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Insulin receptor alternative splicing in breast 
and prostate cancer
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Abstract 

Cancer etiology represents an intricate, multifactorial orchestration where metabolically associated insulin-like growth 
factors (IGFs) and insulin foster cellular proliferation and growth throughout tumorigenesis. The insulin receptor 
(IR) exhibits two splice variants arising from alternative mRNA processing, namely IR-A, and IR-B, with remarkable 
distribution and biological effects disparities. This insightful review elucidates the structural intricacies, widespread 
distribution, and functional significance of IR-A and IR-B. Additionally, it explores the regulatory mechanisms govern-
ing alternative splicing processes, intricate signal transduction pathways, and the intricate association linking IR-A 
and IR-B splicing variants to breast and prostate cancer tumorigenesis. Breast cancer and prostate cancer are the most 
common malignant tumors with the highest incidence rates among women and men, respectively. These findings 
provide a promising theoretical framework for advancing preventive strategies, diagnostic modalities, and therapeutic 
interventions targeting breast and prostate cancer.
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Introduction
The human insulin receptor (IR) gene consists of 22 
exons, and exon 11 undergoes selective splicing to form 
two IR isoforms, IR-A and IR-B [1]. Multiple splicing fac-
tors regulate the process of selective splicing of the IR. 
The two isoforms generated have different distribution 
patterns in various tissues and organs of the human body. 
They exhibit significant differences in their ligand-bind-
ing affinity for insulin and insulin-like growth factors, as 
well as in the signal transduction pathways they induce 
and the biological effects they exert. These differences 
not only contribute to essential factors such as insulin 
resistance and type 2 diabetes but also impact the growth, 
proliferation, and apoptosis of tumor cells. As the most 

common malignant tumors with the highest incidence 
rates among men and women, prostate cancer and breast 
cancer have been experiencing a continuous increase in 
their incidence rates. In 2023, there were 1,958,310 newly 
diagnosed cancer cases in the United States, averaging 
over 5370 cases daily. Among women, breast cancer, lung 
cancer, and colorectal cancer they accounted for 52% of 
all new cancer cases, with breast cancer comprising 31% 
of female cancers. Among men, prostate cancer, lung and 
bronchus cancer, and colorectal cancer accounted for 
48% of all new cancer cases, with prostate cancer com-
prising 29% of male cancers [2]. This review summarizes 
the regulation of IR selective splicing, tissue-specific dis-
tribution, and signal transduction under physiological 
and pathological conditions. Additionally, we discuss the 
relevance of the splicing isoforms IR-A and IR-B to breast 
and prostate cancer. Future research on the different IR 
isoforms and their signaling pathway molecules may 
provide new diagnostic and therapeutic targets for the 
clinical treatment of breast and prostate tumors, thereby 
improving the survival outcomes of cancer patients.
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The structure, distribution, and function of IR 
isoforms
The IR gene is located on chromosome 19 and consists 
of 22 exons and 21 introns [3, 4]. The IR protein is a het-
erotetramer consisting of two α subunits located in the 
extracellular region and two β subunits spanning the cell 
membrane. Both the α and β subunits are encoded by the 
mRNA transcribed from the 22 exons of the IR gene. The 
mRNA derived from the IR gene produces a protein with 
a length of 1370 amino acids, approximately equivalent 
to 154 kDa in size (Fig. 1A). After translation and post-
translational modifications, furin protease enzymatically 
cleaves it, resulting in the production of two distinct sub-
units: an α subunit consisting of 723 amino acids with an 
approximate mass of 130 kDa and a β subunit comprising 
620 amino acids weighing around 95 kDa. The extracel-
lular domain of the IR includes the complete α subunit 
chain along with a segment of the β subunit chain con-
taining 194 amino acid residues. In comparison, the 
intracellular region consists only of the remaining β sub-
unit chain (containing 403 amino acid residues), which 

includes the tyrosine kinase activity domain. Ligands of 
the IR bind to the extracellular portion of the α subunit, 
activating the tyrosine kinase domain of the intracellular 
β subunit. Once activated, it triggers the phosphorylation 
of the β subunit, initiating a chain reaction of signaling 
pathways that elicit various biological effects [5–10].

Exon 11 encodes a unique sequence of 12 amino acid 
residues that appear towards the C-terminus of the IR 
α-subunit. During the transcription process, exon 11 
undergoes selective splicing, forming two distinct iso-
forms of the receptor: IR-A and IR-B. Various research 
articles have extensively studied the structure, distribu-
tion, and function of IR isoforms [10–14]. IR-A lacks 
exon 11, whereas IR-B includes it. These isoforms exhibit 
structural, distributional, and functional disparities. IR-A 
displays predominant upregulation in tumor tissues, the 
brain, hematopoietic stem cells, and embryonic tissues. 
In contrast, IR-B exhibits strong expression primarily in 
insulin-responsive target organs such as the liver, adi-
pose tissue, and skeletal muscle. This differential expres-
sion underlies the distinct roles played by IR-A and IR-B, 

Fig. 1 Expression of IR-A and IR-B in different cancer types. A IR isoforms in GEPIA (Gene Expression Profiling Interactive Analysis). INSR-001: 
IR-B, INSR-002: IR-A. Furin-like: The furin-like structure domain is capable of cleaving specific peptide chains, thus participating in the processing 
and activation of certain proteins during the alternative splicing process. Pkinase_Tyr: The Pkinase_Tyr domain is capable of regulating 
the activation status of relevant signaling pathways during alternative splicing. Recep_L_domain: The Recep_L domain structure can mediate 
RNA-RNA or RNA–protein interactions during the process of alternative splicing, thereby influencing splice site selection and efficiency. B.C Violin 
plot (B) and box plot (C) showing the expression level of IR-A and IR-B in different cancer types by isoform usage profiling in GEPIA. INSR-001 
IR-B, INSR-002 IR-A. ACC  Adrenocortical carcinoma, BLCA Bladder Urothelial Carcinoma, BRCA  Breast invasive carcinoma, CESC Cervical squamous 
cell carcinoma and endocervical adenocarcinoma, CHOL Cholangiocarcinoma, COAD Colon adenocarcinoma, DLBC Lymphoid Neoplasm Diffuse 
Large B-cell Lymphoma, ESCA Esophageal carcinoma, GBM Glioblastoma multiforme, HNSC Head and Neck squamous cell carcinoma, KICH Kidney 
Chromophobe, KIRC Kidney renal clear cell carcinoma, KIRP Kidney renal papillary cell carcinoma, LAML Acute Myeloid Leukemia, LGG Brain Lower 
Grade Glioma, LIHC Liver hepatocellular carcinoma, LUAD Lung adenocarcinoma, LUSC Lung squamous cell carcinoma, MESO Mesothelioma, 
OV Ovarian serous cystadenocarcinoma, PAAD Pancreatic adenocarcinoma, PCPG Pheochromocytoma and Paraganglioma, PRAD Prostate 
adenocarcinoma, READ Rectum adenocarcinoma, SARC  Sarcoma, SKCM Skin Cutaneous Melanoma, STAD Stomach adenocarcinoma, TGCT  Testicular 
Germ Cell Tumors, THCA Thyroid carcinoma, THYM Thymoma, UCEC Uterine Corpus Endometrial Carcinoma, UCS Uterine Carcinosarcoma, UVM 
Uveal Melanoma
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with IR-B being mainly involved in metabolic-related 
effects [11, 14, 15]. Proteins and pathways primarily 
associated with insulin-activated IR-A were involved in 
cancer, stemness, and interferon signaling. Instead, pro-
teomic analysis mostly involved IR-B-expressing cells in 
metabolic or tumor-suppressive functions [16].  Due to 
the lack of the 12 amino acid residues encoded by exon 
11 in the alpha subunit of IR-A, the interaction between 
the ligand insulin and IR-A is more dynamic, facilitating 
binding and dissociation processes [17–19]. IR-A dem-
onstrates a greater affinity towards IGF-2, IGF-1, and 
proinsulin when compared to IR-B [20, 21]. Irregular or 
abnormal expression of different isoforms of the IR has 
been detected in cancerous cells, leading to increased 
responsiveness to insulin and insulin-like growth factor II 
[22]. The abnormal expression identified may be involved 
in promoting cancer by amplifying the effects of elevated 
insulin levels, as commonly seen in obese individuals and 
type 2 diabetic patients.

Additionally, due to their high degree of homology, 
both isoforms of the insulin receptor, IR-A and IR-B, can 
form heterodimers with IGF-1R subunits comprising 
alpha and beta subunits. This interaction leads to the for-
mation of hybrid receptors, specifically Hybrid-Rs, which 
consist of Hybrid-RsA and Hybrid-RsB [23]. According 
to reports, Hybrid-RsB explicitly exhibits a high affin-
ity towards IGF-1, whereas Hybrid-RsA exhibits pro-
nounced affinities for IGF-1, IGF-2, and insulin [24]. 
Additionally, studies have indicated that both Hybrid-
RsB and Hybrid-RsA exhibit lower affinity for insulin in 
hamster ovarian cells and neonatal kidney cells, while 
their affinities are disproportionately higher for IGF-1 
and IGF-2 [25, 26]. Consequently, variations in the dis-
tribution of IR splice variants under physiological and 
pathological conditions result in the activation of distinct 
signaling pathways and consequential biological effects 
influenced by insulin and IGFs.

Regulating alternative splicing of the IR
Alternative splicing of the IR is a complex process that 
involves various factors and mechanisms. Several stud-
ies have investigated the regulation of IR alternative 
splicing and its implications in different physiological 
and pathological conditions [13, 22, 27–31]. After the IR 
gene is transcribed, the pre-mRNA undergoes a complex 
intron removal and exon ligation process facilitated by 
spliceosomes and multi-component ribonucleoprotein 
complexes. The exonic and intronic sequences of pre-
mRNA contain binding sites for various splice-related 
RNA-binding proteins, known as splicing factors, and 
positive/negative regulatory elements. These splicing fac-
tors recognize and interact with specific splice sites on 
pre-mRNA, either promoting or inhibiting the assembly 

of spliceosomes, thereby finely regulating the splicing 
process. Therefore, it is essential to identify the specific 
regulatory sequences and splicing factors that play a role 
in the targeted splicing of the IR gene. This knowledge is 
pivotal for understanding alternative splicing regulation 
mechanisms and determining the relative proportion of 
spliced isoforms IR-A to IR-B. Notably, the sequences 
within intron 10 and exon 11 contain several positive/
negative regulatory motifs that play significant roles in 
the context of selective splicing of the IR [32]. Splicing 
factors intricately control whether exon 11 is incorpo-
rated or omitted during mRNA processing, influencing 
the tissue-specific expression patterns observed for IR-A 
and IR-B spliced isoforms (Fig.  2). These highly regu-
lated processes exhibit specificity during development 
and at different time points, resulting in tissue-specific 
variations in the relative abundance and distinct bio-
logical properties displayed by these isoforms [14]. The 
proportion between IR-A and IR-B indirectly indicates 
the distribution and expression levels of specific splic-
ing factors governing this regulatory mechanism. Note-
worthy examples of these splicing factors include CELFs 
(CUG-binding protein), members of the Elav-like family, 
hnRNPs (heterogeneous nuclear ribonucleoproteins), 
MBNLs (Muscle blind-like proteins), SR proteins (serine-
arginine-rich), and RBM4 (RNA-binding motif protein 
4). Their interplay contributes to the precise control of 
alternative splicing events associated with the IR gene.

The involvement of the CELFs protein family is vital in 
governing multiple facets of mRNA processing, encom-
passing alternative splicing, editing, and translation regu-
lation. Among the members of this family, CUG-binding 
protein 1 (CUGBP1) was the first identified splicing 
factor involved in the selective splicing of the IR [33]. 
CUGBP1 selectively attaches to two silencer sequences: 
one found prior to exon 11 and at the 3ʹ end of intron 10, 
and the other located precisely on exon 11. Both silencer 
elements contribute to the promotion of exon 11 splicing, 
thereby facilitating the expression of the spliced isoform 
IR-A. This intricate mechanism highlights the significant 
role of CUGBP1 and its impact on the regulation of IR 
splicing events[34, 35]. hnRNP proteins influence the 
intricately regulated processes of mRNA, encompassing 
alternative splicing, translation control, and ensuring sta-
bility [36]. Talukdar et al. [37] have reported the involve-
ment of two hnRNPs, namely hnRNP F and hnRNP A1, 
in the selective splicing of the IR. These proteins bind to 
splice regulatory elements rich in GA sequences within 
introns and exons. Specifically, hnRNP F selectively binds 
to the termini of intron 10, enhancing the inclusion of 
exon 11 and facilitating the expression of the spliced iso-
form IR-B. Conversely, hnRNP A1 targets the 5ʹ end of 
both intron 10 and intron 11, exerting an opposing impact 
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to hnRNP F. By promoting exon 11 splicing, hnRNP A1 
drives the expression of the spliced isoform IR-A. Muscle 
blind-like protein 1 (MBNL1) recognizes and binds to a 
highly conserved enhancer element on intron 11, which 
facilitates the expression of IR-B [34]. Ho et al. [38] also 
found that Muscleblind proteins regulate alternative 
splicing of the IR. Additionally, MBNL1 can counteract 
the splicing function of CUGBP1 and engage with other 
splicing factors participating in the alternative splic-
ing of INSR mRNA. For example, it hinders the splicing 
function of hnRNP H, leading to increased expression 
of the IR-B isoform. [39]. The SR protein family plays a 
critical role in mRNA alternative splicing by binding to 
splice sites on exons or introns and interacting with small 
nuclear ribonucleoproteins (snRNPs) [40]. SRp20 and 
SF2/ASF, among other splicing factors, attach themselves 
to the enhancer sequence located at the 5ʹ end of exon 11, 
leading to an increased expression of IR-B. According to 
Sen et al. [34], these splicing factors can oppose the splic-
ing function of CUGBP1 and engage with other splicing 
factors, consequently modifying the IR-A/IR-B ratio. 
Similarly, RBM4 regulates mRNA alternative splicing and 
translation by binding to sequences rich in GC content, 
facilitating the inclusion of exon 11 and enhancing the 
expression of IR-B. Lin et al. noticed an increase in IR-A 

expression in both embryonic fibroblasts and muscle tis-
sues of RBM4 gene knockout mice [41]. In hepatic car-
cinomas, IR-A is overexpressed due to EGFR-mediated 
dysregulation of RNA splicing factors  by upregulating 
the expression of the splicing factors CUGBP1, hnRNPH, 
hnRNPA1, hnRNPA2B1, and SF2/ASF [42]. Nakura et al. 
[43] reported that Rbfox, acting as a splicing regulator, is 
involved in exon 11 splicing. Huang et al. [35]. discovered 
that the splicing factor CUGBP1 plays a role in control-
ling the balance between IR-A and IR-B in breast cancer 
cells and impacts tumor cell biological responses through 
the IR signaling pathway.

The signaling pathways of IR isoforms
Insulin, an essential hormone, plays a critical role by 
binding to and activating IR, influencing various cellular 
functions through diverse signaling pathways [44]. Insu-
lin binding to the extracellular α subunit of IR triggers 
structural modifications resulting in autophosphoryla-
tion of the intracellular β subunit of IR. Consequently, 
the activated IR tyrosine kinase phosphorylates multiple 
substrates within the cell, including IR substrates (IRS) 
and Src homology 2 domain-containing protein family 
(Shc), both serving as adaptor proteins for downstream 
signaling [45, 46]. IRS proteins harbor numerous tyrosine 

Fig. 2 Proposed model for the regulation of IR pre-mRNA alternative splicing by splicing factors in cancers. The diagram provides an overview 
of the primary regulators that influence insulin IR activity at both the promoter and mRNA levels. Splicing factors play a crucial role in controlling 
IR gene transcription by either promoting or inhibiting it. Multiple splicing factors are involved in regulating IR expression after transcription. Once 
the IR mRNA is formed, splicing factors remove introns and facilitate the joining of exons. They also regulate the alternative splicing of exon 11, 
resulting in the production of either IR-A (exon11-) or IR-B (exon11 +) isoforms. In cancer cells, there is an elevated expression of the IR-A isoform, 
which can have oncogenic effects. ISS Intronic Splicing Silence, ESS Exonic Splicing Silence
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phosphorylation sites that act as binding regions for 
adaptor proteins containing the Shc domain. These adap-
tor proteins further recognize and activate tyrosine phos-
phorylation residues, such as phosphoinositide 3-kinase 
(PI3K) and growth factor receptor-bound protein 2 (Grb-
2). Activation of PI3K and Grb-2 mediates metabolic 
effects and mitogenic effects, respectively [44, 45]. The 
metabolic effects of glucose in skeletal muscle, adipose 
tissue, and liver involve the participation of the PI3K/Akt 
signaling pathway, particularly in processes like glucose 
absorption, gluconeogenesis, and glycogen synthesis [47, 
48]. Additionally, under insulin stimulation, this signaling 
pathway promotes nitric oxide production in endothelial 
cells, leading to vasodilation [49]. On the other hand, the 
Grb-2/P44/42 MAPK signaling pathway exerts regula-
tory effects on gene transcription, protein synthesis, cell 
growth, and differentiation. Furthermore, it impacts the 
secretion of endothelin-1 in endothelial cells [23, 50]. 
Consequently, due to variations in tissues and different 
ratios of IR isoforms (IR-A and IR-B), insulin stimulation 
elicits separate signaling pathways that give rise to differ-
ent biological responses (Fig. 3).

IGF-2 primarily stimulates IR-A, promoting cell growth 
and invasion while causing abnormal nuclear localization 
of IRS-1 in parental 32D hemopoietic cells [51]. How-
ever, IGF-2 does not bind to IR-B. Under insulin stimu-
lation, IR-B predominantly mediates cell differentiation 
and metabolic effects [51]. For instance, in human uter-
ine smooth muscle tumor cells, IGF-2 stimulates IR-A to 
activate the Grb-2/P44/42 mapk signaling pathway, thereby 
promoting cell migration. Conversely, insulin stimulates 
IR-A to activate the PI3K/Akt signaling pathway, inhibit-
ing apoptosis [52]. IGF-2 prompts IR-A activation in R-/
IR-A cells lacking IGF-1R expression while expressing 
only IR-A. Consequently, IR-A activation triggers Akt/
glycogen synthase kinase-3β (Akt/GSK3β) activation, 
thereby mediating mitogenic effects [53]. Under the same 
conditions, p70S6 kinase (p70S6K), P44/42 mapk, and Akt 
can also be activated, indicating that IR-A has complex 
effects beyond the signaling pathways induced by IGF-2 
stimulation [54]. In pancreatic beta-cell lines, differing 
membrane distributions of IR isoforms allow for differ-
ential activation of promoters. The Insulin promoter is 
activated via the IR-A pathway, while the glucokinase 

Fig. 3 Proposed model for the IR signal diversification and partitioning in cancers. Activation of IR isoforms leads to the activation of specific 
signaling pathways, such as the PI3K-Akt pathway and the MAPK pathway, which regulate various cellular processes.In cells where IR-A is primarily 
expressed and IGF-2 is produced, such as fetal or cancer cells, activation of IR-A by IGF-2 promotes non-metabolic responses, including cell 
proliferation and movement. On the other hand, in cells and tissues with a higher expression of IR-B, insulin activation of IR-B supports metabolic 
and physiological functions through downstream signaling
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promoter is activated via the IR-B insulin receptor path-
way. Consequently, insulin activates the IR-B/PI3K/AKT 
pathway, enhancing the transcription of the glucose 
kinase (GK) gene. Simultaneously, the expression level of 
insulin itself is regulated through the IR-A/PI3K/p70S6K 
pathway [55].

Another critical signaling pathway activated by IR iso-
forms is the MAPK pathway. The pathway regulates cel-
lular processes such as cell proliferation, differentiation, 
and survival [56]. IR isoforms can activate the MAPK 
pathway by recruiting adaptor proteins and activat-
ing downstream kinases [57]. Proinsulin is generally 
regarded as an inactive prohormone because of its low 
metabolic activity; in R-/IR-A cells, where IGF-1 dem-
onstrates lower affinity for IR-A compared to IGF-2, the 
downstream activation of the ERK and Akt signaling 
pathways remains significant [20]. Moreover, stimulation 
of IR-A by both IGF-1 and IGF-2 results in higher ratios 
of downstream signaling molecules, such as p70S6K/Akt 
and ERK1/2/Akt, when contrasted with insulin stimula-
tion of IR-A [54]. Despite its low metabolic activity, pro-
insulin is generally considered an inactive prohormone; 
in cells expressing only IR-A, proinsulin stimulates cell 
proliferation and migration through IR-A, exhibiting 
similar effects to IGF-2 and insulin. The intracellular 
signaling pathway molecules resemble those activated by 
IGF-2 stimulation, with a higher p70S6K/Akt ratio than 
insulin stimulation of IR-A. In contrast to insulin, pro-
insulin exhibits slower negative feedback mechanisms 
in the activation of IR. The degradation of IR and sub-
strate IRS-1 requires 24  h of stimulation for proinsulin, 
while insulin only requires 8  h. This difference explains 
why proinsulin elicits a stronger mitogenic and migra-
tory effect [20]. In conclusion, the functionality of IR 
isoforms, IR-A and IR-B, is critical in mediating the sign-
aling pathways of insulin. Once activated, these isoforms 
initiate unique signaling pathways, including the PI3K-
Akt pathway and the MAPK pathway, which regulate 
various cellular processes. Dysregulation of IR isoform 
signaling is implicated in the development of metabolic 
disorders and cancer.

IR isoforms in breast and prostate cancer
In many cancers, the expression of the selective splicing 
isoform IR-A of the IR is noticeably elevated compared to 
IR-B (Fig. 1B, C), particularly in conditions of compensa-
tory hyperinsulinemia [58, 59]. The increased expression 
of IR-A and an elevated IR-A: IR-B ratio facilitate the pro-
liferative response of cancer cells to insulin and insulin-
like growth factor 2 (IGF-2) [59]. Nowak-Sliwinska et al. 
show that IR-A is the main splice variant in tumor vascu-
lature, which may impact tumor angiogenesis and angio-
static treatment [60]. Furthermore, extensive research 

has demonstrated a significant correlation between the 
expression of IR-A and IR-B with that of IGF1-R [24, 25, 
61]. Intriguingly, IR isoforms exhibit a more pivotal role 
in specific tumor tissues when compared to IGF1-R itself. 
The varying levels of IR isoform expression across diverse 
cancer types have potential implications for prognosis 
and survival. These findings provide valuable insights 
into the underlying mechanisms and offer new perspec-
tives for targeted therapy against IGF, thereby opening 
up novel target sites for future therapeutic interventions 
[62].

Increased expression of IR-A in cancer is influenced by 
various factors within the intricate regulatory network, 
including changes in transcription factors and dysregu-
lation of microRNA. Splicing factors, such as CUGBP1, 
hnRNP proteins, SF2/ASF, and SRp20/SRSF3, have been 
reported to contribute to the dysregulation of the IR-A: 
IR-B ratio in cancer. In studies focusing on hepatocellu-
lar carcinoma, the IR-A: IR-B ratio was consistently ele-
vated compared to the adjacent non-tumor liver tissue. 
This increase in ratio was associated with the upregula-
tion of splicing factors, including CUGBP1, hnRNPH, 
hnRNPA1, hnRNPA2B1, and SF2/ASF [42]. SRp20/
SRSF3 have the potential to prevent hepatic carcinogen-
esis by modulating IGF-2 and IR-A, thereby influencing 
Wnt/β-catenin signaling, inducing c-Myc, and leading 
to aberrant splicing and induction of EMT genes [63]. 
MicroRNAs (miRNAs) exhibit frequent dysregulation in 
human cancers and play a crucial role as potent onco-
genes. MiR-424, in addition to its role in IR regulation, 
is crucial in inhibiting the growth of cancer cells and is 
widely recognized as a tumor suppressor in diverse can-
cer types [64, 65]. In breast cancer [66], miR-195 inhibits 
tumor angiogenesis by suppressing the IRS1-VEGF axis. 
MiR-195 is also identified as a tumor suppressor in non-
small cell lung cancer (NSCLC) cells, directly targeting 
the IGF-1R [67]. Furthermore, there may be an interplay 
between the dysregulation of microRNAs and splicing 
factors. A specific instance of this can be observed in 
bladder cancer, where miRNA-1 inhibits the function of 
the serine/arginine-rich splicing factor 9 (SRSF9/SRp30c) 
[68].

IR isoforms in breast cancer
The role of IR isoforms in breast cancer has been the 
subject of investigation in multiple studies. Vigneri et al. 
[1] reviewed the role of insulin, IR, and cancer, includ-
ing breast cancer, and emphasized the activating effects 
of insulin on cancer cell growth, mainly through the 
involvement of its specific receptor instead of the IGF-1 
receptor. Belfiore et al. [57] explored the involvement of 
IR isoforms and hybrid insulin/IGF-I receptors in human 
cancer, explicitly focusing on breast cancer. They drew 
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attention to the potential existence of an autocrine/par-
acrine growth loop wherein IR-A expression and local 
abundance of IGF-II in breast tumors play a significant 
role. In conclusion, this suggests that IR isoforms, par-
ticularly IR-A, may promote breast cancer cell growth. In 
a separate study, Huang et al. [69] investigated the altered 
expression of IR isoforms in breast cancer. Their findings 
revealed a higher IR-A/IR-B ratio in breast cancer tissues 
compared to normal breast tissues.

Multiple studies have consistently demonstrated that 
the expression levels of IR-A are significantly higher, 
while those of IR-B are noticeably lower in breast can-
cer tissues. These findings have been confirmed through 
diverse methodologies, such as breast cancer cDNA 
microarrays, qPCR arrays, and analysis of clinical tissue 
samples [70–72]. Vella et  al. found that a higher IR-A/
IR-B ratio is associated with shorter disease-free survival 
in breast cancer and that a higher IR-A is associated with 
a poorer outcome in human TNBC. They also evalu-
ated the diverse biological role of the two IR isoforms 
when expressed in murine TNBC cells [73]. Moreover, 
Harrington et  al. [72] identified that ER + breast can-
cer displays significantly higher levels of IR-A compared 
to ER- breast cancer, while no notable difference was 
observed in IR-B expression. Furthermore, in hormone 
therapy-resistant ER + breast cancer, there is a signifi-
cant increase in both the expression level of IR and the 
ratio of IR-A to IR-B. At the same time, there is a signifi-
cant decrease in IGF1-R expression. Additionally, within 
ER + breast cancer, the luminal B subtype presented a 
higher IR-A to IR-B ratio than the luminal A subtype. 
Huang et al. [35] similarly found that luminal breast can-
cer cells exhibit considerably heightened levels of IR-A 
and demonstrate a more excellent IR-A/IR-B ratio when 
compared to other subtypes of breast cancer cell lines. 
This observation highlights the potential impact of the 
IR signaling pathway on tumor cell biological responses. 
A large-scale clinical cohort study revealed a correla-
tion between phosphorylated IR/IGF-1R (pIGF-1R/
IR) levels and unfavorable prognosis. It is worth noting 
that antibodies used in the study could not differentiate 
between p-IR and p-IGF-1R; downstream signaling mol-
ecule p-S6K (phospho-S6) levels were found to correlate 
with IR expression rather than IGF-1R expression. These 
observations suggest that the phosphorylation of IR, cou-
pled with its downstream signaling pathways, contributes 
to influencing the prognosis of individuals diagnosed 
with breast cancer [74]. Furthermore, the IR isoforms 
have been implicated in metabolic reprogramming in 
cancer cells. The IR-A isoform, along with its ligand 
IGF2, can modulate the metabolic pathways in breast 
cancer cells [75]. It suggests that IR-A may have a role in 
cancer metabolic reprogramming, contributing to cancer 

progression and metastasis. These collective findings 
shed light on the crucial role of exploring IR isoforms in 
breast cancer research, providing potential insights for 
prognostic assessment and guiding targeted therapeutic 
interventions.

IR isoforms in prostate cancer
Prostate cancer is a complex disease that is influenced by 
various signaling pathways, including those involving IR 
isoforms. Sciacca et al. [48] conducted a study on insulin 
analogs and their differential activation of IR isoforms in 
three engineered cell models (IGF1R (-), IGF1R-deprived 
mouse fibroblasts transfected with either only human 
IR-A or IR-B or IGF1R), the results of their investigation 
suggest that long-acting analogs stimulate the mitogenic 
signaling pathway with greater efficacy than insulin, lead-
ing to heightened cell proliferation. These observations 
suggest that IR isoforms, specifically IR-A, potentially 
contribute to mediating the mitogenic effects exerted by 
insulin in prostate cancer cells. Furthermore, Vella et al. 
[59] provided a comprehensive review of IR isoforms in 
cancer, including prostate cancer. They illustrated that 
the aberrant expression of IR isoforms may contribute to 
the growth and progression of prostate cancer.

Furthermore, variations in the expression of IR iso-
forms have been noted in prostate cancer [76]. In their 
meticulous investigation, Cox et  al. thoroughly assessed 
IR and IGF-1R expression levels in tissue samples 
obtained from patients with prostate cancer, compar-
ing them to samples collected from normal prostate tis-
sues. Their findings revealed a significant upregulation 
of IR expression in prostate cancer tissues compared to 
normal prostate tissues. Using qRT-PCR, they quantified 
the IR-A/IR-B ratio and found a marked elevation of this 
ratio in prostate cancer tissues compared to neighboring 
non-cancerous tissues and normal prostate tissues [77]. 
In parallel research, Heidegger et al. unveiled the impact 
of insulin and IGF-1 on cell behavior in prostate cancer 
cell lines. They demonstrated that insulin and IGF-1 pro-
moted cell proliferation and heightened glucose metabo-
lism in these cells. Conversely, in normal prostate cells, 
insulin and IGF-1 induced cellular differentiation. Nota-
bly, overexpression of IR-A and IGF-1R facilitated cell 
proliferation in tumor cells and stimulated cell differen-
tiation in normal tissue cells. However, overexpression 
of IR-B did not contribute to tumor cell proliferation 
[78]. Further validation using in  vivo models confirmed 
that overexpressing IR-A and IGF-1R promoted tumor 
cell growth, induced angiogenesis, and generated drug 
resistance. While overexpression of IR-B also induced 
angiogenesis to some extent, its potency was notably 
weaker than that of IR-A and IGF-1R [79]. Moreover, 
Perks et al. demonstrated a consistent pattern by showing 
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significantly higher IR-A expression than IR-B in both 
prostate cancer tissues and prostate cancer cell lines. 
Additionally, stimulation with insulin and IGF-2 led to an 
upregulation of IR-A expression [80]. Collectively, these 
groundbreaking findings provide valuable insights into 
the intricate function of the IR signaling pathway in the 
context of prostate cancer. The upregulated expression 
of IR-A in prostate cancer tissues suggests its potential 
as a therapeutic target. At the same time, the observed 
effects on cell proliferation, differentiation, angiogenesis, 
and drug resistance shed light on the complex interplay 
between insulin signaling and tumor biology. Further 
investigation into these mechanisms may open new ave-
nues for precision medicine approaches in prostate can-
cer treatment.

Targeting IR selective splicing variants: potential 
for clinical therapeutics
The pursuit of inhibitors that target IR selective splicing 
variants has emerged as a promising avenue for clinical 
therapeutics. These inhibitors hold the potential to mod-
ulate the expression and functionality of distinct insulin 
isoforms, presenting a customized approach to precision 
medicine in the management of diverse diseases.

Several studies have provided evidence to support that 
the insulin/IGF-2/IR-A pathway and its downstream 
signaling cascades serve as specific and distinct target 
sites in malignant tumors. The interplay between IR and 
IGF1-R, forming heterodimeric receptors, significantly 
impacts malignancies [81]. In tumor cells with an auto-
crine loop of IGF-2, targeting IGF1-R leads to compen-
satory upregulation of phosphorylated IR [82]. Knockout 
of IGF1-R in mouse embryonic fibroblasts enhances IR 
signaling, while inhibiting IR enhances IGF-1R signaling 
[83, 84]. Furthermore, overexpression of IR-A in cancer 
cells confers resistance to monoclonal antibody therapy, 
such as trastuzumab (an anti-IGF1-R antibody), suggest-
ing that IR expression can serve as a predictive molecular 
marker for resistance to tumor-targeted therapies [85]. 
Therefore, in the context of malignant tumors, target-
ing the insulin/IGF-2/IR-A pathway primarily involves 
these approaches: dual intervention against both IR and 
IGF-1R using small molecule tyrosine kinase inhibitors 
(TKIs), specific targeting of IR-A function, and suppres-
sion of the ligand IGF-2, which activates both IR and 
IGF-1R, IR-A isoform-specific aptamers, nucleotides oli-
gomers and selective splice-switching antisense oligonu-
cleotides. The implications of these findings indicate the 
promise of directing therapeutic interventions toward the 
insulin/IGF-2/IR-A pathway in the context of malignant 
tumors. By modulating this pathway, it may be possible 
to disrupt tumor cell growth, overcome resistance to tar-
geted therapies, and improve patient outcomes. Further 

study is needed to assess the efficacy and safety of imple-
menting these approaches in a clinical environment, pav-
ing the way for novel therapeutics tailored to the unique 
molecular characteristics of malignant tumors.

Linsitinib (OSI-906) and BMS-754807 are well-estab-
lished dual-targeting small molecule tyrosine kinase 
inhibitors (TKIs) specifically designed to block IR and 
IGF-1R selectively. Preclinical studies have shown that 
Linsitinib effectively inhibits the activity of both IR 
and IGF-1R in tumor cells and tumor xenograft mod-
els. Tumors with an autocrine loop of IGF-2 and high 
phosphorylation levels of IR and IGF-1R exhibit high 
sensitivity to Linsitinib [86]. Linsitinib therapy reverses 
tamoxifen resistance caused by activated IGF-1R in ER-
positive  breast  cancer [87]. A single-arm phase II study 
investigated the use of Linsitinib in mCRPC [88], and 
the study found that single-agent Linsitinib was safe and 
well tolerated. However, further research is needed to 
identify the specific population that may benefit from 
this treatment. Similar results to Linsitinib have been 
observed using BMS-754807, either as a single ther-
apy or alongside other chemotherapy medications like 
gefitinib, gemcitabine, and cisplatin [89, 90]. The com-
bination of BMS-754807 with other small molecule 
inhibitors or radiotherapy may represent a rational thera-
peutic approach in prostate cancer [91, 92]. Zanella et al. 
reported that the level of IGF-2 expression can predict 
the sensitivity of tumors to EGFR-targeted therapy, and 
the sensitivity to combined IGF-2/EGFR targeted therapy 
is closely related to the level of IGF-2 [93]. The primary 
function of MEDI-573, an IgG2 monoclonal antibody 
developed from humans, is to neutralize IGF-1 and IGF-
2, inhibiting their ability to activate IGF-1R and IR-A 
[94]. In a mouse model, overexpression of IGF-2 leads to 
colorectal cancer, and the application of MEDI-573 effec-
tively reduces the level of IGF-2 expression and inhibits 
the growth of colorectal tumor cells [95]. The domain 11 
of M6P/IGF2R exhibits strong binding capability to IGF-
2, leading to a decrease in its expression level in serum 
and subsequently inhibiting the biological effects of IGF-
2. Mutations in the binding site of domain 11 enhance the 
binding capacity to IGF-2 by approximately 100-fold, sig-
nificantly reducing the level of serum IGF-2 [96]. In light 
of preclinical studies that demonstrate higher IR-A/IR-B 
ratios among individuals with hormone receptor positive, 
ERBB2 negative breast cancer, a phase I/II clinical trial 
is presently underway to explore the potential impact of 
MEDI-573 in conjunction with hormonal therapy within 
this particular subset of breast cancer patients [97, 98]. 
IR-A and IR-B undergo maturation in the Golgi appara-
tus through cleavage by furin protease. When furin loses 
its activity, IR-A and IR-B are translocated to the cell 
surface, with IR-B matured through the catalysis of the 
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convertase PACE4. Thus, furin protease plays a critical 
role in facilitating the maturation of IR-A. Polyphenols 
(catechins, ellagic acid, and quercetin) can inhibit furin 
protease; thereby, the maturation of IR-A is decreased, 
leading to a reduction in its downstream signaling and 
cellular mitotic activity [99–101].

Nucleic acid-based aptamers, molecules derived 
from nucleic acids, are showing potential as therapeu-
tic agents that can counteract disease-associated pro-
teins like receptor tyrosine kinases. A recent study has 
described a nuclease-resistant RNA aptamer that can 
specifically recognize and inhibit the IR, thereby block-
ing IR-dependent signaling pathways. The findings sug-
gest that it may be feasible to identify aptamers with high 
affinity that specifically bind to the IR-A isoform, provid-
ing a targeted approach for modulating its activity [102]. 
Several specific miRNAs, including miR-424, miR-195, 
miR-497, miR-103/107, and miR-1, play a regulatory role 
in controlling the expression of IR under physiological 
and pathological conditions such as obesity and insulin 
resistance [103]. These miRNAs show altered expression 
patterns in cancer, potentially contributing to increased 
levels of IR and an elevated IR-A: IR-B ratio.

Conclusion
The IR undergoes intricate regulatory processes dur-
ing selective splicing, resulting in two distinct isoforms, 
IR-A and IR-B, which exhibit divergent distribution 
patterns and functionalities under both physiological 
and pathological conditions. The variation in the ratio 
between these isoforms plays a crucial role in patho-
logical conditions like cancer and diabetes. Despite their 
minimal structural differences, the absence of antibod-
ies capable of distinguishing between IR-A and IR-B 
poses a challenge in studying their biological character-
istics. Consequently, investigations have predominantly 
relied on assessing mRNA expression levels or trans-
fecting cells with exogenously overexpressed isoforms. 
To comprehensively comprehend the unique functions 
and responsibilities played by these isoforms in differ-
ent physiological and pathological contexts, it is essential 
to conduct in vivo studies using diverse disease models, 
organs, and tissues. Future research should focus on reg-
ulating all factors involved in the expression and mRNA 
splicing of the IR gene and the protein processing of the 
two IR isoforms. Additionally, it is essential to recognize 
that the complexity of IR signaling diversification arises 
from multiple isoforms, each with unique characteris-
tics, including varying affinities for ligand binding, dis-
tinct membrane organization and movement, and the 
ability to interact with a diverse array of molecular part-
ners. Consequently, these isoforms can selectively impact 
downstream signaling pathways based on their attributes. 

Such research endeavors are vital in establishing a robust 
theoretical foundation for future advancements in clini-
cal precision medicine. By unraveling the complexities of 
IR isoforms, we can pave the way for targeted therapies 
tailored to individual patients, revolutionizing treatment 
approaches and improving outcomes.
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