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Abstract 

Background Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver func-
tion. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide 
clues for HCC diagnosis, prognosis, and treatment.

Methods The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. 
Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prog-
nostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, 
stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The 
HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. 
LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The 
model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell 
lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. 
Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines.

Results We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The 
C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high 
LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 
and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their 
differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. 
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Its good performance was shown in both the training and validation datasets. The five genes presented significant 
heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein 
level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown.

Conclusions LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues 
not only for HCC stratification and risk prediction, but also for the development of more personalized therapies 
for effective HCC treatment.

Keywords Liver-specific genes (LSGs), Hepatocellular carcinoma, Heterogeneity, Prognosis, Subtype

Background
Liver cancer was reported to constitute 4.7% of the new 
cancer cases and 8.3% of the cancer deaths in 2020 [1]. 
Hepatocellular carcinoma (HCC) alone accounts for 
75–85% of primary liver cancer cases and proves to be 
a serious economic and social burden [2, 3]. The poor 
prognosis of HCC is largely related to its late diagnosis 
at presentation. For instance, the 5-year survival rate 
of patients with early HCC after surgical resection is 
approximately 70%, while for the patients with advanced 
HCC, the 5-year survival rate is less than 20% [4, 5]. 
Treatment options for advanced HCC remain limited and 
ineffective, in part due to the high intra and inter tumoral 
heterogeneity associated with resistance and recurrence 
[6]. Thus, a better understanding of molecular classes 
and heterogeneity of HCC can aid in exploring molecular 
mechanisms of hepatocarcinogenesis and personalized 
therapeutic options.

Genome profiling of individual organs, tissues, and 
more recently, of single cells detect the molecular sig-
natures of different biological samples, and reveal that 
the vast majority of cancer driver genes are mutated in 
a tissue-specific way [7]. Similar cancer hallmarks, such 
as proliferation and immune evasion, often demonstrate 
tissue specificity of the organization of oncogenic signal-
ing pathways and are therefore followed by tissue-specific 
differences in treatment response and resistance [8, 9]. 
Tissue specificity in cancer may be partly originated from 
tissue-specific genes (TSGs) that are expressed at differ-
ent levels across tissues, where both cell-intrinsic and 
cell-extrinsic factors play a role [10, 11].

Some TSGs, such as epidermal growth factor recep-
tor (EGFR), carcinoembryonic antigen (CEA), and pros-
tate-specific membrane antigen (PSM), are utilized as 
biomarker to assist diagnosis and prognosis of various 
types of tumors whose cells express these TSGs [12], 
whilst HCC has no molecular markers that have been 
incorporated into clinical management [13]. A vari-
ety of liver-specific genes (LSGs) were presented to be 
associated with HCC development and progression. For 
instance, RDH16 was shown to be downregulated in 
HCC and associated with HCC survival [14, 15]. Inverse 

association of SLC10A1 with HCC occurrence and pro-
gression were reported [16]. APOC1 was found to be 
decreased and negatively correlated with PD1/PD-L1 
in HCC samples [17]. In our previous study, three LSGs 
including SPP2, UROC1, and SLC22A10 were found to 
be down-regulated in HCC and associated with progno-
sis of the patients [18]. However, systematic and high-
throughput studies of LSGs in HCC are currently lacking.

In the past, there emerged simultaneous efforts to cat-
egorize HCC prognostically and therapeutically accord-
ing to different molecular subclassifications, including 
patterns of mutational, genomic, histological, and clini-
cal differences, though, no single consensus has been 
reached [19]. The efforts have made progress, but the 
task remains incomplete. We proposed that LSGs pro-
filing of HCC would help to establish a subclassification 
system with molecular and prognostic features, and bet-
ter stratify disease treatment by grouping patients into 
distinct molecular classes.

In the present study, we focused on LSGs to inves-
tigate their dysregulation and expression heterogene-
ity in HCC and explore their clinical significance. Based 
on LSGs expression, we identified and validated three 
HCC subtypes with different clinical and pathological 
features. With LSGs and HCC subtype-specific genes, a 
five-gene signature was constructed and the effectiveness 
in discriminating HCC survival status was validated. The 
expression heterogeneity of the five genes was visualized 
in a single cell RNA (scRNA)-seq dataset. Their dysreg-
ulations were confirmed at protein level. Furthermore, 
the five genes were also investigated for their associa-
tions with HCC treatment response to anti-cancer drugs. 
These results might provide new clues for HCC risk strat-
ification, prognosis prediction, and personalized therapy.

Materials and methods
Data collection and processing
The RNA-seq data of HCC patients and their clini-
cal features in TCGA (TCGA-LIHC, named TCGA-
HCC dataset in this study, n = 371) and ICGC (LIRI-JP, 
named ICGC-HCC dataset in this study, n = 231) were 
downloaded. Htseq-count profiles were transcript per 



Page 3 of 21Zhang et al. Cancer Cell International           (2024) 24:78  

million (TPM) transformed for normalization. Single-
cell transcriptomes data of 21 tissue samples (non-
tumor liver, n = 8; primary tumors, n = 10; metastatic 
lymph node, n = 1; portal vein tumor thrombus, n = 2) 
from 10 HCC patients in GSE149614 were obtained 
from Gene Expression Omnibus (GEO). The proteom-
ics data of 35 HCC tissues and their paired normal 
livers were retrieved from a previous study [20]. The 
clinical features of the patients were shown in Addi-
tional file 1: Table S1.

LSGs‑based HCC subtypes identification and their 
associations with HCC clinical and pathological features
The LSGs were obtained from tissue-specific gene 
expression and regulation (TiGER) database and 
Human protein atlas (HPA) and 138 common genes 
with higher expression in liver in the two databases 
were included. With the LSGs, consensus clustering 
(with ConsensusClusterPlus R package) was used for 
subtype identification of primary HCCs in TCGA-HCC 
dataset. The prognostic effects of HCC subtypes (clus-
ters) on HCC overall survival (OS) and disease-free 
survival (DFS) were investigated through Kaplan-Meier 
survival analysis and multivariable Cox regression anal-
ysis. With “ggstatsplot” R package, the tumor stage and 
tumor grade proportions of different HCC subtypes 
were also compared.

The associations of HCC subtypes with HCC stemness, 
aging, liver function, and immune response
The stem-cell signature in Bhattacharya study [21] 
(BHATTACHARYA EMBRYONIC STEM CELL.v7.5.1) 
from the Molecular Signatures Database (MSigDB) and 
a new aging-related gene set in Soul study [22] were 
retrieved. Based on the two gene sets and LSGs expres-
sions, gene set variation analysis (GSVA) was applied 
to estimate the stemness score, aging score and LSGs 
score of the samples. The immune score, stromal score, 
and estimate score of HCC samples were estimated with 
“tidyestimate” R package. The stroma score was esti-
mated based on the stroma gene expressions which could 
indicate the relative abundance of the stroma cell infiltra-
tion. The estimate score was the sum of the immune score 
and stroma score and it was used to infer tumor purity. 
As higher immune cell and stroma cell infiltration indi-
cated fewer tumor cells, a higher estimate score indicated 
a lower tumor purity of the tumor samples. The infiltra-
tions of 28 kinds of immune cells in different HCC sam-
ples were also evaluated with the cell markers retrieved 
from the cancer immunome atlas (TCIA, https:// tcia. at/ 
home). Wilcoxon test was used for comparisons of the 

scores and immune infiltrations between normal and 
HCC samples or between different HCC subtypes. The 
relations of LSGs score, stemness score, and aging score 
were evaluated with Spearman correlation analysis.

Exploration of differentially expressed genes (DEGs) 
between the HCC subtypes and their potential functions
The gene expression profiles between different HCC 
subtypes were compared with “limma” R package. The 
genes with expressional difference of |log2(fold change)| 
(|logFC|) > 1 and adjusted p value < 0.05 was considered 
as significant DEGs. The DEGs with consistently higher 
or lower expression in each HCC subtype than the other 
two subtypes were considered as HCC subtype-specific 
DEGs. The subtype-specific DEGs were applied to gene 
ontology (GO) enrichment analysis with “clusterProfiler” 
package in R. With the Reactome pathways as the gene 
sets background, gene set enrichment analysis (GSEA) 
was also performed to explore the pathway activity dif-
ferences between every two of the HCC subtypes. Then, 
the GSEA results were intersected to find HCC subtype-
specific pathways.

LSGs methylation and risk factor comparisons among HCC 
subtypes
To investigate the roles of epigenetic modifications, envi-
ronmental factors, and viral hepatitis in shaping LSGs 
expressions and HCC subtypes, the methylations of the 
LSGs and risk factor compositions of the TCGA-HCC 
tumors were compared among different HCC subtypes. 
The alcohol assumption and viral infection status of the 
patients were obtained and the tumors were separated 
into  different groups based on their risk factors. The 
associations of the LSGs expressions with different risk 
factors were also estimated through the comparisons 
among different risk factor groups (risk_group). Kruskal-
Wallis test and Char-square test was used for compari-
sons and p < 0.05 was considered significant.

Validation of LSGs‑based HCC subtypes in internal 
and external datasets
For the validation of LSGs-based HCC subtypes, we used 
support vector machine (SVM) (https:// CRAN.R- proje 
ct. org/ packa ge= e1071) and nearest template prediction 
(NTP) [23] methods. The top subtype-specific DEGs (with 
a threshold of |logFC| >3) were used to classify the HCC 
subtypes in further analyses. With SVM algorithm, with 
the top subtype-specific DEGs, the discrimination model 
was constructed in 60% patients of TCGA-HCC dataset 
(training set, n = 221) and validated in other TCGA-HCC 
patients (internal validation set, 40%, n = 150) and ICGC-
HCC dataset. In contrast, for NTP predication, according 

https://tcia.at/home
https://tcia.at/home
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
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to the algorithm, only the higher expressed genes of the 
top subtype-specific DEGs were used as subtype-specific 
genes and the samples were predicated. The effectiveness 
of the classifiers was evaluated in TCGA-HCC dataset 
and then applied to ICGC-HCC dataset. With the HCC 
subtype classification in ICGC-HCC dataset, the prog-
nostic effects of the subtypes, as well as their associations 
with HCC proliferation, liver function, and HCC micro-
environment, were validated.

The construction and validation of HCC subtype‑related 
risk model for HCC prognosis
Through Cox regression analyses with “ezcox” R pack-
age, the LSGs and HCC subtype-specific genes were 
investigated for their age-, sex-, and stage-corrected 
prognostic effects on TCGA-HCC OS. The genes with 
prognostic effects independent of age, sex and stage were 
included for least absolute shrinkage and selection opera-
tor (LASSO) Cox regression analysis to select the key 
genes with close relations to HCC OS. The analysis was 
performed with “glmnet” R package and a 10-fold cross-
validation was used to determine the optimal lambda (λ) 
for risk model construction. With the coefficients and 
the relative expressions of the key genes, the risk score of 
each patient could be calculated as follows:

 where n indicates the number of the key genes with 
significant prognostic effects, expression(i) is the rela-
tive  expression level of the key genes, and Coef(i) rep-
resents the coefficient of the gene estimated through 
LASSO regression analysis. The accuracy of the risk 
model in predicating HCC OS status was evaluated in 
TCGA-HCC dataset and validated in ICGC-HCC dataset 
through receiver operating characteristic (ROC) analysis. 
The survival differences between high- and low-risk HCC 
patients were visualized through Kaplan-Meier survival 
analysis. To investigate the independent prognostic roles 
of the risk model, age, sex, tumor stage, liver fibrosis and 
the level of serum AFP were used as control variables and 
multi-variable Cox regression analysis was performed 
with “ezcox” R package. Furthermore, to investigate the 
associations of the risk model with HCC proliferation 
and immune check points, the Spearman correlations of 
risk score with the expressions of proliferation marker 
MKI67 and immune check points PD1 (PDCD1), PD-L1 
(CD274) and CTLA4 were calculated.

Cell culture and quantitative real‑time PCR (RT‑qPCR) 
analysis
The expressional heterogeneities of the key genes 
were investigated in HCC cell lines including Huh7 

risk score =
∑n

i=1
Coef (i) ∗ expression(i)

(well-differentiated), SNU449 (low-moderately differen-
tiated), HCCLM3 (highly metastatic), and HepG2 (well-
differentiated) through RT-qPCR analysis. Huh7 and 
HepG2 cell lines were obtained from the Chinese Acad-
emy of Sciences Cell Bank (CASCB, China). SNU449 
and HCCLM3 cells were purchased from ATCC (United 
states) and Beyotime (Shanghai, China), respectively. 
Huh7 cells, HCCLM3 cells, and HepG2 cells were cul-
tured in Dulbecco’s modified Eagle’s medium (BI, Israel) 
containing 10% fetal bovine serum (FBS) and 1% peni-
cillin streptomycin (PS). SNU449 cells were grown in 
RPMI-1640 medium (BI, Israel), supplemented with 10% 
FBS (Beyotime, China) and 1% PS. The cells were placed 
in a cell culture incubator (Thermo Fisher, USA) contain-
ing 5%  CO2 at 37 °C.

According to the manufacturer’s instructions, total 
RNA was isolated with TRIzol reagent (Invitrogen, USA). 
The extracted RNA of the genes was reverse transcribed 
into cDNA using a High-Capacity cDNA Reverse Tran-
scription Kit (Thermo Fisher, USA). RT-qPCR analysis 
was performed using the SYBR Green Master Mix Kit 
(Thermo Fisher, USA). The primers for the genes were 
provided in Table 1. The  2−ΔΔCt method was used for the 
calculation of relative expression level normalized by 
ß-tubulin. The experiments were performed in triplicate. 
T-test were used for the gene expression comparisons 
between different cell lines.

Single‑cell investigation of key gene expressions in HCC
For single-cell analysis, the cells with fewer (n ≤ 300) 
expressed genes and the genes expressed in fewer (n ≤ 3) 
cells were excluded. Doublets were removed with “Dou-
bletFinder” R package. With “Seurat” R package, further 
quality control was performed. Only the cells with mito-
chondrial gene counts proportion < 20%, the ribosomal 
gene counts proportion > 3% were included for further 
analysis. To depict the cell type compositions of differ-
ent tissues, cluster analysis of single-cell transcriptome 

Table 1 The primer sequences of the genes

Genes Forward primers (5′‑3′) Reverse primers (5’‑3’)

ADH4 AGT TCG CAT TCA GAT CAT TGCT CTG GCC CAA TAC TTT CCA CAA 

PON1 CTG ATT GCG CTC ACC CTC TT CGG AGA GCA TTA AGT CGT 
GTTTG 

PZP GGA GAA GGA CTT ATT CCA 
CTGTG 

ATC TTG CGT AGG CCC CTT TAT 

MMP10 TGC TCT GCC TAT CCT CTG AGT TCA CAT CCT TTT CGA GGT 
TGTAG 

NR0B1 CTC ACT AGC TCA AAG CAA 
ACGC 

GCG CTT GAT TTG TGC TCG T

β-tubulin CTG GAC CGC ATC TCT GTG TACT GCC AAA AGG ACC TGA GCG 
AACA 



Page 5 of 21Zhang et al. Cancer Cell International           (2024) 24:78  

was performed using “FindNeighbors” and “FindClus-
ters” functions with dimensions of 15 and a resolution 
of 0.8. With the cell markers obtained from CellMarker 
(http:// xteam. xbio. top/ CellM arker/), the cells in differ-
ent clusters were annotated into different cell types. The 
results were visualized by the uniform manifold approxi-
mation and projection (UMAP) method which projected 
the cells into two dimensions for visualization. The key 
genes in the risk model and the cell cluster marker genes 
were visualized for their expression in different cell types 
using “dotplot” function. To investigate the heteroge-
neities of the hepatocytes (normal hepatocytes or HCC 
tumor cells), the hepatocytes were extracted and sub-
cluster analysis was performed. The proportions of dif-
ferent hepatocyte subclusters in different groups were 
calculated and presented with heatmap plot. To visualize 
the key gene expression profiles in different groups and 
subclusters, the subclusters were divided into different 
groups according to their proportions, with their high-
est proportion in the tissues as their tissue group. Then 
the differences of the key genes in different groups and 
subclusters of hepatocytes were visualized with “Vlnplot” 
function.

Validation of the key gene dysregulations in HCC at protein 
level
The protein levels were compared between 35 pairs of 
HCC tissues and normal livers. Their associations with 
HCC proliferation were explored through their Spear-
man correlations with MKI67 expression. Their relations 
to HCC invasion were investigated through their expres-
sional differences between the HCC tissues with and 
without microinvasion through paired Wilcoxon test or 
Chi-square test.

Further exploration of the association of the key genes 
with HCC sensitivity to anti‑cancer drugs
The key gene expressions in the cancer cell lines and the 
half maximal inhibitory concentrations (IC50s) of the 
anti-cancer drug were downloaded from Cancer Cell 
Line Encyclopedia (CCLE) database. After filtration, a 
total of 20 anti-cancer drugs and 19 HCC cell lines with 
the key gene expressions were included for analyses. The 
Spearman correlations of the anti-cancer drug IC50s with 
the key gene expressions were analyzed.

The protein‑drug and protein chemical interactions 
of the proteins coded by the key genes
Through NetworkAnalyst (https:// www. netwo rkana lyst. 
ca/), we investigated the protein-drug and protein-chem-
ical interactions of the proteins coded by the key genes. 

The protein-drug interactions were obtained from the 
DrugBank database and the protein-chemical interaction 
data were collected from the Comparative Toxicogenom-
ics Database (CTD).

Statistical analysis
All the analyses in this study were performed with R 
4.2.1. For Wilcoxon test, Chi-square test, Kruskal-Wallis 
test, spearman correlation analysis, Kaplan-Meier sur-
vival analysis, Cox regression analysis, and t-test, p < 0.05 
was considered significant. For GO enrichment and 
GSEA, false discovery rate (FDR) < 0.05 was considered 
significant.

Results
LSGs‑based HCC subtypes presented significant difference 
in clinical and pathological characters
Compared with normal liver tissues, 80.4% (111/138) of 
the LSGs were lower expressed in TCGA-HCC tissues 
(Additional file  1: Table  S2). Based on the LSG expres-
sions, three HCC subtypes (clusters: C1, C2 and C3) were 
identified (Fig.  1A). Through Kruskal-Wallis test, 96.4% 
(133/138) of the LSGs presented significant expressional 
differences among the three subtypes (Additional file  1: 
Table S3). A representative gene expression profile heat-
map of 20 LSGs of the TCGA-HCC subtypes was shown 
in Fig. 1B, indicating the obvious heterogeneity of LSGs 
in HCC. For their prognostic differences, C1 presented 
the shortest OS and DFS (Fig. 1C, D). Notably, with sex, 
stage, and age as the control variables, the unfavorable 
prognostic effects of the C1 subtype on HCC OS and DFS 
also existed (Fig. 1E, F). In addition, tumor stage (Fig. 1G) 
and grade distribution (Fig. 1H) were significantly differ-
ent among the subtypes of HCC and the proportions of 
late stage (stage III/IV) and high grade (Grade 3/4) HCCs 
were highest in C1, indicating the association of HCC 
subtypes with HCC progression and differentiation.

Significant associations of HCC subtypes with HCC 
stemness, aging, liver function, and immune response
As shown in Fig.  2, HCCs presented significantly lower 
LSGs score (Fig.  2A), higher stemness score (Fig.  2B), 
and lower aging score (Fig.  2C) than the normal liver 
controls, indicating the involvement of dysregulations 
of LSGs, stemness, and aging during HCC development. 
As the subtype identification was based on LSG expres-
sions, it was not surprising to see the significant difference 
of LSGs score among different HCC subtypes and the C1 
subtype with the poorest survival has the lowest LSGs 
score (Fig. 2D). The heterogeneity of stemness and aging 
level were also observed among the subtypes. C1 subtype 
presented the highest stemness score (Fig. 2E) and aging 

http://xteam.xbio.top/CellMarker/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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score (Fig. 2F), indicating the associations of HCC subtype 
with HCC stemness and aging. With regard to the rela-
tionship among the three parameters, as shown in Fig. 2G, 
H, LSGs score was significantly and negatively correlated 
with stemness and aging score in C3 HCC while no corre-
lation was shown in C1 and C2 subtypes. However, all the 
three subtypes presented positive correlations between 
stemness score and aging score (Fig. 2I). The results indi-
cated the complex interactions during HCC develop-
ment. In addition, compared with C2 and C3 subtypes, 
C1 HCCs presented the highest MKI67 (Fig. 2J) and AFP 
expression (Fig.  2K). The highest ALB expression was 
shown in C2 HCCs, indicating the significant distinction 
of liver function among the different subtypes. The three 

HCC subtypes also presented differences in the micro-
environment. As shown in Fig. 2M-O, compared with C1 
and C2 HCCs, C3 had the lowest immune score, stroma 
score, and estimate score. As high estimate score indi-
cated low tumor purity [24], the C3 were deduced to have 
the highest tumor purity among the three subtypes. The 
immune infiltration profiles in the subtypes were shown 
in Fig. 2P. Except for eosinophils and memory B cells, all 
of the other 26 kinds of immune cells were differentially 
infiltrated in the various HCC subtypes, with the lowest 
infiltration level in C3 HCCs of most of the immune cells 
(Additional file  2: Figure  S1), consistent with the lowest 
immune score in C3.

Fig. 1 LSGs-based HCC subtypes and their differences in clinical characters. A Bases on LSGs expressions, HCCs were separated into three subtypes. 
B The expression profiles of 20 LSGs in TCGA-HCC. C, D Among the three subtypes, C1 HCCs presented shortest OS and DFS. E, F The unfavorable 
prognostic effects of C1 subtype on HCC OS and DFS were independent of age, sex, and tumor stage. G, H The comparisons of tumor stage 
and tumor grade among different HCC subtypes. Cluster analysis, Kaplan-Meier survival analysis with log-rank test, multivariable Cox regression 
analysis and Chi-square test were performed and p < 0.05 was considered statistically significant
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HCC subtype‑associated DEGs and their potential 
functions
As shown in Additional file 2: Figure S2, 2030 genes were 
higher expressed while 772 genes were lower expressed 
in C1 than in C2. Compared with C3 HCCs, there were 
3286 genes with higher expression while 715 genes 
with lower expression in C1 subtype. Additionally, 1329 
genes were higher expressed while 545 genes were lower 
expressed in C2 than in C3. When the DEGs were inter-
sected, there were 1812 C1-specific DEGs including 1445 
highest expressed genes and 367 lowest expressed genes 
in C1 than in C2 and C3; 499 C2-specific DEGs (highest 
expressed: n = 290, lowest expressed: n = 209) and 1154 
C3-specific DEGs (highest expressed: n = 244, lowest 
expressed: n = 910) were identified. The functions of the 
HCC subtype-specific DEGs were explored. Based on GO 

enrichment analysis, the C1-specific highest-expressed 
DEGs were significantly enriched in embryonic develop-
ment related processes (Additional file  2: Figure S3A), 
while the C2-specific highest-expressed DEGs were asso-
ciated with metabolic processes (Additional file  2: Fig-
ure S3B). For C3-specific highest-expressed DEGs, their 
associations with metabolic transport processes were 
obvious (Additional file 2: Figure S3C). Interestingly, sim-
ilar to that of the C2-specific highest-expressed DEGs, 
the C1-specific lowest-expressed DEGs also presented 
significant associations with metabolic processes (Addi-
tional file  2: Figure S3D), which might partly account 
for the prognostic differences between the two sub-
types. For the C2-specific lowest-expressed DEGs, their 
close relation to WNT signaling pathway was obvious 
(Additional file 2: Figure S3E). While for the C3-specific 

Fig. 2 HCC subtype-specific pathways identified through GSEA analyses. A–C GSEA between C1 and C2, C1 and C3, and C2 and C3 subtypes, 
respectively. D The intersection of pathways among different HCC subtypes. E The HCC subtype-specific pathways comparing with other subtypes
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lowest-expressed DEGs, their associations with immune 
response and extracellular matrix organization were 
shown (Additional file 2: Figure S3F).

Through GSEA analyses, the pathways with signifi-
cant correlation with HCC subtypes were identified. The 

top10 pathways positively (activated) or negatively (sup-
pressed) associated with the gene expression differences 
between either two of the HCC subtypes were shown 
in Fig.  3A-C. Based on intersection of the pathways 
(Fig.  3D), we found that the subtype-specific processes 

Fig. 3 Different LSGs-based HCC subtypes presented differences in their stemness, aging and immune response levels. A–C Significant 
differences of LSGs score, stemness score, and aging score between HCC tumors and normal controls. D–F C1 HCCs presented lowest LSGs score 
while highest stemness score and aging score among the HCC subtypes. G The correlations between LSGs score and stemness score in HCC 
samples of different subtypes. H The correlations between LSGs score and aging score in HCC samples of different subtypes. I The significant 
positive correlation LSGs score and stemness score in HCC samples of different subtypes. J–L The expressional comparisons of MKI67, AFP, and ALB 
in HCC samples of different subtypes. M–O The comparisons of immune score, stromal score and tumor purity (negative correlated with estimate 
score) between HCC samples of different subtypes. P The heatmap of immune infiltrations in HCC samples of different subtypes. Wilcoxon test 
and Spearman correlation analyses were used and p < 0.05 was considered significant
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which were consistently activated (up-regulated) or sup-
pressed (down-regulated) in one of the subtypes con-
trasted sharply with that in the others (Fig. 3E). Among 
the three subtypes, the C1 subtype was positively cor-
related with six reactome pathways including o-linked 
glycosylation of mucins, GPCR ligand binding, extracel-
lular matrix (ECM) organization, ECM proteoglycans, 
class B/2 secretin family receptors, and degradation of 
the ECM. Considering the crucial roles of ECM deg-
radation in promoting cell migration, it indicated high 
potential of tumor metastasis in C1 HCCs. Various 
metabolic processes were negatively correlated with the 
C1 subtype, consistent with the GO terms “metabolic 
processes” enriched by the C1-specific lowest-expressed 
DEGs, indicating the weak liver function in C1 HCCs. As 
to the C2 subtype, its specific positive correlations with 
complement cascade, fatty acids, formation of fibrin clot 
clotting cascade, eicosanoids, arachidonic acid metabo-
lism, and the binding and uptake ligands of scavenger 
receptors proposed its active metabolism and immune 
response. Most of the C2 subtype negatively-correlated 
pathways were about eukaryotic translation and cell 
cycle, suggesting its aberrant proliferation potential. For 
the C3 subtype, its positive relationships with porphyrins 
metabolism, substances (bile salts, organic acids metal 
ions and amine compounds), and heme degradation 
were consistent with the enriched GO terms “metabolic 
transport processes” of C3-specific highest-expressed 
DEGs. Moreover, similar to the GO terms enriched by 
C3-specific lowest-expressed DEGs, herein, the negative 
correlations of C3 subtype with extracellular matrix and 
immune response were also obvious.

The associations of LSGs methylation and risk factor 
compositions with HCC subtypes
As shown in Additional file  1: Table  S4, most (558/668, 
83.5%) of the CpG sites of the LSGs presented signifi-
cant differences of their methylation levels among the 
HCC subtypes. The top-50 CpG site with significant dif-
ferences were shown in Additional file  2: Figure S4 and 
the representative CpG sites with significant difference 
were visualized in Additional file  2: Figure S5. It was 
obvious that the C1 subtype with the  poorest survival 
had the  highest methylation levels, consistent with the 
lowest LSGs score of the subtype. Whilst, the risk factor 
compositions among different HCC subtypes presented 
no significant difference (Additional file 2: Figure S6). In 
addition, among the 138 LSGs, only 21 genes (21/138, 
15.2%) presented significant differences of different risk 
factors (Additional file  1: Table  S5), indicating that the 
impact of the risk factors on LSGs-based HCC subtypes 
was relatively small.

Validation of HCC subtypes in external dataset
Among the subtype-specific DEGs, with the threshold of 
|log2FC| >3 and adjusted p < 0.05, the top HCC subtype-
specific DEGs (n = 159) were identified (Additional file 1: 
Table S6). The top specific DEGs for C1, C2, and C3 sub-
type were 64 (highest: 44, lowest: 20), 28 (highest: 20, 
lowest: 8), and 70 (highest: 41, lowest:29), respectively. 
As some genes were highest expressed in one subtype 
while lowest expressed in another subtype, there were 
159 unique genes of all. With these genes as variables, 
based on SVM analysis, a discriminant model was con-
structed in TCGA-HCC dataset. The SVM model could 
discriminate 97.3% of the training set samples and 84.7% 
of the internal validation set samples, with an overall 
accuracy of 92.1% (Additional file 1: Table S7). When the 
model was applied to ICGC-HCC dataset, 93, 88, and 50 
of the primary HCC samples were classified to be C1, C2, 
and C3 subtype, respectively (Additional file 1: Table S8). 
Based on Kaplan-Meier analysis and multivariable Cox 
regression analysis, the poorest OS outcome of C1 sub-
type in ICGC-HCC dataset was also shown (Fig. 4A) and 
the independent prognostic effects of C1 subtype was 
indicated (Fig. 4B).

Considering the possible overfitting potential of 
SVM method, we also used NTP method for HCC sub-
type validation. Taking the top subtype-specific high-
est expressed DEGs as the  subtype-specific genes, the 
TCGA-HCC samples could be classified with an accu-
racy of 82.2% (Additional file  1: Table  S9). When the 
threshold was set to FDR < 0.05, 276 of 318 (accuracy: 
86.8%) TCGA-HCC samples could be correctly discrimi-
nated. With FDR < 0.1, the accuracy was 85.5% (284 of 
332). Herein, for the consideration of the  accuracy and 
the  sample size, we selected FDR < 0.1 as the threshold 
to evaluate the HCC subtypes in ICGC-HCC dataset. As 
shown in Additional file 1: Table S10, 204 of 231 (88.3%) 
ICGC-HCC samples met the  criterion of FDR < 0.1  that 
75, 72, and 57 HCC samples were classified into the C1, 
C2, and C3 subtypes, respectively. Through survival 
analysis (Fig. 4C, D), HCC patients of the HCC subtypes 
presented significant differences in their OS status and 
the C1 subtype tended to have the poorest outcome. 
The results were similar to that in Fig. 4A and B, in con-
firmation of  the unfavorable effects of the  C1 subtype 
in TCGA-HCC dataset. In addition, consistent with the 
results in TCGA-HCC dataset, the C1 ICGC-HCCs also 
presented the lowest LSGs score (Fig. 4E) and the highest 
stemness score (Fig. 4F) and aging score (Fig. 4G) among 
the three subtypes. In addition, MKI67 (Fig.  4H), AFP 
(Fig. 4I), and ALB (Fig. 4J) level, as well as the immune 
score (Fig. 4K), the stromal score (Fig. 4L), and the tumor 
purity (estimate score) (Fig. 4M), also showed the similar 
results to those in TCGA-HCC dataset.
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The HCC subtype‑related risk model for HCC prognosis
The LSGs and the HCC subtype-specific genes were 
investigated for their age, sex, and stage-corrected prog-
nostic effects. Based on multi-variable Cox regression 
analyses, 64 genes were shown to be  the prognostic 

indicators for TCGA-HCC OS, 22 of which were with 
p < 0.01 (Additional file  1: Table  S11). As shown in 
Fig. 5A, the 22 genes were applied to LASSO Cox regres-
sion analysis and five (ADH4, PON1, PZP, MMP10, 
and NR0B1) of them were identified to be independent 

Fig. 4 HCC subtype validation in ICGC-HCC dataset. A, B Prognostic effects of SVM-based HCC subtype on HCC OS. C, D Prognostic effects 
of NTP-based HCC subtype on HCC OS. F, G Comparisons of LSGs score, stemness score, and aging score in different ICGC-HCC subtypes. H–J 
Comparisons of LSGs score, stemness score, and aging score in different ICGC-HCC subtypes. K–M Comparisons of immune score, stromal score, 
and estimate score (tumor purity) in different ICGC-HCC subtypes
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prognostic factors and were  included in the risk model 
for HCC OS prediction. The risk model was as below:

Risk score = - 0.046*ADH4exp - 0.062*PON1exp - 0.043*PZPexp + 0.091*MMP10exp + 0.192*NR0B1exp

Based on ROC analysis, the risk model could dis-
criminate 1-year, 2-year, and 3-year OS of TCGA-
HCC patients with AUCs of 0.798, 0.722, and 0720, 
respectively (Fig.  5B). With the AUCs of 0.727, 0.666, 

and 0.688 in the discrimination of 1-year, 2-year, 
and 3-year OS of ICGC-HCC patients (Fig.  5C), the 

effectiveness of the risk model was confirmed. In 
Additional file  2: Figure S7, the  higher risk score was 
shown to be significantly associated with the shorter 
survival in both TCGA-HCC and ICGC-HCC patients. 

Fig. 5 HCC subtype-related risk model and its correlations with HCC pathological features. A The tuning parameter lambda (λ) selection 
in LASSO Cox regression analysis using 10-fold cross-validation. B, C The risk model could effectively discriminate the 1-year, 2-year, and 3-year OS 
status of HCC patients in the training set (TCGA-HCC) and validation dataset (ICGC-HCC). D, E The independent prognostic effects of risk score 
in TCGA-HCC and ICGC-HCC datasets. F, G C1-HCCs presented the highest risk scores among all the HCCs in both TCGA-HCC and ICGC-HCC dataset. 
H, I The correlations of risk score with MKI67, CTLA4, PD1, and PD-L1 expressions in TCGA-HCC and ICGC-HCC samples
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Taking age, sex, and stage as control variables, the 
prognostic effect of the risk model was also  valid 
(Fig. 5D-E), indicating the independent role of the risk 
score in predicting HCC OS. Additionally, when incor-
porating liver fibrosis, serum AFP, and the risk score 
into the survival analysis, only risk score was pre-
sented to be an independent prognostic indicator for 
HCC OS, while no significance of liver fibrosis and 
serum AFP was shown (Additional file  2: Figure S8). 
In Fig. 5F-G, among the three subtypes, C1 HCCs pre-
sented the highest risk scores in both TCGA-HCC and 

ICGC-HCC datasets. The expressional differences of 
the five genes among the HCC subtypes were evident 
and the heterogeneity was visualized in Additional 
file  2: Figure S9. Furthermore, the associations of the 
risk model with HCC proliferation and the  immune 
check points were obvious. As shown in Fig. 5H-I, the 
HCC risk scores presented significant positive corre-
lations with  the proliferation marker MKI67, and two 
immune check point genes PD1 (PDCD1) and CTLA4. 
Nevertheless, no significant correlation between 
the risk score and PD-L1 (CD274) expression was dis-
covered in the HCC tissues.

Fig. 6 RT-qPCR analysis of the key gene expressions in different HCC cell lines. A Lower expression of ADH4 in SNU449 cells and HCCLM3 cells 
than Huh7 cells and HepG2 cells. B Significant higher expression of PON1 in Huh7 cells than SNU449 cells, HCCLM3 cells, and HepG2 cells. 
C Expressional comparisons of PZP in Huh7 cells, SNU449 cells, HCCLM3 cells, and HepG2 cells. D Expressional comparisons of MMP10 in Huh7 cells, 
SNU449 cells, HCCLM3 cells, and HepG2 cells. E Expressional comparisons of NR0B1 in Huh7 cells, SNU449 cells, HCCLM3 cells, and HepG2 cells
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Expressional heterogeneity of the key genes in HCC cell 
lines
As shown in Fig.  6, significant differences of the key 
gene expressions among the HCC cell lines were 
shown. Both SNU449 cells and HCCLM3 cells pre-
sented a lower expression of ADH4 (Fig. 6A) than the 
well-differentiated Huh7 cells and HepG2 cells, indi-
cating the positive associations of ADH4 with HCC 
differentiation. For PON1, its expressional differences 
among the four cell lines were obvious and Huh7 cells 
presented the highest expression of PON1 (Fig.  6B). 
Although no significant difference of PZP expression 
was shown among the cell lines, a tendency of  lower 
level  of PZP was indicated in HCCLM3 and HepG2 
than in  Huh7 cells (Fig.  6C). With regard to MMP10 
expression (Fig. 6D), among the four cell lines, the low-
est level was shown in Huh7 cells. Noticeably, SNU449 
cells with low-moderate differentiation and HCCLM 
cells with high metastasis  presented higher expres-
sion of MMP10 than the well-differentiated Huh7 cells 
and HepG2 cells, indicating the association of MMP10 
with HCC metastasis and malignancy. For NR0B1, its 
expressional differences were indicated in the four cell 
lines, with the highest expression in highly metastatic 
HCCLM3 cells. The results represented the expres-
sional heterogeneity of the key genes among differ-
ent HCC cell lines, indicating the variation of the 
key gene expressions might be associated with HCC 
progression.

Single‑cell investigation of key gene expressions in HCC
A total of 67,970 cells originated from tumor and nor-
mal tissue were classified into 47 clusters (Additional 
file  2: Figure S10A). Based on the gene expression pro-
files of different clusters (Additional file 2: Figure S10B), 
the single cells were grouped into eight major cell types 
(Fig.  7A). The expression profiles of the representative 
makers of the cell types and the key genes in the risk 
model were shown in Fig. 7B. Notably, ADH4 and PON1 
were prominently expressed in hepatocyte-originated 
cells (named hepatocytes in this study) while the other 
three key genes were generally low expressed in all of the 
cell types. The significant expressional differences of the 
five genes were visualized in Additional file 2: Figure S11 
and four of them presented the highest positive expres-
sion rate in hepatocytes. To investigate the expressional 
heterogeneity of the key genes, the hepatocytes were 
focused for further study. Adopting the UMAP method, 
the hepatocytes were divided into 23 subclusters (sub-
cluster 0–22) (Fig. 7C) and their proportions in different 

tissues were significantly different (Additional file  1: 
Table S12). As shown in Fig. 7D, in contrast to the com-
positions (hepatocyte subclusters) of normal liver tissues 
(three major subclusters and one minor subcluster), met-
astatic lymph nodes (two major subclusters), and portal 
vein tumor thrombus (three major subclusters and one 
minor subcluster), the hepatocytes in the primary tumors 
indicated the highest heterogeneity of the hepatocytes.

To visualize the key gene expression profiles in dif-
ferent tissues and subclusters, the 23 subclusters were 
divided into different groups according to their propor-
tions, with their highest proportion in the tissues as their 
tissue group. The expressional profiles of ADH4, PON1, 
PZP, MMP10 and NR0B1were presented in Fig.  7E-I. 
ADH4 was commonly expressed in the three subclusters 
of normal livers while it was rarely expressed in some 
subclusters of primary tumors and all the subclusters in 
metastatic lymph nodes and portal vein tumor thrombus 
(Fig. 7E). For PON1, in contrast of its positive expression 
in hepatocyte subclusters of normal livers, metastatic 
lymph nodes, and primary tumors, its negative expres-
sion was shown in portal vein tumor thrombus (Fig. 7F). 
With regard to PZP (Fig.  7G), its positive expression 
was shown in only a small part of the subclusters while 
negative in the others. For MMP10 (Fig. 7H) and NR0B1 
(Fig.  7I), their positive expression was only shown in 
tumor tissues, especially in  the metastatic lymph nodes 
and portal vein tumor thrombus, indicating their asso-
ciations with HCC metastasis. Furthermore, as shown in 
Additional file 2: Figure S12, all the five genes presented 
significant differences in the hepatocyte subclusters of 
the primary tumors. The other tissues also presented 
expressional heterogeneities of the genes (normal livers: 
ADH4 and PON1; metastatic lymph nodes and portal 
vein tumor thrombus: PON1 and NR0B1) in their hepat-
ocyte subclusters. The expressional heterogeneities of the 
genes might, to some extent, account for the outcome 
distinction of the HCC patients.

Dysregulations of the key genes at protein level
Compared with the paired normal tissues, ADH4, PON1, 
and PZP were significantly down-regulated in early-stage 
HCCs (Fig. 8A–C). In contrast, NR0B1 presented higher 
positive expressions in HCC tissues than in  the normal 
controls (Fig.  8D). As shown in Fig.  8E, F, significant 
negative correlations of ADH4 and PON1 with MKI67 
expression was obvious, indicating their negative associa-
tion with HCC proliferation. However, no significant cor-
relation of PZP and NR0B1 expressions with MKI67 was 
presented (Fig. 8G, H). As to their associations with HCC 
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Fig. 7 The expressional heterogeneity of the five key genes in hepatocyte-originated cells. A Cell types of liver and HCC tissues at single-cell 
level. B Marker gene and key gene expression profiles in different cell types. C Subclusters of hepatocytes in liver tissues and HCC samples. D The 
proportions of different hepatocyte subclusters in liver and HCC samples. E–I The expressional profiles of the five key genes in different hepatocyte 
subclusters. NT, non-tumor liver; PT, primary tumor; MLN, metastatic lymph nodes; PVTT, portal vein tumor thrombus
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invasion, ADH4 and PON1 appeared to be negatively 
correlated with HCC microvascular invasion (Fig. 8I, J). 
In contrast, in the HCC tissues concerning microvascular 
invasion, high proportion of positive NR0B1 expression 
was obvious, indicating its positive association with HCC 
invasion (Fig. 8L). However, no significant correlation of 

PZP expression with HCC microvascular invasion was 
shown (Fig. 8K). For MMP10, at protein level, its contri-
bution to HCC tumorigenesis and its elevated expression 
at HCC initiation has been reported in previous studies 
[25, 26].

Fig. 8 Dysregulations of ADH4, PON1, PZP, and NR0B1 in HCC at protein level. A–C ADH4, PON1, PZP were lower expressed in HCC tissues 
than their paired normal liver controls. D NR0B1 positive expression was higher in HCC tissues than their paired normal liver controls. E–G Spearman 
correlations of ADH4, PON1, PZP, and NR0B1 with MKI67 expression in HCC samples. I–L Comparisons of ADH4, PON1, PZP, and NR0B1 expressions 
between HCC samples with and without microvascular invasion. Wilcoxon test, Spearman correlation analysis, and Char-square test were used 
and p < 0.05 was considered significant
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The associations of ADH4, PON1, PZP, MMP10, and NR0B1 
with anti‑tumor drug sensitivities of HCC cell lines
As shown in Additional file 1: Table S13, ADH4 expres-
sion was found to be negatively correlated with the IC50 
of 17-AAG, AZD6244, PD-0325901, AEW541, TAE684, 

Panobinostat, and RAF265 in HCC cell lines, indicat-
ing the  positive association with HCC sensitivities to 
these anticancer drugs. Additionally, the negative cor-
relation of PON1 with the IC50 of AEW541, ZD-6474, 
Lapatinib, and PD-0325901, and the negative association 

Fig. 9 Correlations of the key gene expressions with anti-cancer drug sensitivity in HCC cell lines. A–D Significant negative correlation of ADH4 
expression with IC50s of anticancer drugs in HCC cell lines. E–H Significant negative correlation of PON1 expression with IC50s of anticancer 
drugs in HCC cell lines. I–L Significant negative correlation of PZP expression with IC50s of anticancer drugs in HCC cell lines. M Significant 
positive correlation of PON1 expression with IC50 of RAF265 in HCC cell lines. N–P Positive correlation trend of NR0B1 expression with IC50 values 
of PLX4720, Panobinostat, and Topotecan in HCC cell lines. IC50s, half maximal inhibitory concentrations. Spearman correlation analysis was used 
and p < 0.05 was considered as statistically significant
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of PZP expression with the IC50 of Lapatinib, 17-AAG, 
Panobinostat, and AZD6244 in HCC were presented. 
For MMP10, its significant positive correlation with the 
IC50 of RAF265 in HCC were obvious. These representa-
tive significant correlations were visualized in Fig. 9A–M. 
Although none of the 24 anticancer drugs IC50s was 
shown to be statistically correlated with NR0B1 expres-
sion in HCC, there was a tendency of positive correlation 
(0.05 < p < 0.1) between NR0B1 expression and the IC50s 
of PLX4720, Panobinostat, and Topotecan (Fig. 9N–P).

The protein‑drug and protein chemical interactions 
of ADH4, PON1, PZP, MMP10, and NR0B1
As shown in Fig.  10, seven protein-drug interactions 
and 288 protein-chemical interactions of the five pro-
teins were obtained. These drugs and chemicals might 
provide new clues and hints for the treatment and ther-
aputic mechanism research of HCC.

Discussion
HCC has a high degree of etiological and biological het-
erogeneity, resulting in distinct treatment responses. 
Considering the close relationship of LSGs with liver bio-
functions [27, 28], systematic study of LSGs heterogeneity 

might provide novel clues for more personalized thera-
pies in HCC. In the present study, we identified three 
LSGs-based HCC subtypes, among which the C1 subtype 
with the lowest LSGs score was highlighted to have the 
shortest OS and DFS and the highest stemness score, 
aging score, MKI67 expression, and AFP expression. In 
contrast to the significant differences in OS and DFS, the 
immune score, stroma score, and tumor purity were simi-
lar between C1 subtype and C2 subtype. Although C2 
and C3 subtypes presented similar survival, their micro-
environment response was significantly different. We also 
identified HCC-subtype specific genes and confirmed 
the subtype classification and the disparities among the 
three subtypes in external datasets. The expressional het-
erogeneities of the key genes were confirmed in HCC 
cell lines and hepatocyte subclusters at single-cell level. 
The findings demonstrated HCC heterogeneity in LSGs 
expressions and suggested the necessity of personalized 
treatment for different HCC subtypes.

Immunoreactivity differences between cancer sub-
types could lead to distinct response to immunothera-
pies [29, 30]. C1 and C2 subtypes with higher immune 
score and immune cell infiltrations, might be more fit for 
immune checkpoint inhibitors (ICIs) therapy than C3. In 

Fig. 10 The protein-drug and protein chemical interactions of ADH4, PON1, PZP, MMP10, and NR0B1
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addition, the higher expression of AFP and MKI67 in C1 
HCC might be an indicator for the treatment with anti-
proliferation drugs and AFP vaccine. Notably, the GSEA 
results and functional enrichment showed lower meta-
bolic activities in the C1 HCCs than the other two sub-
types, indicating their poorer liver function, which might 
affect treatment tolerance and efficiency. In contrast, C3 
HCCs with high LSGs score and low immune reaction 
might be more suitable for chemotherapy or combination 
therapy. In previous studies, immune infiltrations were 
considered to be in “hot” tumors that were reported to 
have better survival [31, 32]. Herein, we found that high 
immune response with low LSGs score (C1 subtype) was 
related to poor prognosis, while high immune score with 
high LSGs score (C2 subtype) was an indicator for good 
survival. The inconsistent association of immune reac-
tion with HCC survival was also reported in Shimada’s 
study [33]. These results suggested that more indicators 
were needed in combination with immune response for 
HCC prognosis predication and treatment option, and 
LSGs-based HCC classification provided an effective tool 
for HCC stratification.

Stemness and aging were also reported to be associ-
ated with HCC development and progression [34–37]. In 
our study, higher stemness score with lower aging score 
was shown in HCC than in normal livers, consistent with 
previous studies [38, 39]. Among the HCC subtypes, 
stemness score and aging score exhibited the highest 
level in C1 subtype with the poorest survival. The het-
erogeneity of HCC subtypes was also presented in the 
correlation of stemness score and aging score with LSGs 
score. Stemness score and aging score was significantly 
and negatively correlated with LSGs score in C3 HCC, 
while not in the other two subtypes, indicating distinctive 
involvement of LSGs in the development of C3 subtype 
HCC. Doxorubicin-induced senescence was reported to 
promote the stemness and tumorigenicity of HCC cells 
[40]. We also found the significant and positive correla-
tion between stemness score and aging score in all the 
three subtypes, indicating their potential molecular syn-
ergy in HCC.

Through systemic analyses, we constructed an effec-
tive five-gene signature for HCC survival prediction. 
Three LSGs (ADH4, PON1, and PZP) and two C1-specfic 
genes (with highest expressions in C1 HCC: NR0B1 and 
MMP10) were shown to be independent prognostic fac-
tors for HCC and were included in the risk model. ADH4 
coded an alcohol dehydrogenase enzyme, which was 
important for normal liver biofunction. ADH4 knock-
out mice were susceptible to vitamin A deficiency during 
gestation and had lower fertility survival rate [41]. PON1 
coded a high-density lipoprotein-associated esterase, 
which had anti-oxidant and anti-inflammatory properties 

[42]. PON1 dysregulation was associated with a variety of 
cancers including breast cancer [43, 44], pancreatic can-
cer [45], endometrial Cancer [46], and colorectal cancer 
[47]. PZP was found as an anti-tumor gene with aber-
rant DNA methylation in many cancers [48–51]. NR0B1, 
an atypical orphan nuclear receptor, was implicated in 
embryonic stem cells and cancer biology [52]. MMP10 
was a member of stromelysins, which was overexpressed 
and played a tumor-promotive role in oral cancer [53], 
ovarian cancer [54], pancreatic ductal adenocarcinoma 
[55], and colon cancer [56]. In this study, all the five genes 
were shown to be dysregulated and have prognostic roles 
in HCC, indicating their close relations to HCC progres-
sion, consistent with previous studies [25, 57–59]. In 
addition, all of the five genes were also found to be sig-
nificantly differentially expressed among HCC subtypes, 
presenting their heterogeneity in HCC samples, consist-
ent with the differences among the HCC subtypes.

In the four HCC cell lines, the expressional differences 
of the key genes were also shown. At single-cell level, they 
all presented significant expressional variations among dif-
ferent hepatocyte subclusters, especially in primary HCC, 
which might account for superior malignant behaviors 
of a proportion of tumor cells in HCC. Besides, ADH4 
and PON1 were also shown to be differentially expressed 
among the three hepatocyte subclusters in normal livers, 
which might be associated with HCC occurrence risk dif-
ferences. Similarly, metastases in lymph nodes and por-
tal vein tumor thrombus also presented their significant 
expressional variation of PON1 and NR0B1 in the hepato-
cyte subclusters, which might be associated with their dif-
ferent invasion capacity. At protein level, dysregulations 
of the genes were also confirmed and the significant nega-
tive correlation of ADH4 and PON1 with HCC prolifera-
tion and vascular invasion were shown, further indicating 
their close relation to HCC development and progression. 
In contrast, NR0B1 upregulation with positive correlation 
with microvascular invasion in HCC confirmed its posi-
tive expression in primary HCCs, metastatic lymph nodes, 
and portal vein tumor thrombus at single-cell level. In 
cervical squamous cell carcinoma and tongue squamous 
cell cancer, MMP10 was shown to be positively correlated 
with lymph node metastasis [60, 61]. Herein, we found the 
highest expression of MMP10 in the hepatocyte subclus-
ters in metastatic lymph nodes and its close relation to 
lymph node metastasis was also indicated.

We also investigated the relationship of the five gene 
with the sensitivities of HCC cell lines to anticancer 
drugs. The negative correlations of ADH4, PON1, and 
PZP expression with the IC50s of the anti-cancer drugs 
indicated that the LSGs might affect the efficiency of 
these drugs in HCC. For MMP10 and NR0B1, their posi-
tive correlation or positive correlation trend with the 
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anti-cancer drugs suggested HCC resistance to the drugs. 
These results uncovered the potential of these genes as 
indicators of HCC sensitivities to therapeutic drugs.

There were also limitations in our study. Firstly, the spe-
cific roles of the key genes during HCC occurrence and 
progression needed further study. Secondly, the clinical 
significance of the risk model needed to be validated in 
a broader population. Thirdly, single-cell RNA sequenc-
ing also had some technical limitations, such as dropout 
and bias in gene expression measurements, which may 
influence the accuracy of the conclusions. However, as 
multiple levels of analysis indicated the importance of the 
key genes for HCC, further study of them might provide 
valuable clues for HCC treatment.

Conclusion
In summary, through systemic analyses of LSGs, we iden-
tified and validated three LSGs-based HCC subtypes 
with different prognosis, different stemness, different 
aging level, and different immune response. C1 subtype 
with low LSGs score and high immune score was shown 
to have a poor survival while C2 subtype with high LSGs 
score and immune score had a good survival. Although no 
significant survival difference between C2 HCC and C3 
HCC was shown, C2 HCC presented higher immune score 
and stroma score than C3. These disparities between the 
HCC subtypes indicated the necessity of different treat-
ment options for individual subtypes. We also constructed 
a five-gene prognostic signature for HCC survival and the 
effective performance was shown. The five genes were het-
erogeneously expressed in HCC cell lines and hepatocyte 
subclusters in primary HCC. There dysregulations were 
confirmed at protein level. Furthermore, their associations 
with HCC response to anti-cancer drugs were uncovered. 
The results indicated that the LSGs-based HCC classifica-
tion and the five-gene risk model were conductive to HCC 
stratification and risk prediction. The study might provide 
novel clues for more effective treatment options and pro-
mote HCC precision treatment. Further clinical studies 
and experiments are necessary to help the clinical transla-
tion and application of the key genes.
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