stemming from overfit-
ting. In contrast, our signature underwent dimensionality 

Fig. 3  Calculation of CERPI using combination of 10 machine learning algorithms. A comprehensive analysis involving 101 machine learning 
algorithms was conducted to compute the CERPI; B−I Patients within the high−CERPI group exhibited significantly shorter OS durations compared 
to those in the low−CERPI group across multiple datasets; J The results of the meta−analysis did not show any evidence of heterogeneity 
among these seven CRC cohorts
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reduction using two machine learning algorithms, conse-
quently enhancing its potential for extrapolation across 
diverse datasets.

CERPI for clinical application
The high−CERPI patients were more likely to have 
advanced−stage CRC in TCGA-CRC (Fig.  5A), 
GSE39582 (Fig.  5B), and GSE17536 (Fig.  5C) datasets; 
however, this trend was not significant in the GSE72970 

dataset (Fig. 5D). TCGA−CRC and GSE39582 contained 
the largest number of patients with CRC and complete 
clinical information, and these two datasets were used 
to perform univariate (Fig. 5E) and multivariate (Fig. 5F) 
Cox regression analyses. The results suggested that 
CERPI remained significantly related to patient OS, indi-
cating that CERPI is an independent predictor of patient 
OS. Clinical features that exhibited significant asso-
ciations with patient prognosis in both univariate and 

Fig. 4  A comparative analysis of the C−index for the CERPI in relation to the other 56 published signatures was conducted. Remarkably, the CERPI 
consistently outperformed nearly all other models across all examined datasets. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001



Page 11 of 21Wang et al. Cancer Cell International           (2024) 24:52 	

multivariate analyses were utilized in the construction of 
the nomogram model. Calibration plots demonstrated a 
high level of prediction accuracy for the nomograms in 
the TCGA−CRC dataset (Fig.  5G) and the GSE39582 
dataset (Fig. 5H).

TME in different CERPI groups
The majority of marker genes associated with the 
seven−step Cancer-Immunity Cycle displayed varying 

expression levels between the two groups (Fig. 6A). Nev-
ertheless, there were no significant differences observed 
in the proportions of immune subtypes between the two 
groups (Fig.  6B). CERPI exhibited a positive correlation 
with the infiltration levels of CD56dim natural killer, 
natural killer T, plasmacytoid, and T follicular helper 
cells, and negatively correlated with the infiltration lev-
els of activated B, CD4+, and CD8+ T cells; eosino-
phils; monocytes; neutrophils; and type 17 T helper cells 

Fig. 5  CERPI for clinical applications. The high−CERPI patients were more likely to have advanced−stage CRC in TCGA−CRC (n = 506) (A), GSE39582 
(n = 573) (B), and GSE17536 (n = 177) (C) datasets; however, this trend was not significant in the GSE72970 (n = 124) dataset (D). TCGA−CRC 
and GSE39582 datasets were used to perform univariate (E) and multivariate (F) Cox regression analyses. Clinical features that exhibited significant 
associations with patient prognosis in both univariate and multivariate analyses were utilized in the construction of the nomogram model. 
Calibration plots demonstrated a high level of prediction accuracy for the nomograms in the TCGA−CRC dataset (G) and the GSE39582 dataset (H)
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(Fig.  6C). Moreover, CERPI was positively correlated 
with dendritic cell recruitment, macrophage recruitment, 
infiltration of immune cells into tumors, and recogni-
tion of cancer cells by T cells and negatively associated 
with recruitment of neutrophils and Th22, Th2, Treg, and 
myeloid−derived suppressor cells (MDSCs) (Fig.  6D). 
The high-CERPI group demonstrated elevated stro-
mal scores compared to the low-CERPI group (Fig. 7A). 
Within the high-CERPI group, patients exhibited height-
ened TIDE and immune exclusion scores, indicating an 
increased likelihood of immune evasion, while patients in 
the low-CERPI group were more prone to benefit from 
immunotherapy (Fig.  7B). The TIDE algorithm was fur-
ther employed to predict patient responses to immune 
checkpoint blockade therapy, revealing a higher propor-
tion of responders in the low-CERPI group (Fig.  7C). 
The low-CERPI patients had a higher IPS after receiving 
PD-1, PD-L1, PD-L2, and CTLA-4 monotherapy or com-
bination therapy, indicating better therapeutic responses 

(Fig. 7D). HE staining of slides from patients in TCGA-
CRC cohort showed more immune cells infiltration 
around tumor cells in low-CERPI patients than in high-
CERPI patients (Fig. 7E).

Evaluation of CERPI in various cancer types
The findings indicated a positive correlation between the 
CERP and angiogenesis (Fig. 8A), Epithelial−Mesenchy-
mal Transition (EMT) (Fig. 8B), as well as cell cycle pro-
gression (Fig.  8C). Associations between angiogenesis, 
EMT, and CERPI in 32 different cancer types are also 
shown (Fig. 8D–E).

Identification of immunotherapy−related signature genes
To discern genes relevant to immunotherapy, a com-
posite of machine learning methods was employed to 
formulate a model predicting the efficacy of immuno-
therapy across seven distinct clinical immunotherapy 

Fig. 6  Relationship between CERPI and seven−step Cancer−Immunity Cycle, immune subtypes, and immune cell infiltration. A The majority 
of marker genes associated with the seven−step Cancer−Immunity Cycle displayed varying expression levels between the two groups; B 
There were no significant differences observed in the proportions of immune subtypes between the two groups; C Correlation between CERPI 
and the seven−step Cancer−Immunity Cycle; D Relationship between CERPI and immune cell infiltration levels. *p < 0.05; **p < 0.01; ***p < 0.001
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cohorts (Additional file  1: Table  S6). NaiveBayes was 
identified as the optimal algorithm, with the highest 
average AUC value of 0.651 (Fig.  9A). Thirteen inser-
tion genes in the prognostic− and immunotherapy−
related signatures were identified as key genes (Fig. 9B). 
The majority of key genes exhibited differential expres-
sion between normal and tumor samples sourced from 
the TCGA database. (Fig. 9C–O).

Expression of key genes in different cell types
Analysis of expression levels for 13 key genes across 
various cell types was conducted using four single−
cell datasets. Cell type annotations were based on 39 
marker genes, and the expression patterns of the 13 key 
genes in EMTAB8107 (Fig. 10A), GSE108989 (Fig. 10B), 
GSE146771 (Fig.  10C), and GSE166555 (Fig.  10D) were 
also delineated.

Fig. 7  Immune−related scores revealed different immunotherapy benefits in high− and low−CERPI groups. A The high−CERPI group 
demonstrated elevated stromal scores compared to the low−CERPI group; B Within the high−CERPI group, patients exhibited heightened TIDE 
and immune exclusion scores; C The TIDE algorithm was further employed to predict patient responses to immune checkpoint blockade therapy, 
revealing a higher proportion of responders in the low−CERPI group; D The low−CERPI patients had a higher IPS after receiving PD−1, PD−L1, 
PD−L2, and CTLA−4 monotherapy or combination therapy; E HE staining of slides from patients in TCGA−CRC cohort showed more immune cells 
infiltration around tumor cells in low−CERPI patients than in high−CERPI patients. ns p > 0.05; *p < 0.05; ***p < 0.001
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Expression of HOXC6, G0S2, and MX2 in CRC Cell Lines 
and Tissues
The mRNA levels of three genes in the human intestinal 
epithelial and five CRC cell lines were tested using qRT−
PCR, and the protein expression levels of these genes in 

tumor and adjacent normal tissues were evaluated via 
immunohistochemical staining. HOXC6 (Fig.  11A) and 
G0S2 (Fig. 11C) were upregulated in most CRC cell lines 
compared to the intestinal epithelial cell line, whereas 
MX2 (Fig.  11E) was significantly downregulated. All 

Fig. 8  Evaluation of CERPI in various cancer types. Positive correlations between the CERPI and angiogenesis, EMT, as well as cell cycle progression 
(A) were observed. Associations between angiogenesis (B), EMT (C), and CERPI in 32 different cancer types are also shown
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three genes showed higher protein expression levels in 
CRC tissues than in normal tissues (Fig.  11B, D, and F; 
Additional file 1: Figure S2).

Knocking down HOXC6 and G0S2 inhibited proliferation 
and migration in RKO cell line
Since the effects of HOXC6 and G0S2 on CRC cells 
have not been well studied, the protein expression of 

HOXC6 (Fig. 12A) and G0S2 (Fig. 12C) was decreased 
using two different si−RNA sequences. The results of 
the CCK-8 (Fig. 12B, D) and clone formation (Fig. 12E, 
F) experiments suggest that knocking down HOXC6 
and G0S2 significantly inhibited the proliferative 
abilities of the RKO cell line. Wound healing assays 
(Fig. 12G, H) and transwell assays (Fig. 12I, J) revealed 

Fig. 9  Identification of immunotherapy−related signature genes. To discern genes relevant to immunotherapy, a composite of machine learning 
methods was employed to formulate a model predicting the efficacy of immunotherapy across seven distinct clinical immunotherapy cohorts. 
NaiveBayes was identified as the optimal algorithm, with the highest average AUC value of 0.651 (A). Thirteen insertion genes in the prognostic− 
and immunotherapy−related signatures were identified as key genes (B). The majority of key genes exhibited differential expression 
between normal and tumor samples sourced from the TCGA database (C−O). *p < 0.05; **p < 0.01; ***p < 0.001
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that the migration of the RKO cell line was inhibited 
following the knockdown of HOXC6 and G0S2.

Discussion
Numerous serum and pathological indicators, including 
carcinoembryonic antigen (CEA) and TNM staging sys-
tems, have found widespread clinical application in the 
diagnosis, treatment guidance, and outcome prediction 

for patients with colorectal cancer (CRC). However, 
these indicators lack precision in predicting patient sur-
vival and therapeutic outcomes. In addressing this issue, 
additional biomarkers for CRC have been identified, such 
as tumor burden mutations, MSI, and neoantigen load. 
Despite their recognition, the predictive capacities of 
these methods are constrained by their low prevalence 
in the population or moderate effectiveness [32–34]. 

Fig. 10  Expression of key genes in different cell types. Analysis of expression levels for 13 key genes across various cell types was conducted using 
four single−cell datasets. Cell type annotations were based on 39 marker genes, and the expression patterns of the 13 key genes in EMTAB8107 (A), 
GSE108989 (B), GSE146771 (C), and GSE166555 (D) were also delineated
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Therefore, developing a new approach for predicting out-
comes and guiding clinical therapy that can be used in 
most patients with CRC is of great importance.

In this study, CNV, expression levels, differential 
methylation, and related biological functions of 31 core 
CERGs were analyzed. Most of these genes were differ-
entially expressed and mainly correlated with immune 

responses. Using the gene expression profiles, patients 
from the TCGA-CRC dataset were stratified into two 
distinct molecular subtypes. Subtype B had higher 
immune checkpoints expression and immune cell abun-
dance, subtype B may exhibit a more favorable response 
to ICI therapy. DEGs between two subtypes were identi-
fied, GO and KEGG analyses revealed that these DEGs 

Fig. 11  Expression of HOXC6, G0S2, and MX2 in CRC cell lines and tissues. HOXC6 (A) and G0S2 (C) were upregulated in most CRC cell lines 
compared to the intestinal epithelial cell line, whereas MX2 (E) was significantly downregulated. Nineteen normal colorectal tissues and 20 tumor 
tissues were colloected, all three genes showed higher protein expression levels in CRC tissues than in normal tissues (B, D, and F). *p < 0.05; ***p < 
0.001
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might participate in biological processes and pathways 
related to immune evasion. In a study by Yamamoto 
et  al. [35], it was proposed that autophagy might play a 
role in immune evasion in pancreatic cancer through the 
degradation of MHC-I. Immune evasion can also be pro-
moted by Arid5a through enhancing chemokine expres-
sion [36]. Kearney et  al. [37] demonstrated that tumor 
immune evasion can be caused by loss of TNF sensitiv-
ity. Combination of 10 machine learning methods were 
used for developing the CERG related signature, Cox-
Boost combined with plsRcox method had the highest 

average C-index compared with signatures constructed 
using traditional Lasso-Cox method [38–40], and it 
showed higher efficiency in predicting patient outcome. 
Furthermore, 58 published signatures related to different 
tumor phenotypes were collected, which showed higher 
AUC values than most published signatures, and optimal 
efficiency was observed for TCGA-CRC, GSE38832, and 
Metacohort. Prognostic signatures are rarely applied for 
clinical use because of overfitting and poor performance 
in external validation cohorts; The TCGA-CRC dataset 
served as the training cohort, while the validation of the 

Fig. 12  Knocking down HOXC6 and G0S2 inhibited proliferation and migration in RKO cell line. The protein expression of HOXC6 (A) and G0S2 (C) 
was decreased using two different si−RNA sequences. The results of the CCK−8 (n = 5) (B and D) and clone formation (E–F) experiments suggest 
that knocking down HOXC6 and G0S2 significantly inhibited the proliferative abilities of the RKO cell line. Wound healing assays. (n = 3) (G−H) 
and transwell assays (n = 3) (I–J) showed that the migration of the RKO cell line was suppressed after the knockdown of HOXC6 and G0S2. ***p < 
0.001
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model was conducted on six additional CRC datasets, 
and various machine learning algorithms were applied, 
which made the prediction performance much more 
reliable and robust. CERPI also correlated with clinical 
characteristics, including OS status and TNM staging. 
Cox regression analyses showed that CERPI emerged as 
an independent predictor of survival for CRC patients. 
Nomograms serve as widely employed predictive tools 
within the realm of oncology, particularly in the context 
of forecasting cancer prognosis [41, 42]. Using these vari-
ables, nomogram models were constructed and verified 
using calibration plots.

TME comprises cellular components such as stromal 
cells, endothelial cells, immune cells, and noncellular 
components [43]. It assumes a pivotal role in the initia-
tion and advancement of tumors, along with influencing 
chemotherapy resistance in these malignancies [44]. The 
condition of anti−cancer immunity was characterized 
through the delineation of a seven−step Cancer-Immu-
nity Cycle, including the release of cancer cell antigens, 
cancer antigen presentation, priming and activation, traf-
ficking of immune cells to tumors, infiltration of immune 
cells into tumors, recognition of cancer cells by T cells, 
and killing of cancer cells [45]. CERPI exhibited cor-
relations with the expression of marker genes and the 
recruitment of diverse immune cell types, encompassing 
neutrophils, CD4+ T cells, dendritic cells, Th22 cells, Th2 
cells, and MDSCs. These immune cell types are notably 
associated with CRC development and therapeutic out-
comes [46–51]. The TME score, IPS, and TIDE were used 
to evaluate the benefits of immunotherapy in patients 
with CRC, and low-CERPI patients might benefit more 
from anti-PD1 or anti-CTLA4 ICI therapy. We further 
used pan−cancer data to analyze the relevance between 
CERPI and malignant tumor phenotypes, inducing vas-
culature, activating invasion and metastasis, and sustain-
ing proliferative signaling, which have been identified as 
basic hallmarks of cancer [52]. CERPI was positively cor-
related with angiogenesis, EMT, and cell cycle, indicating 
that CERPI was significantly related to multiple processes 
of tumor occurrence and development. To screen bio-
markers related to prognosis and immunotherapy effi-
cacy, a combination of machine learning methods was 
performed using seven immunotherapy cohorts; Naive-
Bayes was the optimal algorithm with the highest AUC 
values, thirteen key genes after insertion in the prognos-
tic and immunotherapy−related signature genes. Out of 
the 13 key genes, ten exhibited significant upregulation 
or downregulation in CRC tissues when compared to 
normal tissues, and their expression in different single 
cell types was further analyzed. Most of the key genes 
were widely expressed in immune cells. Since HOXC6, 
G0S2, and MX2 have not been well studied in CRC, 

qRT−PCR was conducted on normal intestinal epithe-
lial cells and CRC cell lines. Additionally, immunohisto-
chemistry experiments were employed to assess protein 
expression levels in CRC tissues and adjacent normal tis-
sues. The analysis revealed a significant elevation in the 
expression of HOXC6 and G0S2 in both CRC cell lines 
and tissues, while MX2 expression was upregulated spe-
cifically in CRC tissues. Notably, MX2 expression exhib-
ited a relatively lower level in CRC cell lines. A previous 
study [53] indicated that MX2 plays an important role 
in innate immunity against HIV-1, suggesting that MX2 
might produce a marked effect by regulating anti−tumor 
immunity without directly affecting tumor cells in CRC. 
Therefore, we performed an in  vitro experiment to 
explore the effects of G0S2 and HOXC6 knockdown on 
CRC cells and found that their knockdown significantly 
inhibited the growth and migration of the RKO cell line, 
suggesting that G0S2 and HOXC6 are potential diagnos-
tic and therapeutic targets for CRC.

This study had some limitations. First, the signature 
was constructed and validated solely using publicly avail-
able datasets, which might have resulted in a selection 
bias. More clinical in−house cohorts should be applied 
to verify our findings. Second, additional clinical infor-
mation, such as tumor markers and surgical information, 
should be considered. Finally, Further comprehensive 
in vitro and in vivo experiments are imperative to delve 
into the molecular functions of the signature genes con-
cerning growth, metastasis, and anti−tumor immunity in 
CRC.

Conclusion
Robust machine learning algorithms were applied to cal-
culate the prognostic index based on CERGs, which can 
effectively predict clinical outcomes, immune landscapes, 
and immunotherapy responses in patients with CRC. The 
results can provide new insights in the diagnosis and pre-
cise treatment of CRC. The key genes G0S2 and HOXC6 
promote the proliferation and migration of CRC cell 
lines.
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