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Abstract 

Background Cholangiocarcinoma represents a malignant neoplasm originating from the hepatobiliary tree, 
with a subset of tumors developing inside the liver. Intrahepatic cholangiocarcinomas (ICC) commonly exhibit 
an asymptomatic presentation, rendering both diagnosis and treatment challenging. Cuproptosis, an emerging 
regulated cell death pathway induced by copper ions, has garnered attention recently. As cancer cells show altered 
copper metabolism and comparatively higher copper needs, cuproptosis may play a role in the development of ICC. 
However, studies investigating this possibility are currently lacking.

Methods Single-cell and bulk RNA sequence data were analyzed, and correlations were established 
between the expression of cuproptosis-related molecules and ICC patient survival. Genes with predicting survival 
were used to create a CUPT score using Cox and LASSO regression and tumor mutation burden (TMB) analysis. The 
CIBERSORT software was employed to characterize immune cell infiltration within the tumors. Furthermore, immune 
infiltration prediction, biological function enrichment, and drug sensitivity analyses were conducted to explore 
the potential implications of the cuproptosis-related signature. The effects of silencing solute carrier family 39 mem-
ber 4 gene (SLC39A4) expression using siRNA were investigated using assays measuring cell proliferation, colony 
formation, and cell migration. Key genes of cuproptosis were detected by western blotting.

Results The developed CUPT score divided patients into high and low CUPT score groups. Those with a low score 
had significantly better prognosis and longer survival. In contrast, high CUPT scores were associated with worse clini-
cal outcomes and significantly higher TMB. Comparisons of the two groups also indicated differences in the immune 
infiltrate present in the tumors. Finally, we were able to identify 95 drugs potentially affecting the cuproptosis 
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pathway. Some of these might be effective in the treatment of ICC. The in vitro experiments revealed that suppressing 
the expression of SLC39A4 in ICC cell lines resulted in reduced cell proliferation, colony formation, and cell migration. 
It also led to an increase in cell death and the upregulation of key genes associated with cuproptosis, namely ferre-
doxin 1 (FDX1) and dihydrolipoyl transacetylase (DLAT). These findings strongly suggest that this cuproptosis-associ-
ated molecule may play a pivotal role in the development and metastasis of ICC.

Conclusions Changes in the expression of a cuproptosis-related gene signature can predict the clinical prognosis 
of ICC with considerable accuracy. This supports the notion that cuproptosis influences the diversity and complexity 
of the immune microenvironment, mutational landscape, and biological behavior of ICC. Understanding this pathway 
better may hold promise for the development of innovative strategies in the management of this disease.

Keywords Intrahepatic cholangiocarcinoma, Cuproptosis, Prognostic signature, Single-cell analysis, Immune 
microenvironment

Introduction
Cholangiocarcinoma (CCA) is a primary malignant 
tumor caused by the abnormal differentiation and pro-
liferation of biliary epithelial cells. Lesions originating in 
the bile ducts within the liver parenchyma are referred 
to as intrahepatic cholangiocarcinoma (ICC). This sub-
set accounts for 20% to 30% of all CCA cases [1]. Clini-
cally, early stages of ICC are asymptomatic or cause mild, 
uncharacteristic symptoms. Consequently, these tumors 
are typically diagnosed at an advanced stage, when they 
cannot be fully resected surgically. As a result, the 5-year 
survival of ICC patients remains poor. Given that the 
incidence of these tumors is increasing, the diagnosis 
and treatment of ICC represents a problem worldwide 
[2]. In pathologic terms, most ICCs are adenocarcino-
mas, with a smaller number of squamous cell carcinomas 
and mucinous carcinomas being detected. The pathogen-
esis of ICC is unclear, although some studies suggested 
that cholestasis and persistent biliary tract inflamma-
tion may contribute to the development of these malig-
nancies [3]. Currently, surgical intervention remains the 
primary treatment modality for ICC. However, in cases 
where surgery is not feasible, adjuvant chemotherapy, 
targeted therapy, and local therapy options are employed 
to extend survival [4]. There is an optimistic outlook that 
a deeper comprehension of the molecular pathogenesis 
of ICC could lead to the identification of specific thera-
peutic targets. Recent clinical trials, including individual-
ized treatment plans for immunotherapy, have been built 
upon this foundation and provide new directions and 
hope in the diagnosis and treatment of this devastating 
disease [5–7].

Copper ions function as cofactors at the active sites 
of various enzymes participating in a variety of physi-
ological processes, including oxidative stress, lipid 
metabolism, and energy metabolism [8]. Copper can 
also induce cell death by inducing reactive oxygen spe-
cies accumulation, apoptosis, proteasome inhibition, 
and mitochondrial dysfunction [9]. In recognition of this 

phenomenon, Tsvetkov et  al. [10] recently proposed a 
novel, copper-driven cell death pathway termed “copper 
death—cuproptosis.” During mitochondrial respiration, 
cuproptosis can result in direct interactions between 
copper ions  (Cu2+ and  Cu+) and fatty acids and acylated 
proteins. This process downregulates the expression of 
iron-sulfur cluster proteins, leading to proteotoxic stress 
and eventual cell death. Altering copper homeostasis 
can potentially affect tumor cells through two distinct 
mechanisms. First, chelating agents binding copper could 
reduce the availability of the ions in tumor cells, affect-
ing their ability to proliferate and metastasize. Second, 
manipulating transporter molecules to increase intra-
cellular copper levels can elevate copper concentration 
inside the cells, subsequently triggering the production of 
reactive oxygen species and the formation of other toxic 
molecular complexes that can induce tumor cell death 
[11, 12].

Despite accumulating evidence that cuproptosis affects 
tumors, there is currently a lack of studies investigating 
the role of copper ions in ICC pathogenesis. The objective 
of this study was to investigate the impact of cuproptosis-
related molecules on the prognosis of ICC by analyzing 
RNA expression data obtained from both single-cell and 
bulk RNA tumor samples. Using these samples, we spe-
cifically investigated the influence of cuproptosis-related 
signature on the immune cell infiltration and the muta-
tional landscape in ICC. Additionally, we also explored 
whether potential novel therapeutic drug targets could be 
identified by analyzing the pharmacological interactions 
of proteins involved in cuproptosis.

Materials and methods
Dataset preparation
Bulk RNA sequence data of ICC samples were accessed 
from the Cancer Genome Atlas (TCGA) database 
(https:// xenab rowser. net/) and the Gene Expression 
Omnibus (GEO) database (https:// www. ncbi. nlm. nih. 
gov/ geo). A training set of 32 ICC samples was selected 
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from the TCGA dataset and 83 ICC samples from GEO 
(dataset GSE89749) were used for validation. Accord-
ing to the literature associated with the uploaded GEO 
dataset [13], we have diligently completed the clinical 
information of ICC patients within the database. Conse-
quently, we exclusively incorporated patients with com-
prehensive clinical data into our analysis. Expression 
data were Log2 transformed. Single-cell sequence data of 
ICC samples were downloaded from the GEO database. 
Information derived from five patients with intrahepatic 
cholangiocarcinoma was analyzed from the GSE138709 
dataset [14].

Additional data from the TCGA and GEO portals 
included details on somatic mutations, clinical informa-
tion, and survival data. Somatic variations were anno-
tated using the Mutation Annotation Format (MAF) tool 

within the “maftools” R package [15]. The flowchart of 
this preparatory work is summarized in Fig. 1.

Single‑cell sequence analysis
The GSE138709 dataset contains individual single cell 
data derived from five ICC samples. The initial quality 
control of this raw single-cell data was conducted using 
the “Seurat” package in R. The data were filtered to con-
tain < 10% mitochondrial genes, < 3% red blood cells, and 
to include more than 300 genes expressed simultaneously 
present in at least three cells. To merge these samples, we 
utilized the “Merge” function of the “Seurat” package. In 
the next step the “NormalizeData” function of “Seurat” 
was used to log-normalize gene expression matrices from 
the included cell data. Finally, the “FindVariableFeatures” 

Fig. 1 Flow chart of the construction and analysis of the reported prognostic signature
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function was used to identify highly variable differentially 
expressed genes.

For dimension reduction, we then used the Harmony 
algorithm from the “Harmony” R package to eliminate 
batch effect and generate t-distributed stochastic neigh-
bor embedding (tSNE) [16]. Using the “FindNeigh-
bors” and “FindClusters” functions, we clustered the 
merged data into 17 cell populations (using the param-
eters dims = 1:15, resolution = 0.4). We carried out a 
further tSNE dimensionality reduction by utilizing the 
“RunTSNE” function.

We then used the signatures identified in the original 
publication to annotate cell populations [14]. The sig-
nature of KRT19 was used to define the malignant cell 
cluster and the KLRF1 and CD3D signatures were used 
to define NK cells and T cells, respectively. The ENG 
signature was used to identify endothelial cells, ASGR1 
for hepatocytes and ACTA for fibroblasts. Dendritic 
cells were detected based on the CD1C signature, while 
CD79A was used to define the B cell cluster. Finally, chol-
angiocytes were identified based on the FXYD2 signa-
ture. By importing a list of known cuproptosis-related 
genes and using the “PercentageFeatureSet” function, it 
was possible to determine the proportion of cuproptosis-
related genes present in each cell.

Analysis of cuproptosis‑related genes by single sample 
gene set enrichment analysis (ssGSEA)
First, we compiled a list of cuproptosis-associated genes 
by searching the previously published literature [8, 17]. 
This list, containing 19 known cuproptosis-related genes, 
was used to calculate a cuproptosis enrichment score. 
This list consists of 19 well-known cuproptosis-related 
genes, including NFE2L2, NLRP3, ATP7B, ATP7A, 
SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, 
PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, 
and DLST. Subsequently, we calculated a cuproptosis 
enrichment score using ssGSEA analysis on the TCGA 
sample dataset [18]. This enrichment score reflects the 
relative abundance of cuproptosis-related genes within 
each sample.

Construction and validation of a cuproptosis‑related 
prognostic signature
Based on cuproptosis-related gene scores, a weighted 
gene co-expression network analysis (WGCNA) was 
conducted using the “WGCNA” R package [19]. The 
strongest predictive features were selected to build a 
generalized linear model. To minimize overfitting, we 
employed least absolute and selection operator (LASSO) 
regression analysis. Cuproptosis-associated genes with 
prognostic clinical significance were initially identi-
fied using univariate logistic regression [20]. In the 

multivariate logistic regression analysis, we included 
genes associated with cuproptosis with non-zero LASSO 
coefficients. Forest plots, providing the graphical rep-
resentation of the outcomes of the logistic regression 
analysis, were created using the “ggplot2” R program. The 
prognostic model was constructed based on the derived 
information.

To establish the prognostic signature and deter-
mine  the CUPT score, ICC data from the samples in 
the TCGA dataset were used as the training cohort, and 
a risk score, referred to as CUPT score, was calculated 
using a formula established through multivariate logistic 
regression analysis. Samples were subdivided into a high 
and a low CUPT group, using the median expression 
level of the training CUPT score to discriminate between 
the two subsets. Survival analysis was performed using 
the available Kaplan-Meier curves. The validation of the 
prognostic signature was carried out using ICC samples 
available in the GEO database.

Relationship between mutations and Tumor Mutation 
Burden (TMB) analysis
The genetic mutational landscape of ICC patients was 
visualized using the somatic mutation data extracted 
from the TCGA “Masked Somatic Mutation” dataset and 
from the GSE89749 “Somatic Nonsilent Single Nucleo-
tide Variations and Indels” data [13] using the “maftools” 
function in R. The top 20 genes exhibiting the highest fre-
quency of mutations were displayed to assess differences 
in mutations between groups. The TMB value, indicat-
ing the number of total somatic mutations per megabase 
of DNA, is an increasingly recognized quantitative bio-
marker. Using the median TMB value as threshold, 
patients were divided into a TMB-high and a TMB-low 
group. These groups were treated as distinct entities dur-
ing survival analysis.

Immune infiltration prediction
To explore the correlation between the appearance of 
infiltrating immune cell subsets and the prognostic 
CUPT signature, we used the “cibersort” function in the 
CIBERSORT program to assess the enrichment of spe-
cific immune cells. This analysis enabled us to estimate 
the composition of the immune infiltrate [21]. We also 
examined the relationship between various immune cell 
subsets using CIBERSORT analysis.

Gene set enrichment analysis
The functional analysis, known as “gene set variation 
analysis” (GSVA), evaluates the enrichment of gene pro-
files by utilizing an expression matrix [22]. To investi-
gate the enrichment of specific molecular pathways, we 
obtained the gene set "h.all.v7.5.1.symbols" from the 
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MSigDB database (http:// www. gsea- msigdb. org/ gsea/ 
msigdb/ index. jsp) and performed the analysis using the 
"GSVA" function in R. The analysis of the biological func-
tion of each individual gene was conducted using gene 
set enrichment analysis (GSEA) [23], while KEGG path-
way analysis was performed using the “clusterProfiler” 
tool.

Potential therapeutic strategy in ICC
We combined the gene expression matrix derived from 
the ICC samples with the drug interaction information 
available in the Cancer Genome Project (CGP). This data-
base contains information on the actions of 138 antican-
cer drugs against 727 cell lines. Using the “pRRophetic” 
R package, we analyzed the correlation between CUPT 
scores and the half-maximum inhibitory concentrations 
(IC50s) of drugs effective in inhibiting each cell line [24]. 
Information from the Genomics of Drug Sensitivity in 
Cancer database (GDSC, http:// www. cance rrxge ne. org/ 
downl oads) was used to analyze the molecular pathways 
targeted by these drugs [25].

Cell culture and siRNA treatment
Two human ICC cell lines, HCCC9810 and RBE, were 
provided by Shanghai Changzheng Hospital (Shang-
hai, China). The cells were cultured in DMEM medium 
containing 10% fetal bovine serum at 37  °C in a 5% 
 CO2 containing atmosphere. Silencing RNAs affect-
ing the SLC39A4 gene were synthesized by Genomed-
itech (Shanghai, China). The cell lives were transfected 
with this siRNA using the riboFECT CP reagent (RIBO-
BIO, Shanghai, China), according to the manufacturer’s 
instructions. The effectiveness of the siRNA treatment 
was determined using quantitative qRT-PCR performed 
48 h after transfections. The  2−ΔΔCT method was utilized 
to calculate the relative expression of the target genes, 
using GAPDH as internal standard. All experiments 
were conducted in triplicate. The primers used to amplify 
SLC39A4 and GAPDH were purchased from Sangon Bio-
tech (Shanghai, China). Primer sequences are listed in 
Additional file 2: Table S1.

Proliferation analysis
To assess the viability of HCCC9810 and RBE cells after 
siRNA treatment we used the CCK8 reagent (Yeasen, 
Shanghai, China) according to the manufacturer’s 
instructions. Cell proliferation was measured at 0, 24, 
48, and 72  h after treatment. The OD450 value was 
determined using a microplate reader (BIO-RAD, USA). 
The ability of cells to form viable colonies was tested by 
seeding cells into 6-well tissue culture plates. Develop-
ing colonies were detected by fixing the cells using 4% 
paraformaldehyde for 30 min, followed by Crystal violet 

staining. Colonies were photographed under a micro-
scope. Cell viability assays and colony forming assays 
were performed in triplicate.

Cell death detection
To detect cell death, we collected the cells to be tested 
and washed them twice with PBS buffer. Subsequently, 
the cell suspension was transferred to flow cytometry 
tubes. To each tube, 0.5–1 μl of  SYTOX™ Green nucleic 
acid stain (Invitrogen, USA) was added and briefly vor-
texed. The tubes were then incubated at room tempera-
ture, avoiding light, for 30 min. After incubation, 400 μl 
of PBS buffer was added to each tube, and the cells were 
analyzed using a flow cytometer.

Western blot analysis
HCCC9810 and RBE cells were lysed in RIPA buffer (Bey-
otime Biotechnology, China) containing PMSF (Beyotime 
Biotechnology) and a phosphatase inhibitor (Epizyme 
Biotech, China). Protein samples were separated using 
12.5% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE), and transferred to poly-
vinylidene fluoride membrane (PVDF) membranes (Inv-
itrogen, USA). Membranes were blocked in 5% skimmed 
milk for 1  h at room temperature and incubated over-
night at 4  °C, using the primary antibodies at dilutions 
indicated below. After washing the membranes were 
incubated with the secondary antibody for 1-h. The sig-
nal was documented using the ChemiDoc XRS + imaging 
equipment (BIO-RAD). The primary antibodies and their 
dilutions used in this study were: anti‐SLC39A4 (1:1000, 
proteintech, USA), anti‐FDX1 (1:1000, proteintech), anti-
DLAT (1:1000, proteintech), and anti‐β-Actin (1:1000, 
CST, USA).

Statistical analysis
Statistical analyses were carried out using R × 64–4.2.1. 
The Wilcoxon rank-sum test was used to examine dif-
ferences between non-normally distributed variables, 
while the t-test was used to evaluate differences in quan-
titative data in normally distributed variables. Differ-
ences between more than two groups of variables were 
explored using one-way analysis of variance and the 
Kruskal–Wallis test. Spearman analysis was used for the 
correlation analysis. A P < 0.05 was accepted to indicate 
statistical significance in two-sided test.

Results
Comprehensive dissection and clustering of scRNA‑seq 
data from ICC samples
The GSE138709 single cell RNA sequencing dataset was 
used to analyze the immune microenvironment of ICC 
samples. After performing gene filtering, normalization, 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.cancerrxgene.org/downloads
http://www.cancerrxgene.org/downloads


Page 6 of 19Ren et al. Cancer Cell International           (2024) 24:92 

and principal component analysis (PCA), we classified 
cell populations into 17 clusters (Fig.  2A). These popu-
lations were labeled according to previously reported 
expression patterns (Fig. 2B), identifying malignant cells, 
B cells, cholangiocytes, dendritic cells, endothelial cells, 
fibroblasts, hepatocytes, macrophages, natural killer 
(NK) cells, and T cells (Fig. 2C, Additional file 1: Fig. S1). 
Remarkably, the greatest variability between individual 
samples was seen in the representation of malignant 
cells and cholangiocytes, indicating prominent patient-
specific tumor heterogeneity in ICC. Enrichment analysis 
revealed numerous differentially expressed genes (DEGs), 
while more stably expressed marker genes confirmed 
the correct identification of specific cell types (Fig. 2D). 
Possible interactions between the various cells present 
in the tumors were examined by exploring the expres-
sion of ligand and receptor molecules. This analysis indi-
cated that most interactions were likely to occur between 
malignant cells and other cell subsets. Receptor-ligand 
pairs indicating potential interactions were particularly 
frequent between immune cells and tumor cells (Fig. 2E).

To explore the representation of various cell types in 
individual samples we created t-SNE plots for each ICC 
sample. While most samples contained all nine cell types 
based on gene expression profiles, certain cell popula-
tions were missing from a small subset of ICC samples 
(Fig. 2F, Additional file 1: Fig. S2). Next, we determined 
the proportion of genes involved in cuproptosis in each 
cell. This work identified 2930 DEGs.

Genes of prognostic relevance in ICC patients identified 
by WGCNA
We retrieved transcriptome expression patterns for 
32 ICC samples and 8 normal samples from the TCGA 
database. For further analysis, we employed the R pack-
age edgeR to assess the differential expression of mRNAs 
between ICC samples and normal tissues. The criteria 
used for defining differential expression were |log fold 
change (FC)|> 1 and P < 0.05. The genes exhibiting differ-
ential expression were utilized to conduct WGCNA anal-
ysis. This approach detected several cuproptosis-related 
prognostic hub genes (Fig. 2G, Additional file 1: Fig. S3A, 
B). According to the clustering tree and the adjacency 
and topological overlap matrices, 11 non-gray modules 

reflecting multiple genes were identified (Fig.  2H). The 
cuproptosis score highly correlated with the blue module 
containing 1077 genes, the magenta module, which con-
sisted of 410 genes, and the purple module, which had 
721 genes.

Construction and validation of a cuproptosis‑related 
prognostic signature
To identify cuproptosis-related genes, we performed an 
intersection of the hub genes obtained from the single-
cell RNA data with the gene expression data from bulk 
samples collected from the TCGA database. This analy-
sis revealed 307 genes that exhibited a correlated expres-
sion pattern (Additional file  1: Fig. S3C). Subsequently, 
we investigated the relationship between the expres-
sion levels of these interlinked genes and overall patient 
survival. Following an initial screening, we selected six 
genes to assess their predictive value in the survival of 
ICC patients (Additional file 1: Fig. S3D). By employing 
LASSO and Cox analyses for optimization (Fig. 3A, B), we 
successfully identified three cuproptosis-related genes, 
namely PLOD2, TNFAIP8, and SLC39A4, which demon-
strated a correlation between changes in expression levels 
and survival data. This analysis allowed us to construct 
a cuproptosis-related prognostic signature using the fol-
lowing formula: CUPT score = PLOD2*0.6227−TNFAIP8
*1.0674 + SLC39A4*0.6969.

Using the median CUPT score to divide patients, indi-
viduals were placed into a high or a low CUPT score 
group. Initial analysis of the training data derived from 
the TCGA dataset indicated that patients with low 
CUPT scores showed improved survival (P = 0.011). 
We validated this finding using additional ICC samples 
and linked data from the GEO database. The analysis of 
this cohort of samples confirmed the validity of using 
the CUPT score to predict patient survival (P < 0.001) 
(Fig.  3C, D). When patients were ranked according to 
their CUPT score, and survival figures were plotted 
against this ranking, higher scores were clearly associ-
ated with shorter survival on the scatter plots using both 
the training dataset (Fig.  3E) or the validation  dataset 
(Fig. 3F). The distributions of ICC were displayed by ICC 
curves for the training cohort (Fig.  3G) and validation 
cohort (Fig. 3H), with an increase in the number of ICC 

(See figure on next page.)
Fig. 2 Overview of scRNA data and gene screening. A t-SNE plot of cell clusters in ICC. B Bubble diagram displaying ICC marker genes 
in each gene cluster. C t-SNE plot of cell types in ICC. D Heatmap of differentially expressed genes in different cell types. E Analysis of cell–cell 
communication between various cell types. A cluster is represented by the nodes, while the number of interactions is indicated by the thickness 
of the lines between them. F A bubble diagram of each cuproptosis gene in ICC clusters. G A dynamic tree-pruning was used to combine 
genes with comparable cuproptosis-score patterns into a single module, resulting in a hierarchically clustered tree. H Correlation coefficients 
and matching p-values between CUPT score (CUPTS) and each gene module are shown in boxes
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Fig. 2 (See legend on previous page.)
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patients. The model had strong prognostic performance, 
supported by the 1-, 2-, and 3-year AUC values (0.822, 
0.790, and 0.886) (Fig. 3I). The analysis of ROC in the val-
idation cohort also supported this conclusion, with 1-, 2-, 
and 3-year survival rate ROC values at 0.645, 0.790, and 
0.839, respectively (Fig. 3J). Additionally, in the training 
cohort and the validation cohort, the AUC was 0.822 and 
0.645 (Fig.  3K, L). Thus, we created a nomogram com-
bining clinicopathological prognostic variables and the 
CUPT score (Fig. 3M). These findings indicated that the 
cuproptosis-related prognostic gene signature  had sig-
nificant potential in predicting clinical outcomes in ICC.

Correlations between CUPT score, somatic mutations, 
and TMB
Next, we analyzed the frequency of somatic mutations 
in ICC samples. According to a waterfall map, 64 out of 
73 ICC samples (87.67%) contained somatic mutation(s) 
(Fig. 4A). We then compared the distribution of somatic 
mutation in ICC patients with high- and low-CUPT 
scores. To present these data, we selected the top 20 
genes most frequently affected by mutations. This anal-
ysis revealed that the average frequency of mutations 
was markedly higher in patients with high CUPT scores 
(Fig. 4B, C). Of particular note, we observed a significant 
and striking contrast in the occurrence of TP53 muta-
tions. While 54% of high CUPT score patients carried 
TP53 mutations, this figure in the low CUPT score group 
was only 6% (Fig. 4D).

We also evaluated the difference in TMB between high 
and low CUPT score ICC samples. These comparisons 
demonstrated that the TMB in the high CUPT group 
was considerably higher (P = 0.0038) (Fig. 4E). Additional 
correlation analysis also supported a link between CUPT 
score and TMB (P = 0.0006) (Fig.  4F). We analyzed the 
prognostic value of TMB and found marked differences, 
with a high TMB correlating with poorer chances of sur-
vival (Fig.  4G). Although the result suggested that most 
patients with a high CUPT score also had high TMB, we 
conducted a stratified prognostic analysis, exploring the 
possibility that the simultaneous presence of a high TMB 
and a high CUPT score acted synergistically in predict-
ing prognosis. In this analysis, patients with a combined 
low CUPT score and low TMB had the best chances of 

survival (Fig.  4H). The findings suggested a synergism, 
indicating that the combination of CUPT score and TMB 
could improve prognostic predictions.

Overview of immune infiltration and the distribution 
of immune cells in ICC patients
Since the single-cell sequence data contained a lot of 
information on immune cells, we analyzed the infiltrat-
ing immune cells in ICC the CIBERSORT algorithm was 
used to categorize these cells (Fig. 5A). In this figure dif-
ferent colors represented distinct immune cell popula-
tions while the length of the bars is proportional to the 
frequency of the cells within that category. This analysis 
revealed that tumors in the high CUPT score group con-
tained significantly lower numbers of naïve B cells, CD8 
T cells, and M1 macrophages. At the same time, these 
tumors had higher levels of regulatory T cells (Tregs) and 
M0 macrophages (Fig.  5B). Representing the data as a 
histogram of immune cells showed that the high CUPT 
score group was characterized by low CD4 memory T 
cell numbers and low resting CD8 positive T cell abun-
dance, whereas the number of activated NK cells and M1 
macrophages was high (P < 0.05, Fig. 5C, Additional file 2: 
Table S2). In contrast, in the low CUPT group, there was 
a strong positive relationship with resting NK cells and 
activated dendritic cells, while CD8 positive T cells and 
M2 macrophage numbers showed a negative correlation 
(P < 0.05, Fig. 5D, Additional file 2: Table S2).

Gene set enrichment and potential therapeutic value
To explore the key biological functions of the three 
cuproptosis-related genes that contributed to the calcula-
tion of the CUPT score (PLOD2, TNFAIP8, SLC39A4) we 
conducted GSEA and GSVA analyses. PLOD2 appeared 
to be highly enriched in arrhythmogenic right ventricu-
lar cardiomyopathy and in the complement and coagula-
tion cascades according to GSEA results and functional 
KEGG pathway analysis (Fig. 6A). SLC39A4 was mainly 
enriched in ascorbate and aldarate metabolism and 
TNFAIP8 was enriched in complement and coagula-
tion cascades (Fig.  6B, C). In GSVA analysis, PLOD2 
and TNFAIP8 were abundant in HALLMARK path-
ways, while SLC39A4 was enriched in spermatogenesis, 

Fig. 3 Construction and validation of a cuproptosis-related prognostic signature. A, B LASSO regression analysis of prognosis-associated genes 
in ICC. C, D Comparison of overall survival between high and low-risk groups shown using Kaplan–Meier curves in the TCGA (C) and GEO cohort 
(D). E, F Gene signature-related CUPT score distribution in each patient in the TCGA (E) and GEO cohort (F). G, H Survival time of patients ranked 
in the order of increasing CUPT scores values in the TCGA (G) and GEO cohort (H). I, J 1-, 2-, and 3-year survival ROC curves of the prognostic 
signature based on TCGA (I) and GEO cohort data (J). K, L AUC of risk assessment in the TCGA (K) and GEO cohort (L). M The overall survival 
of patients over the course of 1 to 3 years, predicted using a nomogram, depicting the link between variables in the prediction model

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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oxidative phosphorylation, mitotic spindle formation, 
and bile acid metabolism (Fig. 6D).

To establish a relationship between CUPT score and 
the half-maximal inhibitory concentration (IC50) of 
anticancer medication tested in cell lines, we carried 
out Spearman correlation analyses. A total of 95 differ-
ent drugs were identified that were linked CUPT score 
(Fig.  6E); 34 of these showed drug sensitivity linked to 
the risk score, and 61 drugs were offered that have drug 

resistance tied to a risk score. Additional file 2: Table S3 
provides a summary of additional medications linked 
to the CUPT score. The correlations of paclitaxel and 
cetuximab with CUPT score were 0.59 (P < 0.0001) and 
0.67 (P < 0.0001), respectively, and drug sensitivity dif-
fered significantly between CUPT high and low groups 
(P < 0.0001) (Additional file 1: Fig. S4A–D). Gemcitabine, 
a commonly used medication in the clinical routine of 
ICC, demonstrated a significant correlation with CUPT 

Fig. 4 Association between CUPT score, tumor mutation burden (TMB) and somatic mutations. A–C Waterfall map showing the top 20 genes 
with the highest rates of mutations. D TP53 mutation frequencies in the high and low CUPT score group shown in a bar plot. E Differences in TMB 
between the high and low CUPT score patients (P = 0.0038). F Scatterplots displaying positive and negative correlations between CUPT score 
and TMB. G Kaplan–Meier curves demonstrating the difference in overall survival between TMB subgroups. H TMB and CUPT score stratified 
Kaplan–Meier curves demonstrating differences in overall survival
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Fig. 5 Overview of immune cell infiltration and distribution in ICC patients. A Immune cell distribution in patients with high and low CUPT scores. 
B Boxplot illustrating the abundance of the immune cells in high and low CUPT score groups. C, D Correlation analysis of the immune cells. The 
correlation is represented by the upper triangle, and the coefficient is shown by the lower triangle
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(P = 0.0018). Additionally, the findings revealed that 
tumors in high CUPT score patients exhibited height-
ened sensitivity to this drug (Additional file  1: Fig. S4E, 
F). The molecular pathways targeted by these medica-
tions are shown in Fig. 6F and Additional file 2: Table S4. 
We discover that medications with high sensitivity and 
high CUPT scores commonly affected the p53 pathway, 
kinases, and genome integrity, while treatments with low 
CUPT scores are more likely to target mitosis, the cell 
cycle, and kinases. From these findings it appears that 
the CUPT score may be a usable biomarker in predicting 
medication responses in ICC.

Modeling gene selection and survival analysis
We assessed the expression of three cuproptosis-related 
prognostic genes in the training and validation cohorts 
in order to choose the modeling gene. The expression 
patterns of three cuproptosis-related prognostic genes 
were displayed in the heatmaps for the training cohort 
(Fig.  7A) and validation cohort (Fig.  7B). According to 
these findings, PLOD2 and SLC39A4 were expressed 
more in high CUPT score ICC lesions, whereas TNFAIP8 
was expressed less than in the low CUPT score group. 
We then identified three genes that were related to ICC 
patient prognosis. In both the training and validation 
cohorts, the prognosis of patients improved consider-
ably with low PLOD2 and SLC39A4 expression, while 
TNFAIP8 demonstrated the opposite tendency (Fig. 7C–
H). The expression of modeling genes in various cell 
types was then investigated using single-cell sequenc-
ing samples. As shown in Fig. 7I–M, PLOD2 was mainly 
expressed in hepatocytes and fibroblasts, TNFAIP8 was 
mainly expressed in dendritic cells, NK cells, T cells, and 
macrophages, while SLC39A4 was primarily expressed in 
cholangiocytes and malignant cells.

The HR value of SLC39A4 was the highest in Cox 
regression and LASSO regression analyses (HR = 2.008, 
P = 0.02). Survival data also showed that patients with 
high SLC39A4 expression had a considerably worse 
prognosis (P < 0.001, Fig.  4D, G). Moreover, SLC39A4 
expression in cholangiocytes and malignant cells was 
considerably higher than the abundance of PLOD2 and 
TNFAIP8 transcripts. Based on these results, we decided 
to analyze the role of SLC39A4 experimentally.

Verification of the cuproptosis‑related prognosis signature 
in ICC cells
To explore the role of SLC39A4 expression in influencing 
the biological behavior of ICC cells, we conducted siRNA 
knockdown experiments in HCCC9810 and RBE cell 
lines in  vitro. SLC39A4-specific siRNAs were designed 
and produced, and both cell lines were transfected 
with these reagents. Following a 48 h incubation period 
after the transfection, qRT-PCT assays showed that the 
siRNA-1 sequence caused a considerable downregula-
tion in SLC39A4 mRNA expression (P < 0.001) (Fig. 8A). 
When the viability of the transfected cells was tested in 
CCK8 assays, it was apparent that SLC39A4 knockdown 
reduced the capacity of the treated HCCC9810 and RBE 
cells to proliferate (Fig. 8B). We also tested the effect of 
the gene knockdown on the ability of seeded tumor cells 
to form new colonies. Compared to non-transfected con-
trols, siRNA treated HCCC9810 and RBE cells formed 
colonies less efficiently (Fig. 8C). Furthermore, in a Tran-
swell migration assay the reduction in SLC39A4 expres-
sion also reduced the invasive capacity of both cell lines 
(Fig.  8D). To investigate the effect of SLC39A4 knock-
down on cell death in ICC, we assessed cell death after 
silencing SLC39A4. The results revealed an increase in 
cell death following SLC39A4 knockdown. However, the 
addition of a copper chelator: tetrathiomolybdate (TTM) 
effectively suppressed ICC cell death and restored cellu-
lar viability (Fig. 8E). Western blotting of the transfected 
cells showed that the knockdown of SLC39A4 increased 
the protein levels of key genes of cuproptosis: FDX1 
and DLAT. After treating with 20  nM of Cu-elesclomol 
(Cu-ES) for 24 h, there was a significant increase in the 
expression of FDX1 and DLAT. Furthermore, knock-
down of SLC39A4 resulted in a further increase in the 
expression of FDX1 and DLAT (Fig. 8F). The results pre-
sented above highlight a significant correlation between 
viability, colony forming capacity, migration and cell 
death induced by siRNA transfection and cuproptosis 
processes.

Discussion
As early clinical manifestations of ICC are subtle and 
non-specific, diagnosing these tumors is extremely chal-
lenging [26]. At the time of the eventual detection, in 

(See figure on next page.)
Fig. 6 Gene set enrichment and potential predictive therapeutic value. A–C KEGG functional pathways enriched in the gene matrices of PLOD2, 
SLC39A4, and TNFAIP8 in the high and low CUPT score groups shown in multi-GSEA plots. Functional pathways enriched in gene matrices of the ICC 
patients in the high CUPT score group are represented by the curves above the X-axis while pathways enriched in low CUPT score ICC patients are 
represented by curves below the X-axis. D Correlation analysis of HALLMARK pathways. The upper triangle represents the correlation, and the lower 
triangle represents the coefficient. E Bar plot illustrating the correlation between CUPT score and drug sensitivity. F Dot plot showing the pathways 
targeted by medications correlated with the CUPT score
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Fig. 6 (See legend on previous page.)
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Fig. 7 Modeling of gene selection. A, B Heatmaps displaying the expression of three cuproptosis-related prognostic genes from the TCGA 
(A) and GEO dataset (B). C–H Kaplan–Meier curves showing overall survival differences based on PLOD2, SLC39A4, and TNFAIP8 expression 
in the high- and low- risk groups in the TCGA (C–E) and GEO data (F–H). I, J Three modeling genes for each cell type are displayed in ICC using 
a violin plot and bubble chart. K–M The proportion of each cell’s three modeling genes
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Fig. 8 Verification of the cuproptosis-related prognosis signature in ICC cells. A mRNA levels of SLC39A4 48 h after transfection. B Proliferation 
of ICC cells detected by CCK8 assay. C Colony formation assays of ICC cells after siRNA transfection. D Results of migration assays of ICC cells 
in Transwell plates after siRNA transfection. E Results of ICC cell death after adding TTM. F Protein expression of key genes of cuproptosis 
after knockdown of SLC39A4 and addition of ES
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most patients ICC has already spread to such an extent 
that any opportunity for radical surgical resection is lost. 
It has been widely reported that ICC is resistant to radio-
therapy, mainly due to the unique tumor microenviron-
ment (TME) associated with this malignancy [27, 28]. 
This unusual TME shows abundant signs of mesenchy-
mal fibrosis and pronounced infiltration by immune cells 
and tumor-associated fibroblasts. Apart from promoting 
tumor growth, this highly fibrotic environment also ren-
ders tumors more treatment resistant [29]. The variability 
of TME is a key determinant of tumor behavior. During 
the interplay between malignant cells and surrounding 
stromal cells mediators supporting the development of 
immune tolerance may be released. In other cases, the 
infiltrating immune cells in the microenvironment can 
kill tumor cells, preventing their continued proliferation 
and metastasis [30]. Therefore, exploring the immune 
microenvironment in ICC has become a focus of interest 
in our studies. The possibility that the immune microen-
vironment may be altered during the process of cuprop-
tosis also supported the need for further studies in this 
area.

The work presented here proposes a prognostic model 
designed to categorize ICC patients based on the expres-
sion levels of specific cuproptosis-related genes. The cal-
culated CUPT score divided patients into high or low 
CUPT score subsets. Analyzing Kaplan–Meier survival 
curves from patients in the TCGA and GEO databases 
identified statistically significant differences in the length 
of survival between the high and low CUPT score groups. 
These findings provided preliminary support for the util-
ity of our model in predicting clinical outcomes in ICC. 
The AUC at 1, 3, 5 years were 0.822, 0.790, and 0.886 in 
TCGA cohort and 0.645, 0.839, and 0.807 respectively 
in the GEO cohort of patients, supporting the accuracy 
of our proposed model. The PCA analysis results indi-
cated that the patients in the high and low CUPT scoring 
groups were separated into distinct dimensions, thereby 
confirming the model’s ability to accurately differentiate 
between patients. To predict survival in ICC, we devel-
oped a nomogram that incorporated both established 
pathological risk factors and the CUPT score. This nom-
ogram demonstrated exceptional accuracy in predicting 
clinical outcomes.

Next, we explored the role of TME and the somatic 
mutation map in ICC patients. The analysis of somatic 
mutations revealed a high frequency of mutations affect-
ing the ARID1A and EPHA2 genes, both in high and low 
CUPT score patients. Guo et al. [31] previously reported 
that most ARID1A mutation inhibited TGF-β medi-
ated signaling pathways, potentially playing a causative 
role in the development of CAA. Furthermore, immune 
checkpoint inhibitor-induced antitumor immunity 

was reported to be more pronounced in patients with 
ARID1A loss [32]. Mutations affecting EPHA2 also rep-
resent a potential novel therapeutic target during lym-
phatic metastasis of ICC [33]. We found statistically 
significant differences in the frequency of TP53 muta-
tions in patients with high or low CUPT scores, although 
TP53 mutations are very common, occurring in more 
than 50% of human tumors [34–36]. The integrin-FAK-
SRC pathway represents a potential mechanism by which 
TP53 mutations may be involved in ICC metastasis for-
mation [3]. Boerner et  al. [37] also reported that TP53 
mutations could predict a poorer prognosis in patients 
with unresectable ICC. These findings suggest that TP53 
mutations may represent a clinically significant feature 
in high-risk patients. TMB is emerging as a possible 
biomarker and may have utility in predicting the effec-
tiveness of immune checkpoint inhibitor therapy [38]. 
Patients with elevated TMB respond well to immuno-
therapy, often irrespective of the origin of their tumors. 
In our study, TMB was noticeably higher in patients with 
high CUPT scores. Moreover, the 5-year survival was the 
lowest in the group of patients where a high-CUPT score 
coincided with a high TMB.

The composition of the immune cell infiltrate was also 
different between the high and low CUPT score groups. 
Yang et  al. [39] previously reported an enrichment of 
M0 macrophages in ICC tissues, potentially influencing 
the clinical prognosis of the disease. In another study, a 
subset of ICC patient was found to have a significantly 
increased number of  CD8+ T cells in their tumors, and 
this phenomenon was associated with a favorable out-
come [40]. Additionally, M1 macrophages have the 
capacity to modify the immune milieu by recruiting 
additional macrophages and NK cells to the TME and 
inducing their activation locally. Thus, it was proposed 
that this behavior of M1 macrophages may be exploited 
in the immunotherapy of the disease [41]. In our experi-
ments patients in the high CUPT group had significantly 
more M0 macrophages in their tumors, while in low 
CUPT patients CD8 positive T cell numbers were nota-
bly increased. Interestingly, there was also a positive cor-
relation between NK cells and M1 macrophages in the 
high CUPT group. This suggests that M1 macrophages 
may have the potential to alter the immune microenvi-
ronment in ICC by recruiting and subsequently activat-
ing NK cells. Again, if confirmed in further studies, this 
mechanism could be exploited in the immunotherapy of 
ICC.

In advanced ICC a combination of surgery and chemo-
therapy represents the main treatment option, although 
drug resistance is a major factor in treatment failure, 
resulting in eventual mortality. Studies have shown that 
the simultaneous administration of copper complexes 
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and chemotherapeutic drugs acts synergistically, enhanc-
ing drug responses. Copper complexes appear to play a 
particularly important role during treatment with plati-
num containing therapeutic agents by influencing regu-
latory processes involved in copper homeostasis [11]. 
Systemic chemotherapy is the most commonly utilized 
treatment modality in patients with unresectable ICC 
[42]. In this context we found that high CUPT score 
patients may be more sensitive to cetuximab, while 
patients with low CUPT scores potentially respond bet-
ter to treatment with paclitaxel. Furthermore, we also 
investigated the relationship between the drug sensitiv-
ity of gemcitabine and the CUPT score. Gemcitabine, a 
classical chemotherapeutic drug used in the treatment of 
CAA, can be effective in some cases of ICC [43]. How-
ever, its therapeutic effectiveness depends on the patho-
logic tumor type, the stage of the lesion, and the physical 
status of the patient. Gemcitabine is a deoxypyrimidine 
analogue that exerts its antitumor effects by inhibit-
ing cellular DNA synthesis. After entering the cells, the 
drug is phosphorylated to produce its active nucleoside 
diphosphate form that inhibits the extension of DNA 
strands. This mechanism causes DNA breakages and 
apoptosis [44]. In our study, we demonstrated a correla-
tion between CUPT scores and gemcitabine sensitivity, 
with patients in the high CUPT score group responding 
well to gemcitabine treatment. In addition, drugs tar-
geting the mitotic process, cell cycle progression, and 
certain kinases may be more effective in patients in the 
low CUPT score group. In contrast, drugs targeting the 
p53 pathway or affecting genome integrity may be more 
effective in patients with high CUPT scores.

Solute carrier family 39 member 4 (SLC39A4) plays 
an important role in cellular zinc homeostasis [45]. 
This transporter was shown to accelerate the growth of 
esophageal squamous cell carcinomas [46]. Interestingly, 
SLC39A4 expression is constitutionally downregulated 
in nude mice, reducing the growth and migration of gall-
bladder cancer cells and delaying the development of 
transplanted tumors [47]. Despite this observation, the 
effect of SLC39A4 expression has not been previously 
reported in human ICCs. In our study, SLC39A4 exhib-
ited the highest HR value in Cox regression and LASSO 
regression analysis, and survival analysis revealed that 
patients with high SLC39A4 expression had consider-
ably worse prognosis, suggesting that SLC39A4 might 
be a biomarker of ICC progression, and could repre-
sent a potential therapeutic target. In general biology, 
SLC39A4 appears to be mainly associated with ascorbate 
and aldarate metabolism and plays a role in pathways in 
oxidative phosphorylation, mitotic spindle formation, 
and bile acid metabolism. Our in vitro experiments con-
firmed that the knockdown of SLC39A4 using a siRNA 

reduced the ability of ICC cell lines to proliferate, form 
colonies, or migrate. Knockdown of SLC39A4 also 
increased the expression of key genes of cuproptosis: 
FDX1 and DLAT. When  Cu2+ accumulates excessively 
in cells dependent on mitochondrial respiration,  Cu2+ 
binds to thioctylated DLAT, inducing heterodimerisation 
of DLAT. The increase in insoluble DLAT leads to cyto-
toxicity and induces cell death. FDX1, on the other hand, 
is involved in regulating the lipoic acidification of DLAT 
and reduces  Cu2+ to the more toxic  Cu+, leading to the 
inhibition of Fe-S cluster protein synthesis and the induc-
tion of cell death [10]. These changes coincided with 
increased cuproptosis activity and may inhibit metas-
tasis formation by ICC cells. The research conducted 
by the Tsvetkov team has confirmed that Cu-ES can 
greatly suppress cell growth and induce cell death, clas-
sifying it as a typical cuproptosis stimulator [10]. Inter-
estingly, when TTM is combined with Cu-ES treatment, 
it does not affect cell growth [48]. Our findings demon-
strate that TTM effectively inhibits cell death induced by 
SLC39A4 knockdown, highlighting the intricate relation-
ship between SLC39A4 and cuproptosis. Moreover, the 
expression of key proteins involved in cuproptosis, such 
as FDX1 and DLAT, is further upregulated in ICC cells 
with SLC39A4 knockdown, providing additional evi-
dence that SLC39A4 knockdown can influence various 
cellular processes, including proliferation, apoptosis, and 
migration, through the cuproptosis pathway.

However, the effect of SLC39A4 on ICC cupropto-
sis remains to be clarified further. Moreover, the spe-
cific mechanisms linking cuproptosis-related genes to 
changes in the TME and to chemotherapy resistance are 
still unclear. Nevertheless, this study provides the first 
evidence linking cuproptosis to the biological behavior of 
ICCs.

Conclusions
In conclusion, through the analysis of single-cell and bulk 
RNA sequencing data, we devised and validated a novel 
prognostic model based on the expression of molecules 
associated with cuproptosis. In addition, we were able to 
experimentally confirm the role SLC39A4 in the develop-
ment of ICC. We also found that the developed CUPT 
score was able to predict certain features of the infiltrat-
ing immune cells, the somatic mutational landscape, and 
the probable biological behavior of ICC. Some of the 
described observations may also influence future thera-
peutic approaches in this disease.



Page 18 of 19Ren et al. Cancer Cell International           (2024) 24:92 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12935- 024- 03251-2.

Additional file 1: Supplementary Figures. 

Additional file 2: Supplementary Tables. 

Acknowledgements
We would like to thank the authors who provided the Gene Expression Omni-
bus Database public datasets.

Author contributions
HR, CL, CZ, and LZ conceived of the study. HKW, ZW, LC, HQW and JZ collected 
the data. HR and CL performed experiment. HR performed statistical analysis 
and wrote the manuscript. CL, CS and LZ revised the manuscript. All authors 
reviewed the manuscript.

Funding
This study was supported by National Natural Science Foundation of China 
(82372313, 82102482, 82072371), Leading Talent Project of Shanghai Huangpu 
District (2020-1-28), Program of Shanghai Academic/Technology Research 
Leader (Grant No.23XD1404900), Shanghai Healthcare Commission Young Tal-
ent Program (2022YQ056), and Shanghai Science and Technology Committee 
under Grant (21ZR1478200).

Availability of data and materials
Databases analyzed for this study are available in online repositories. Detailed 
information can be found in the article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors consent for publication.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval 
Medical University, Shanghai 200003, China. 2 Institute of Aging & Tissue 
Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress 
and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 
2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine 
(SJTU-SM), Shanghai 200127, China. 3 Department of Pancreatic-Biliary Surgery, 
Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, 
China. 

Received: 8 October 2023   Accepted: 31 January 2024

References
 1. Huang YH, Zhang CZ, Huang QS, Yeong J, Wang F, Yang X, et al. Clinico-

pathologic features, tumor immune microenvironment and genomic 
landscape of Epstein-Barr virus-associated intrahepatic cholangiocarci-
noma. J Hepatol. 2021;74:838–49.

 2. Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, et al. Immu-
nology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroen-
terol Hepatol. 2023;20:349–65.

 3. Dong L, Lu D, Chen R, Lin Y, Zhu H, Zhang Z, et al. Proteogenomic 
characterization identifies clinically relevant subgroups of intrahepatic 
cholangiocarcinoma. Cancer Cell. 2022;40:70-87.e15.

 4. Kelley RK, Bridgewater J, Gores GJ, Zhu AX. Systemic therapies for intrahe-
patic cholangiocarcinoma. J Hepatol. 2020;72:353–63.

 5. Carapeto F, Bozorgui B, Shroff RT, Chagani S, Solis Soto L, Foo WC, et al. 
The immunogenomic landscape of resected intrahepatic cholangiocarci-
noma. Hepatology. 2022;75:297–308.

 6. Martin-Serrano MA, Kepecs B, Torres-Martin M, Bramel ER, Haber PK, Mer-
ritt E, et al. Novel microenvironment-based classification of intrahepatic 
cholangiocarcinoma with therapeutic implications. Gut. 2022. https:// doi. 
org/ 10. 1136/ gutjnl- 2021- 326514.

 7. Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in 
the treatment of intrahepatic cholangiocarcinoma: an overview of the 
current and future therapeutic landscape for clinicians. CA Cancer J Clin. 
2023;73:198–222.

 8. Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of 
mitochondrial cell death. Cell Res. 2022;32:417–8.

 9. Cobine PA, Brady DC. Cuproptosis: cellular and molecular mechanisms 
underlying copper-induced cell death. Mol Cell. 2022;82:1786–7.

 10. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. 
Copper induces cell death by targeting lipoylated TCA cycle proteins. 
Science. 2022;375:1254–61.

 11. Li Y. Copper homeostasis: emerging target for cancer treatment. IUBMB 
Life. 2020;72:1900–8.

 12. Goodman VL, Brewer GJ, Merajver SD. Control of copper status for cancer 
therapy. Curr Cancer Drug Targets. 2005;5:543–9.

 13. Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, 
et al. Whole-genome and epigenomic landscapes of etiologically distinct 
subtypes of cholangiocarcinoma. Cancer Discov. 2017;7:1116–35.

 14. Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, et al. Single-cell tran-
scriptomic architecture and intercellular crosstalk of human intrahepatic 
cholangiocarcinoma. J Hepatol. 2020;73:1118–30.

 15. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28:1747–56.

 16. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat 
Methods. 2019;16:1289–96.

 17. Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed 
cell death. Cell Mol Immunol. 2022. https:// doi. org/ 10. 1038/ 
s41423- 022- 00866-1.

 18. Zhao R, Pan Z, Li B, Zhao S, Zhang S, Qi Y, et al. Comprehensive analysis of 
the tumor immune microenvironment landscape in glioblastoma reveals 
tumor heterogeneity and implications for prognosis and immunother-
apy. Front Immunol. 2022;13:820673.

 19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics. 2008;9:559.

 20. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

 21. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. 
Determining cell type abundance and expression from bulk tissues with 
digital cytometry. Nat Biotechnol. 2019;37:773–82.

 22. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

 23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102:15545–50.

 24. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of 
clinical chemotherapeutic response from tumor gene expression levels. 
PLoS ONE. 2014;9:e107468.

 25. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. 
Genomics of drug sensitivity in Cancer (GDSC): a resource for therapeutic 
biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.

 26. Krenzien F, Nevermann N, Krombholz A, Benzing C, Haber P, Fehrenbach 
U, et al. Treatment of intrahepatic cholangiocarcinoma-a multidisciplinary 
approach. Cancers (Basel). 2022;14:362.

 27. Bao X, Li Q, Chen J, Chen D, Ye C, Dai X, et al. Molecular subgroups of 
intrahepatic cholangiocarcinoma discovered by single-cell RNA sequenc-
ing-assisted multiomics analysis. Cancer Immunol Res. 2022;10:811–28.

 28. Izquierdo-Sanchez L, Lamarca A, La Casta A, Buettner S, Utpatel K, 
Klümpen HJ, et al. Cholangiocarcinoma landscape in Europe: diagnostic, 
prognostic and therapeutic insights from the ENSCCA registry. J Hepatol. 
2022;76:1109–21.

https://doi.org/10.1186/s12935-024-03251-2
https://doi.org/10.1186/s12935-024-03251-2
https://doi.org/10.1136/gutjnl-2021-326514
https://doi.org/10.1136/gutjnl-2021-326514
https://doi.org/10.1038/s41423-022-00866-1
https://doi.org/10.1038/s41423-022-00866-1


Page 19 of 19Ren et al. Cancer Cell International           (2024) 24:92  

 29. Wang X, Duanmu J, Fu X, Li T, Jiang Q. Analyzing and validating the 
prognostic value and mechanism of colon cancer immune microenviron-
ment. J Transl Med. 2020;18:324.

 30. Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. 
Mechanisms of resistance to immune checkpoint inhibitors in mela-
noma: what we have to overcome. Cancer Treat Rev. 2023;113:102499.

 31. Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O’Dell MR, et al. 
Arid1a mutation suppresses TGF-β signaling and induces cholangiocarci-
noma. Cell Rep. 2022;40:111253.

 32. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, et al. ARID1A deficiency 
promotes mutability and potentiates therapeutic antitumor immunity 
unleashed by immune checkpoint blockade. Nat Med. 2018;24:556–62.

 33. Sheng Y, Wei J, Zhang Y, Gao X, Wang Z, Yang J, et al. Mutated EPHA2 is a 
target for combating lymphatic metastasis in intrahepatic cholangiocar-
cinoma. Int J Cancer. 2019;144:2440–52.

 34. Tashakori M, Kadia T, Loghavi S, Daver N, Kanagal-Shamanna R, Pierce S, 
et al. TP53 copy number and protein expression inform mutation status 
across risk categories in acute myeloid leukemia. Blood. 2022;140:58–72.

 35. Jiao XD, Qin BD, You P, Cai J, Zang YS. The prognostic value of TP53 and its 
correlation with EGFR mutation in advanced non-small cell lung cancer, 
an analysis based on cBioPortal data base. Lung Cancer. 2018;123:70–5.

 36. Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute 
myeloid leukemia: challenges and opportunities. Genes Chromosomes 
Cancer. 2019;58:875–88.

 37. Boerner T, Drill E, Pak LM, Nguyen B, Sigel CS, Doussot A, et al. Genetic 
determinants of outcome in intrahepatic cholangiocarcinoma. Hepatol-
ogy. 2021;74:1429–44.

 38. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, 
et al. Development of tumor mutation burden as an immunotherapy 
biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56.

 39. Yang H, Yan M, Li W, Xu L. SIRPα and PD1 expression on tumor-associated 
macrophage predict prognosis of intrahepatic cholangiocarcinoma. J 
Transl Med. 2022;20:140.

 40. Wu MJ, Shi L, Dubrot J, Merritt J, Vijay V, Wei TY, et al. Mutant IDH inhibits 
IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance 
in cholangiocarcinoma. Cancer Discov. 2022;12:812–35.

 41. Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, et al. Cytotherapy with 
M1-polarized macrophages ameliorates liver fibrosis by modulating 
immune microenvironment in mice. J Hepatol. 2017;67:770–9.

 42. Argemi J, Ponz-Sarvise M, Sangro B. Immunotherapies for hepatocellular 
carcinoma and intrahepatic cholangiocarcinoma: current and developing 
strategies. Adv Cancer Res. 2022;156:367–413.

 43. Shroff RT, Javle MM, Xiao L, Kaseb AO, Varadhachary GR, Wolff RA, et al. 
Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced 
biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 2019;5:824–30.

 44. Luvira V, Satitkarnmanee E, Pugkhem A, Kietpeerakool C, Lumbiganon 
P, Pattanittum P. Postoperative adjuvant chemotherapy for resectable 
cholangiocarcinoma. Cochrane Database Syst Rev. 2021;9:CD012814.

 45. Hennigar SR, Olson CI, Kelley AM, McClung JP. Slc39a4 in the small intes-
tine predicts zinc absorption and utilization: a comprehensive analysis of 
zinc transporter expression in response to diets of varied zinc content in 
young mice. J Nutr Biochem. 2022;101:108927.

 46. Xia C, Chen X, Li J, Chen P. SLC39A4 as a novel prognosis marker pro-
motes tumor progression in esophageal squamous cell carcinoma. Onco 
Targets Ther. 2020;13:3999–4008.

 47. Li M, Fan K, Zheng B, Zekria D, Suo T, Liu H, et al. Knockdown of 
SLC39A4 expression inhibits the proliferation and motility of gallblad-
der cancer cells and tumor formation in nude mice. Cancer Manag Res. 
2021;13:2235–46.

 48. Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, et al. Copper-dependent 
autophagic degradation of GPX4 drives ferroptosis. Autophagy. 
2023;19:1982–96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A cuproptosis-related gene expression signature predicting clinical prognosis and immune responses in intrahepatic cholangiocarcinoma detected by single-cell RNA sequence analysis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Dataset preparation
	Single-cell sequence analysis
	Analysis of cuproptosis-related genes by single sample gene set enrichment analysis (ssGSEA)
	Construction and validation of a cuproptosis-related prognostic signature
	Relationship between mutations and Tumor Mutation Burden (TMB) analysis
	Immune infiltration prediction
	Gene set enrichment analysis
	Potential therapeutic strategy in ICC
	Cell culture and siRNA treatment
	Proliferation analysis
	Cell death detection
	Western blot analysis
	Statistical analysis

	Results
	Comprehensive dissection and clustering of scRNA-seq data from ICC samples
	Genes of prognostic relevance in ICC patients identified by WGCNA
	Construction and validation of a cuproptosis-related prognostic signature
	Correlations between CUPT score, somatic mutations, and TMB
	Overview of immune infiltration and the distribution of immune cells in ICC patients
	Gene set enrichment and potential therapeutic value
	Modeling gene selection and survival analysis
	Verification of the cuproptosis-related prognosis signature in ICC cells

	Discussion
	Conclusions
	Acknowledgements
	References


