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A novel immunogenic cell death‑related 
classification indicates the immune landscape 
and predicts clinical outcome and treatment 
response in acute myeloid leukemia
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Abstract 

Background  Immunogenic cell death (ICD) is closely related to anti-tumor therapy and regulates the tumor micro-
environment (TME). This study aims to explore the molecular characteristics of ICD in acute myeloid leukemia (AML) 
and to analyze the value of ICD-related biomarkers in TME indication, prognosis prediction, and treatment response 
evaluation in AML.

Methods  Single-sample gene set enrichment analysis was used to calculate the ICD score. LASSO regression 
was used to construct a prognostic risk score model. We also analyzed differences in clinical characteristics, immune 
landscape, immunotherapy response, and chemotherapy sensitivity between high-risk and low-risk patients.

Results  This study identified two ICD-related subtypes and found significant heterogeneity in clinical prognosis, 
TME, and immune landscape between different ICD subtypes. Subsequently, a novel ICD-related prognostic risk score 
model was developed, which accurately predicted the prognosis of AML patients and was validated in nine AML 
cohorts. Moreover, there were significant correlations between risk scores and clinicopathological factors, somatic 
mutations, TME characteristics, immune cell infiltration, immunotherapy response, and chemosensitivity. We further 
validated the model gene expression in a clinically real-world cohort.

Conclusions  The novel ICD-related signatures identified and validated by us can serve as promising biomarkers 
for predicting clinical outcomes, chemotherapy sensitivity, and immunotherapy response in AML patients, guiding 
the establishment of personalized and accurate treatment strategies for AML.
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Introduction
Acute myeloid leukemia (AML) is a hematological tumor 
with malignant proliferation of hematopoietic stem cells 
[1]. AML is heterogeneous due to complex acquired 
somatic mutations and genomic mutations [2]. Although 
new targeted drugs have made great achievements in 

the individualized and precise treatment of AML, the 
long-term survival and complete remission (CR) rates 
of patients are still unsatisfactory [3]. Therefore, there is 
an urgent need to find new reliable biomarkers for AML 
diagnosis, prognostic stratification, and personalized tar-
geted therapies.

Graphical Abstract
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Immunogenic cell death (ICD) is a unique form of 
tumor cell death characterized by the transformation 
of tumor cells from a nonimmunogenic state to immu-
nogenic, thereby activating anti-tumor immune effects 
in vivo, leading to tumor cell death [4]. The main process 
of ICD is that dying tumor cells release damage-associ-
ated molecular patterns (DAMPs), activate and recruit 
antigen-presenting cells, and further activate T cells to 
produce adaptive immune responses against tumor anti-
gens [5]. An increasing number of studies have confirmed 
that ICD induction is a particularly effective treatment 
for tumors that are resistant to conventional therapies 
[6, 7]. For example, the combination of dendritic cells 
and doxorubicin induces immunogenic cell death and 
plays an antitumor role in osteosarcoma [8]. As a hema-
tological tumor, the tumor microenvironment (TME) of 
AML contains a large number of immune cells. Induced 
AML cells ICD can more directly promote the immune 
cells play antitumor immune effect, showing a potential 
treatment feasibility. It has been shown that increased 
exposure of DAMPs such as calreticulin on the plasma 
membrane of AML malignant blast cells is a novel pow-
erful prognostic biomarker in AML patients, reflecting 
activation of clinically relevant AML-specific immune 
responses [9]. Moreover, chemotherapy-treated dying 
AML cells also release ATP to cause immunosuppression 
by increasing the number of regulatory T cells and toler-
ogenic dendritic cells [10]. All the evidence reflects that 
AML is closely related to ICD. However, the relevance 
of ICD-related genes (ICDRGs) to clinical prognosis and 
anticancer mechanisms in AML remains unclear. There-
fore, a comprehensive understanding of the molecular 
features of ICDRGs can provide insight into the causes of 
AML heterogeneity.

In this project, we analyzed the expression profiles of 
ICDRGs and constructed ICD-related molecular sub-
types to explore the underlying mechanisms of ICD. 
Subsequently, we developed a novel risk score model 
based on the molecular features of ICD subtypes to help 
predict clinical outcomes, immune landscape, immuno-
therapy response, and chemotherapy sensitivity in AML 
patients. More importantly, we validated the analytical 
results by in vitro experiments. These results contribute 
to the prognosis prediction of AML and provide more 
individualized and effective treatment strategies for AML 
patients.

Methods
Data acquisition and preprocessing
A total of nine AML cohorts with 2059 AML bone mar-
row samples containing clinical survival information were 
included in this study. There were eight Gene Expression 
Omnibus (GEO) cohorts (TCGA-LAML (GSE68833), 

GSE10358, GSE12417-GPL96, GSE12417-GPL570, 
GSE37642-GPL570, GSE37642-GPL96, GSE71014, 
GSE14688) and the Beat AML cohort. For GEO cohorts 
on the Affymetrix platform, we downloaded the raw 
"CEL" files and normalized them using a robust multiar-
ray averaging (RMA) method. For GEO cohorts on other 
platforms, we directly download the already standard-
ized matrix files. RNA-sequencing data of the Beat AML 
cohort were transformed into transcripts per million 
(TPM) values. Considering the more complete number 
of genes tested in GSE68833, GSE10358, GSE12417-
GPL570, GSE37642-GPL570, and GSE71014 cohorts, 
we used the "combat" algorithm of the "sva" package for 
batch correction. A meta-cohort was formed for subse-
quent analysis. Data of somatic mutation, and gene copy 
number were downloaded from the TCGA database 
(https://​portal.​gdc.​cancer.​gov/). The definition of overall 
survival (OS) was the duration from diagnosis to death 
resulting from any cause or until the censoring date of 
the last follow-up. Patients were excluded if they expe-
rienced premature death (OS < 15  days) or had missing 
follow-up data. Additional file 1: Table S1 shows sample 
information for all cohorts.

Identification of ICD‑related molecular subtypes 
by consensus clustering
The list of ICDRGs was obtained from previous stud-
ies [11]. We used the "ConsensusclusterPlus" software 
package to conduct consensus clustering based on the 
expression of these genes to identify ICD-related molec-
ular subtypes. To obtain stable and reliable classification 
results, we iterated 1000 times. t-distributed stochas-
tic neighbor embedding (t-SNE) was used to validate 
the classification [12]. In addition, we performed gene 
set variation analysis (GSVA) and gene set enrichment 
analysis (GSEA) were used to analyze the differences in 
biological processes between the different ICD-related 
molecular subtypes [13].

Immune cell infiltration and TME assessment
The CIBERSORT algorithm was used to calculate the 
proportion of 22 immune cells in AML samples [14]. The 
ESTIMATE algorithm was used to evaluate the immune, 
stromal, and ESTIMATE scores of each AML sample 
[15].

Identification of differentially expressed genes (DEGs) 
between molecular subtypes
The "limma" package [16] was used to identify DEGs 
between molecular subtypes with filtering thresholds 
as follows: (1) FDR < 0.05; (2) |log fold change (FC)|> 1. 
Then, the functions of DEGs were analyzed by perform-
ing Kyoto Encyclopedia of Genes and Genomes (KEGG) 

https://portal.gdc.cancer.gov/
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pathway analysis and Gene Ontology (GO) annotation 
using the "clusterProfiler" package.

Construction of ICD score system and risk score model
To quantify ICD-related molecular subtypes, we used 
single-sample gene set enrichment analysis (ssGSEA) to 
calculate ICD scores for AML samples according to the 
expression of ICDRGs. For the construction of the risk 
score model, genes significantly associated with the prog-
nosis of AML patients were identified from the DEGs of 
molecular subtypes (P < 0.001). Least absolute shrinkage 
and selection operator (LASSO)-stepwise multivariate 
Cox regression analysis was used to construct the risk 
score model.

where i is the model gene, "Coef" and "ExpGene" are the 
non-0 regression coefficient and the expression value of 
it. Based on the optimal cut-off value, the AML cohort 
was divided into high- and low-risk groups for subse-
quent analysis.

Prediction of immunotherapy response and chemotherapy 
sensitivity
The "pRRophetic" package was used to predict the half 
maximal inhibitory concentration (IC50) of AML sam-
ples to commonly used therapeutic agents [17]. A smaller 
IC50 value indicates a higher therapeutic sensitivity of 
the drug. We used the SubMap algorithm (https://​cloud.​
genep​attern.​org/​gp) to predict the response of different 
risk groups to immune checkpoint inhibitor therapy with 
anti-PD-1 and anti-CTLA4. Moreover, to evaluate the 
immune escape level of tumor cells, we used the Tumor 
Immune Dysfunction and Exclusion (TIDE) website 
(http://​tide.​dfci.​harva​rd.​edu/) to calculate the TIDE score 
of AML samples.

Collection of clinical samples from patients with myeloid 
leukemia
This study was approved by the Ethics Committee of the 
Second Affiliated Hospital of Nanchang University, and 
all procedures were in accordance with regulations. Five 
samples from patients with newly diagnosed chronic 
myeloid leukemia without any previous treatment, five 
samples from patients in blast crisis, and five normal 
samples from healthy volunteers were collected accord-
ing to the World Health Organization classification of 
tumors of hematopoietic and lymphoid tissues. Details of 
sample collection, next-generation sequencing, and pro-
cessing procedures are provided in our previous report 
[18].

Risk score =

i∑

1

(Coefi ∗ ExpGenei),

Statistical analysis
Statistical analyses were performed with the use of R 
software, version 4.1.2. The Wilcoxon test was used to 
compare the differences between the two groups, and 
the Kruskal–Wallis test was used to analyze the dif-
ferences among the multiple groups. P < 0.05 was con-
sidered statistically significant (*P < 0.05, **P < 0.01, 
***P < 0.001).

Results
The expression landscape of ICDRGs
The results of the differential analysis showed that most 
ICDRGs such as ATG5, BAX, and CALR were up-regu-
lated in AML samples (Fig. 1A), and some ICDRGs such 
as CD8A, CD8B, and IFNGR1 were down-regulated. 
There was no significant difference in the expression of 
ICDRGs such as ENTPD1, IFNA1, and IFNG between 
AML and normal samples. Univariate Cox regression 
analysis showed that most of the ICDRGs were risk fac-
tors for AML and were associated with poor prognosis 
of patients (Fig.  1B). Moreover, CALR, CASP1, CD4, 
CXCR3, FOXP3, IFNGR1, IL10, P2RX7, and PRF1 were 
significantly correlated with the prognosis of AML 
patients (p < 0.05) (Fig.  1C). We also found that almost 
all ICDRGs were positively correlated with each other 
except CALR, which was negatively correlated with mul-
tiple ICDRGs (Fig.  1B). Copy number variation analysis 
showed that the frequency of copy number gain of IL10, 
NLRP3, and CASP1 was significantly increased, while the 
frequency of copy number loss of MYD88, IL6, and IFNG 
was significantly increased (Fig.  1D). Somatic mutation 
analysis showed that the overall mutation rate of ICDRGs 
was low (Fig. 1E).

Identification of ICD‑related classifications in AML
To further explore the expression characteristics of 
ICDRGs in AML, consensus clustering algorithm was 
used to classify the meta-cohort. The results showed 
that when the number of clusters was 2, the classification 
effect was the best. 581 patients with AML were divided 
into two kinds of ICD-related molecular subtypes: Clus-
ter A (n = 375) and Cluster B (n = 206) (Fig.  2A). The 
t-SNE algorithm showed significant differences between 
these two ICD-related molecular subtypes, which con-
firmed the reliability of the classification (Fig.  2B). The 
heatmap showed that most ICDRGs were upregulated 
in Cluster B compared with Cluster A (Fig. 2C). Kaplan–
Meier curve analysis also showed that there was a sig-
nificant difference in overall survival between the two 
subtypes, and the prognosis of patients in Cluster A was 
better (Fig.  2D). Thus, the two ICD-related molecular 

https://cloud.genepattern.org/gp
https://cloud.genepattern.org/gp
http://tide.dfci.harvard.edu/
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subtypes identified based on ICDRG expression are sig-
nificantly different.

Analysis of TME differences between classifications
We further explored TME differences between the two 
ICD-related subtypes. TME analysis showed that Cluster 
B had higher TME scores, including stromal, immune, 
and ESTIMATE scores (Fig. 2E). The results of immune 
infiltration analysis showed that adaptive immune cells 
such as naive and memory B cells, plasma cells, CD8+ T 
cells, resting CD4+ T cells, regulatory T cells (Tregs), and 
innate immune cells such as resting NK cells and mast 
cells in Cluster A exhibited higher infiltration levels than 
those in Cluster B. Monocytes and M2 macrophages 
were mainly enriched in Cluster B (Fig.  2F). Therefore, 
we hypothesized that the better prognosis of Cluster A 
patients might be related to their higher proportion of 
anti-tumor immune cell infiltration. The expression lev-
els of key immune checkpoints such as PD-1, PD-L1, and 
CTLA4 were not significantly different between the two 
groups, while HAVCR2, CD86, and TNFRSF9 were up-
regulated in Cluster B (Fig.  2G). We further calculated 
the TIDE score to evaluate the immune escape ability 
of tumor cells. Strikingly, the TIDE score of Cluster A 
was significantly higher than that of Cluster B (Fig. 2H), 

suggesting that there may be some suppression of anti-
tumor immune effects in Cluster A.

Constructing an ICD scoring system to explore 
the potential correlation between ICD and TME
Subsequently, we compared the differences in enrich-
ment scores between tumor marker pathways between 
the subtypes, and the activity of these pathways was 
essentially higher in Cluster B, indicating that the sub-
type had more active signaling (Fig. 3A). In addition, we 
used the ssGSEA algorithm to determine the ICD score 
to evaluate ICD activity and explain the interaction 
between ICD and TME. First of all, the ICD score quanti-
fied ICD subtypes well, and the ICD score of Cluster B 
was significantly higher than that of Cluster A (Fig. 3B). 
The ROC curve also confirmed that the ICD score could 
effectively distinguish ICD subtypes (AUC = 0.900) 
(Fig. 3C). Second, high ICD scores were associated with 
lower infiltration of anti-tumor immune cells (Fig.  3D). 
Interestingly, the infiltrating proportion of Tregs was 
significantly negatively correlated with the ICD score 
and positively correlated with the TIDE score (Fig.  3E, 
F). Therefore, we hypothesized that infiltration of Tregs 
might be involved in the immunosuppression of Cluster 
A. Finally, the ICD score was also significantly positively 

Fig. 1  Genetic characteristics of ICDRGs. A The interaction of ICDRGs in AML patients and its relationship with prognosis. B Differential expression 
analysis of ICDRGs between AML samples and normal samples. C Univariate Cox regression analysis was used to identify ICDRGs significantly 
associated with prognosis. D CNV frequency of ICDRGs in the TCGA-LAML cohort. E Somatic mutations of ICDRGs in the TCGA-LAML cohorts
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correlated with the expression of immune checkpoints 
such as HAVCR2, CD86, TNFRSF9, TIGIT, IDO1, and 
LAG3 (Fig. 3G). TIDE also had a strong correlation with 
TME scores (Fig. 3H). These findings indicated that ICD 
could participate in regulating the TME in AML.

Analysis of biological differences between classifications
To fully understand the potential biological func-
tions of ICD-related subtypes in AML, we identi-
fied 444 DEGs associated with ICD-related subtypes 
through differential analysis. Volcano map shows that 
most DEGs are up-regulated in Cluster B (Fig.  4A). 

Then, we performed a functional enrichment analy-
sis of DEGs. According to KEGG analysis, These ICD 
subtype-related DEGs are enriched in immune-related 
pathways such as cytokine-cytokine receptor interac-
tion, NOD-like receptor signaling pathway, and cell 
adhesion molecules (CAMs) and antigen processing 
and presentation (Fig. 4B). The GO annotation showed 
that the main functions of these genes include positive 
regulation of cytokine production, immune response-
regulating signaling pathway, and immune receptor 
activity (Fig. 4C). GSEA analysis showed that the activi-
ties of metabolism-related pathways such as fructose 

Fig. 2  Identification of ICD-related molecular subtypes and analysis of differences in TME characteristics between subtypes. A Two molecular 
subtypes were identified by consensus clustering. B The TSNE algorithm was used to verify the accuracy of molecular subtypes. C Heatmap shows 
the expression characteristics of ICDRGs between subtypes. D Survival analysis between subtypes. E–H Differences in TME scores (E), immune cell 
infiltration (F), immune checkpoint expression (G), and TIDE score (H) between subtypes
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and mannose metabolism, galactose metabolism, gly-
colysis/gluconeogenesis, oxidative phosphorylation, 
and tryphan metabolism in cluster B were significantly 
higher (Fig.  4D). These results again suggest that ICD 
is significantly correlated with immune signaling, and 
that abnormal metabolic signaling may also contribute 
to poor prognosis in Cluster B patients by promoting 
malignant proliferation of tumor cells.

Prognostic predictive value of ICD subtype‑related DEGs
Through univariate Cox regression analysis, we found 
that 34 ICD subtype-related DEGs were significantly 
associated with AML prognosis (p < 0.05). LASSO regres-
sion analysis was used to further reduce dimensional-
ity and construct a risk score model with FGR, TFEB, 
KDM5B, SH3TC1, VNN1, TRIB1, HIP1, HTATIP2, AHR, 
CRIP1, THBS1, and IL1R2 as model factors (Fig. 5A, B) 

Fig. 3  Construction of ICD scoring system and correlation analysis with TME. A Differences in enrichment scores of tumor marker gene sets 
between ICD molecular subtypes. B Differences in ICD score between subtypes. C ROC curve analysis was used to verify the ability of the ICD 
score to discriminate subtypes. D Correlation between ICD score and immune cell infiltration. E, F Correlation of TIED score with Treg infiltration 
and ICD score. G Correlations of the immune checkpoint genes with ICD score. H Correlations of the ICD score with immune score, stromal score, 
and ESTIMATE score
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(Additional file 1: Table S2). AML patients were divided 
into high-risk and low-risk groups based on the best cut-
off value (Fig.  5C). Compared with the low-risk group, 
the high-risk group had significantly more patients who 
died (Fig.  5D). Except for KDM5B, the expression of 
model genes was significantly higher in the high-risk 
group (Fig.  5E). Survival analysis showed that the over-
all survival of the high-risk score group was significantly 
shorter than that of the low-risk score group (Fig.  5F). 
ROC curve analysis confirmed the prognostic prediction 
efficacy of the risk score model, and the AUC values for 
predicting 1-, 3-, and 5-year overall survival were 0.698, 
0.685, and 0.702, respectively (Fig. 5G). In the nine AML 
cohorts including the meta-cohort, it was confirmed that 
the prognosis of patients in the high-risk group was sig-
nificantly worse (p < 0.05) (Fig. 6A, B). The multi-cohort 
data confirmed the prognostic predictive value of the risk 
score model, which was confirmed by ROC curve analy-
sis (Fig.  6C). The TCGA-LAML cohort contained more 

clinical data. Univariate and multivariate Cox regression 
analysis confirmed that the risk score was an independ-
ent factor in predicting the prognosis of AML (p < 0.001) 
(Fig. 6D, E).

Potential molecular mechanisms affecting the prognosis 
of patients in different risk groups
To better reveal the factors affecting the prognosis of 
patients in different risk groups, we systematically eval-
uated the differences in TME characteristics and clin-
icopathological factors between the two groups. The 
alluvial diagram shows that almost all patients in the 
low-risk group belong to cluster A, while patients in clus-
ter B belong to the high-risk group, indicating that the 
risk score model further groups AML patients accord-
ing to clinical outcomes based on ICD related molecu-
lar subtypes (Fig.  7A). The ICD score of patients in the 
high-risk group was significantly higher than that in the 
low-risk group, and the risk score was also significantly 

Fig. 4  Functional analysis of DEGs between ICD molecular subtypes. A The volcano plot shows the differential expression characteristics of genes 
between molecular subtypes. Red and blue dots indicate genes with significantly upregulated expression in Cluster B and Cluster A, respectively. 
B, C KEGG (B) analysis and GO annotation (C) of DEGs between ICD molecular subtypes. D GSEA analysis revealed significantly enriched signaling 
pathways in Cluster B
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positively correlated with the ICD score, indicating 
that the risk score can also accurately reflect the ICD 
characteristics (Fig.  7B, C). The analysis of differences 
in immune cell infiltration and checkpoint expression 
showed that the difference between high-risk and low-
risk groups was consistent with the difference between 
ICD-related subtypes, that is, the low-risk group showed 
increased infiltration of innate and adaptive immune 
cells, including Tregs, while the high-risk group showed 
up-regulated expression of immune checkpoints such as 
HAVCR2, LAG3, CD86 and TNFRSF (Fig.  7D, E). The 
low-risk group similarly showed a higher TIDE score 
(Fig. 7F). In addition, the activity of most tumor marker 
gene sets in Cluster A was higher than that in Cluster B 
(Fig. 7G). Combining these analysis results, we speculate 
that although the prognosis of low-risk patients is better, 
the infiltration of Tregs may hinder the immune effect 
of anti-tumor immune cells, and the high expression of 
immune checkpoints and active cancer-promoting sign-
aling pathways may be the reasons for the poor prognosis 
of high-risk group.

Differences in genomic traits and clinicopathological 
features between low‑ and high‑risk groups
We further analyzed the differences in clinicopathological 
characteristics between risk groups in the TCGA-LAML 

cohort. First, compared with the low-risk group, patients 
in the high-risk group were older (aged > 60  years), had 
poor cytogenetic risk, had more FAB classifications of 
M0, M4, and M5, and had a higher proportion of plate-
lets and white blood cells (WBC) (Fig. 8A). Correspond-
ingly, these patients also had higher risk scores (Fig. 8B). 
In addition, there was no significant difference in the 
proportion of patients with common somatic muta-
tions between high-risk and low-risk groups (Fig.  8C), 
but the risk score of patients with negative FLT3 and 
NPM1 mutations was significantly lower than that of 
patients with positive (Fig.  8D). According to somatic 
mutation analysis, in the two cohorts (TCGA-LAML 
and Beat AML), FLT3, DNMT3A, NPM1, TP53, and 
RUNX1 mutations were most likely to occur in the high-
risk group, and the mutated genes in the low-risk group 
mainly included FLT3, NPM1, CEBPA, TET2, IDH2, and 
WT1 (Fig. 8E). These results suggest that the differences 
in clinicopathological characteristics and somatic muta-
tions may be important reasons for the differences in 
AML prognosis.

Differences in chemosensitivity and response 
to immunotherapy between risk groups
We predicted sensitivity to commonly used drugs in 
AML, with the lower-risk group having a lower IC50 

Fig. 5  Construction of risk scoring model. A The penalty coefficient of the minimum tenfold cross-validation error point was calculated 
to determine the corresponding model gene. B Determination of model gene coefficients. C–E Based on the optimal cut-off value, patients 
in the meta-cohort were divided into high- and low-risk score groups (C); the survival status distribution (D), and model gene expression (b) 
in high- and low-risk score groups. F Survival analysis between high- and low-risk score groups. G time-dependent ROC curve analysis of risk scores 
in the meta cohort
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to doxorubicin, cytarabine, and midostaurin and being 
more sensitive to them (Fig.  9A, C). Analysis of drug 
sensitivity data from ex vivo leukemia cells in the Beat 
AML cohort showed that the low-risk group was more 
sensitive to treatment with GSK-1838705A and Vene-
toclax. While the high-risk group was more sensi-
tive to Elesclomol, Flavopiridol, MK-2206, Nilotinib, 
Panobinostat, and Selumetinib (AZD6244) (Fig.  9D). 
Moreover, in both Beat AML and GSE14468 cohorts, 
we observed that the proportion of patients who 
responded to induction chemotherapy was higher in 
the low-risk group than in the high-risk group, and that 
patients who did not respond to induction chemother-
apy had significantly higher risk scores than those who 
did (Fig.  9E, F). We used the TIDE algorithm to pre-
dict the possibility of patients in different risk groups 
responding to immunotherapy, and the results showed 
that the high-risk group (40%, 158/396) was more 
likely to respond to immunotherapy than the low-risk 
group (19%, 35/185) (P = 4.426e−07) (Fig. 9G). We also 
used subclass mapping to compare the expression pro-
files of high- and low-risk groups with another dataset 
containing 47 melanoma patients who responded to 

immunotherapy [19]. Excitingly, in the meta-cohort, 
we observed that the high-risk group was more likely 
to respond to anti-PD-1 (P = 0.001) and anti-CTLA4 
(P = 0.013) treatments (Fig. 9H). This may be related to 
the higher expression level of immune checkpoints in 
the high-risk group.

The expression of risk score model genes was validated 
in a clinical real‑world cohort
We collected five normal samples, five myeloid leukemia 
chronic-phase samples, and five myeloid leukemia acute-
phase samples for transcriptome sequencing. Compared 
with the normal samples, the expression of KDM5B and 
IL1R2 was up-regulated in both chronic and acute phase 
samples, and the expression of TRIB1, HIP1, VNN1, and 
IL1R2 was only up-regulated in the chronic samples, The 
expression of FGR was up-regulated in chronic phase 
samples and down-regulated in acute phase samples, and 
the expression of TFEB, SH3TC1, and AHR was down-
regulated in both chronic and acute phase samples. 
Moreover, there was no significant change in the expres-
sion of THBS1, CRIP1, and HTATIP1 (Fig. 10).

Fig. 6  Validation of risk score model. A, B Survival analysis between high- and low-risk groups in the validation cohorts (A) and the constituent 
cohorts of the meta-cohort (B). C time-dependent ROC curve analysis of risk scores in the meta-cohort and the validation cohorts. D, E Univariate 
and multivariate Cox regression analysis of clinicopathological factors and risk score in the TCGA-LAML cohort
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Discussion
AML is a blood tumor with extensive molecular variation 
[1]. Its pathogenesis is complex, and the high heterogene-
ity of the disease often leads to poor prognosis [20]. At 
present, the treatment of AML still mainly relies on high-
dose chemotherapy. Although the development of a vari-
ety of targeted therapeutics has benefited the treatment 
of AML [21], the frequent occurrence of relapse and 
adverse reactions has plagued clinical treatment due to 
the existence of various escape mechanisms [22], which 
also prompted people to explore new therapeutic meth-
ods, including immunotherapy [23].

Immunotherapy such as CAR-T cell therapy has made 
significant progress in hematological tumors, but due 
to the frequent occurrence of adverse reactions and 

the differences in individual characteristics, the impact 
on AML is not encouraging [24]. Therefore, the devel-
opment of new therapeutic strategies to enhance the 
response of immunotherapy and chemotherapeutic 
drug sensitivity has shown important clinical value in 
improving the prognosis of AML. As a kind of regula-
tory cell death, ICD triggers an antigen-specific adap-
tive immune response by generating danger signals or 
DAMPs [6, 7]. For example, ICD can transform dying 
cancer cells into a "vaccine" to promote antitumor immu-
nity by maturing dendritic cells, stimulating cytotoxic 
T lymphocytes, and enhancing NK cell cytotoxicity [5]. 
ICD plays an important anti-cancer role in a variety of 
cancers, such as prostate cancer [25], ovarian cancer [26] 
and colon cancer [27]. ICD contributes to the efficacy of 

Fig. 7  Differences in TME characteristics between high- and low-risk score groups. A Alluvial plots show the distribution of molecular subtypes, 
risk-score groups, and vital status of patients. B, C Differences in ICD scores between high- and low-risk groups and the correlation between risk 
scores and ICD scores. D–G Differences in immune cell infiltration (D), immune checkpoint expression (E), TIDE score (F), and tumor marker pathway 
enrichment score (G) between high- and low-risk groups
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chemotherapy and immunotherapy in solid cancer, and 
its impact on AML has only been partially explored. Pre-
vious studies have shown that the increased proportion 
of CD8+ T cells in the blood of AML patients receiving 
anthracycline consolidation therapy contributes to the 
efficacy of immunotherapy with histamine dihydrochlo-
ride (HDC) and IL-2, and improves the survival rate of 
patients, which is due to the increased responsiveness 
of immunotherapy due to ICD generated by consolida-
tion therapy [28]. Chemotherapy or γ Irradiation also 
triggered the ICD of AML cells by translocating calreti-
culin to the plasma membrane, promoting the immunity 
and type I interferon-dependent survival of AML mice 
[29]. A variety of chemotherapy drugs such as etoposide 
and daunorubicin can also promote AML treatment by 
inducing ICD [30]. Recent studies have shown that ICD-
related models have potential value in predicting the 
prognosis and treatment response of a variety of tumors 

[31, 32]. Leukemia-related studies have demonstrated 
that the activation of AMPK induces the development 
of ICD in AML [33]. γ-Mangostin effectively suppresses 
leukemia cells by inducing ICD, which is characterized 
by increased expression of HSP90B1, ANXA1, and IL1B 
[34]. Activation of CD47 triggers ICD in T-cell acute 
lymphoblastic leukemia [35]. However, the mechanism 
of ICD in AML, the interaction between ICD and TME, 
and the value of ICD as a biomarker in predicting clinical 
outcomes and treatment decisions of AML patients are 
not clear.

Our study revealed the heterogeneity of the expression 
landscape of ICDRGs in AML. Most ICDRGs are upreg-
ulated in AML and are associated with poor prognosis. 
There are significant differences in TME characteristics 
and prognosis between molecular subtypes identified 
based on ICDRG expression. The construction of the 
ICD scoring system quantified the molecular subtypes 

Fig. 8  Differences in clinical characteristics and somatic mutations between high- and low-risk groups. A, B The differences in the proportion 
of conventional clinicopathological factors between high- and low-risk groups and the differences in risk scores between different 
clinicopathological factors were compared. C, D The difference in the proportion of somatic mutation positive and negative patients 
between high- and low-risk groups and the difference in risk scores between somatic mutation positive and negative patients. E Differences 
in overall somatic mutation frequency between high- and low-risk groups. FAB: French–American–British; WBC: white blood cell
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and revealed the potential interaction between ICD 
and TME. Cluster A has a lower ICD score and better 
prognosis, as well as a higher proportion of anti-tumor 
immune cells such as CD4+ T cells, CD8+ T cells, NK 
cells, and dendritic cells, but it is also accompanied by 
the enrichment of more Tregs. Several previous studies 
have shown that the frequency of Tregs in AML patients 
increases and is associated with poor prognosis [36]. Treg 
depletion can enhance the therapeutic effect of NK cells 
and CAR-T cells on AML [37, 38]. Therefore, eliminating 
Tregs may improve the efficacy of ICD induction therapy 
for Cluster A patients. Cluster B patients have worse clin-
ical prognosis, high expression of immune checkpoints, 
and immune infiltration inhibition. The expression of 
ICDRGs, such as TLR4, was significantly upregulated 

in Cluster B, indicating that this molecular subtype may 
exhibit heightened sensitivity to DAMPs and therefore 
potentially benefit from immunotherapy aimed at induc-
ing ICD. Induction of increased immune infiltration and 
inhibition of immune checkpoint expression may con-
tribute to the ICD effect in Cluster B. In addition, the 
increased activity of metabolic pathways may also be one 
of the reasons that affect the clinical outcome of Cluster 
B patients.

Finally, our risk score model constructed based on 
ICD subtype-related gene expression can accurately 
predict the prognosis of AML patients, and patients 
in the high-risk group have worse clinical outcomes. 
The AUC values of 1-, 3-, and 5-year overall survival 
of AML patients predicted by the risk score model 

Fig. 9  Differences in chemotherapy sensitivity and immunotherapy response between high- and low-risk groups. A–C Sensitivity prediction 
of cytarabine, doxorubicin, and midostaurin for AML in high- and low-risk groups. D Chemotherapeutic agents with differential sensitivity 
between risk groups in the Beat AML cohort. E, F The differences in risk scores of patients with or without response to induction chemotherapy 
and the proportion differences between risk groups. G Prediction of the proportion of patients with or without response to immunotherapy 
in different risk score groups. H Prediction of response to anti-PD-1 and anti-CTAL4 immunotherapy in different risk score groups
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were 0.698, 0.685, and 0.702, respectively. Univari-
ate and multivariate regression analysis also showed 
that risk score was an independent prognostic factor 
for AML. The prognostic predictive value of the risk 
score model was validated in nine AML cohorts. Anal-
ysis of clinical and biological differences between high 
and low-risk score groups revealed potential factors 
affecting the prognosis of AML patients. In the high-
risk group, the immune cell infiltration was reduced, 
the high expression of immune checkpoints was up-
regulated, and a higher proportion of older patients 
with adverse cytogenetic risk were included. The WBC 
and platelet count in the high-risk group were also 
increased. Additionally, we observed a high frequency 
of FLT3 and NPM1 mutations in both the high and 
low-risk groups, indicating their close association with 
the development and progression of AML. Our study 
also revealed that patients with FLT3 and NPM1 muta-
tions had a higher risk score, suggesting a potential 
link to poor prognosis. However, due to the diversity 
and complexity of AML mutations, it may not be suf-
ficient to predict patient prognosis based solely on a 
single gene mutation. Nevertheless, it is important to 
consider that targeted therapies directed at these spe-
cific mutations may benefit patients in the high-risk 
group. To better provide guidance on treatment strate-
gies for patients in different risk groups, our analysis 
found that the low-risk group was more sensitive to 

common chemotherapy drugs such as cytarabine, dox-
orubicin, and midostaurin. The drug treatment data 
of ex  vivo AML cells showed that GSK-1838705a and 
Venetoclax were more promising for the treatment of 
low-risk patients, while high-risk patients may benefit 
from the use of Elesclomol, Flavopiridol, MK-2206, 
nilotinib, Panobinostat, and Selumetinib. Because of 
the abnormal expression of immune checkpoints in 
the high-risk group, we predicted that patients in the 
high-risk score group would respond to anti-PD-1 and 
anti-CTLA4 treatment.

In conclusion, we revealed that there is a crosstalk 
between ICD and the occurrence and development of 
AML, and it is closely related to different immune cell 
infiltration and signaling pathway activity. The risk 
score model based on ICD subtype-related genes can be 
used as an independent factor to accurately predict the 
prognosis of AML patients, indicate the characteristics 
of TME, and provide guidance for the formulation of 
personalized treatment strategies for AML. Our study 
also has some limitations. Only through bioinformat-
ics methods and clinical sample sequencing revealed 
the expression characteristics of ICDRGs, as well as the 
potential biological mechanism and prognostic value 
of ICD. We will take more in vivo and in vitro experi-
ments to analyze the biological functions of ICDRGs in 
AML cells in future studies, and verify the prognostic 
value of the risk score model through a multicenter, 
larger sample real-world cohort.

Fig. 10  The clinical cohort was used to validate the expression of risk score model genes. Differences in the expression of risk-scoring model genes 
among normal samples, myeloid leukemia chronic-phase samples, and myeloid leukemia acute-phase samples
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Conclusions
We systematically analyzed the expression characteris-
tics of ICDRGs and compared the differences in clinical 
pathological features, immune infiltration, and molecu-
lar landscape between ICD related-classifications. The 
risk score model has considerable value in predicting 
AML prognosis and evaluating treatment response, and 
may help clinical doctors design personalized treatment 
strategies.
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