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Synergistic effect of paclitaxel and epigenetic
agent phenethyl isothiocyanate on growth
inhibition, cell cycle arrest and apoptosis in breast
cancer cells
Katherine Liu1†, Shundong Cang2†, Yuehua Ma2 and Jen Wei Chiao1*
Abstract: This study examined whether combining paclitaxel (taxol) with a novel epigenetic agent phenethyl
isothiocyanate (PEITC) will yield a synergistic effect on inhibiting breast cancer cells. Two drug-resistant breast
cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell cycle, and apoptosis
were examined. The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each
agent alone. The combination also increased apoptosis by more than two fold over each single agent in both cell
lines. A significant increase of cells in the G2/M phases was detected. In conclusion, the combination of PEITC and
taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further
study in vivo.
Introduction
Two common epigenetic regulations are DNA methyla-
tion and histone acetylation, which modify DNA and
histone interactions within chromatins and account for
the increase or decrease in gene expression [1-3]. DNA
hypermethylation has been shown to inhibit gene
transcription, thus reducing gene expression [4-7].
Methylation and deacetylation have been found to play a
key role in malignant disorders [8]. Inhibitors of these
processes, such as methyltransferase inhibitors and
histone deacetylase (HDAC) inhibitors, are novel anti-
cancer agents. Two DNA methyltransferase inhibitors,
azacitidine and decitabine, and a histone deacetylase
inhibitor, vorinostat, have been licensed for clinical use
[9-11]. Phenethyl isothiocyanate (PEITC) belongs to the
family of natural isothiocyanates, which are found in a
wide variety of cruciferous vegetables, and are released
when the vegetables are cut or masticated. PEITC has
been proven to be an effective HDAC inhibitor, and is
able to induce growth arrest and apoptosis in cancer
cells both in vitro and in vivo [12-15].
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Breast cancer is the most commonly diagnosed cancer
among women, accounting for more than 1 in 4 cancers
[16]. After lung cancer, breast cancer is the leading cause
of cancer death in women. Chemotherapy is a mainstay
in breast cancer therapy. New agents are being actively
sought [17-21]. Paclitaxel (taxol) is a widely used chemo-
therapy drug in the treatment of breast cancer [22], lung
cancer [23], and ovarian cancer [24]. It was first discov-
ered in 1967 [25], entered clinical trials in 1984 [26-28],
and has been a leading chemotherapeutic agent ever
since [23,26,27,29]. The mechanism of action of pacli-
taxel involves its interference with microtubule assembly
[30]. Paclitaxel prevents the disassembly of microtubules
during mitosis [31]. When taxol binds to tubulin, the
microtubules become locked in polymerized state, and
thus the cells are restricted from G2 to M phase transi-
tion [32-35]. The end result is that the cells are not able
to replicate. Another effect of taxol is that it inhibits the
anti-apoptosis protein Bcl-2, and induces apoptosis in
cancer cells [36]. However, paclitaxel, like most other
chemotherapy drugs, has a high level of toxicity as well
as a multitude of side effects. The consequence of the
toxicity of taxol at a higher dosage is neuropathy which
limits its use in patients [23,26,27]. Furthermore, cancer
cells develop resistance to taxol after prolonged use.
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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It has been shown in this laboratory that PEITC is a
HDAC inhibitor and can suppress HDAC enzyme activity
and decrease HDAC enzyme expression in prostate cancer,
leukemia, and myeloma cells [12-14,37-40]. An interesting
is that some isothionates have minimal toxicity to normal
cells [40]. This project aimed to study the combined effect
of PEITC and taxol on breast cancer.

Materials and methods
Chemicals and cell cultures
The PEITC (phenethyl isothiocyanate) was purchased
from LKT Labs with 98% purity. The PEITC was in
Paclitaxel (taxol) powder (Sigma Chemical Co.) was
dissolved in DMSO to a stock concentration of 200 nM.
The MCF7 and MDA-MB-231 cell lines were obtained

from American Type Cell Cultures. The cells were seeded
at 0.4 × 106 per ml and 0.2 × 106 per ml, respectively, of
PRMI-1640 medium supplemented with 10% heat-
inactivated fetal bovine serum and maintained at 37 C in a
humidified atmosphere containing 5% CO2. The cells in
exponential growth were exposed to PEITC and taxol at
various concentrations. The control cultures were supple-
mented with DMSO as the vehicle control. At the
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Figure 1 Single agent phenethyl isothiocyanate (PEITC) and paclitaxe
breast cancer cells. The cells were treated with PEITC or taxol at various c
respectively. Vertical bars represent the means +/− SD of 3 or more indepe
specified time points, the cells were harvested. Cell num-
ber and viability were determined from at least triplicate
cultures by the trypan blue exclusion method.
Cell cycle analysis
The analysis of cell cycle phases was performed using a
Becton-Dickinson FACScan flow cytometer according to
the methods described previously [40]. The cells were
stained with propidium iodide solution (50 μg/ml) on
ice, and at least 10,000 cells were analyzed.
Apoptosis analysis
Apoptotic cells were determined by the terminal deoxynu-
cleotidyl transferase-mediated biotinylated UTP nick-end
labeling (TUNEL) assay. The TUNEL assay, according to
the methods described previously [40], was performed in
situ with a cell death detection kit (Roche Diagnostics). To
enumerate the apoptotic cells, six different fields on each
section were examined. At least 100 cells from each field
were counted. The mean populations of apoptotic cells
per section from the control group and experimental
group were reported.
5 10 20 40

I(uM)

ast cancer cell line

0 100 1000 10000

l(nM)

Breast cancer cell line

l (taxol)-induced growth inhibition of MCF7 and MDA-MB-231
oncentrations. The viable cells were enumerated at 24 and 48 hours,
ndent experiments.
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Statistical analysis
Results from 3 of more experiments were analyzed
and expressed as the mean +/− SD. Results were
evaluated by a two-sided paired Student’s t-test for
statistical difference between treatments. P <0.05 was
considered to be statistically significant. IC50, the
concentration at which 50% of cell growth is inhib-
ited, was calculated using the Calcusyn software (Bio-
soft, Inc). Synergism was assessed by the dose–effect
curves of single versus combined drug treatment
using the Calcusyn software [41].

Results
Effect of PEITC and taxol on breast cancer cells
To test the effect of PEITC and taxol on breast can-
cer cells, the agents were added to the MCF7 (MCF)
and MDA-MB-231 (MB) cell cultures at serial dilu-
tions for 24 and 48 hours, respectively. The PEITC
concentration ranged from 1 to 40 μM (Figure 1),
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2.

%
 c

o
n

tr
o

l  
  .

PEI(

Effect of Taxol combine with PEI (1

MCF7+PEI48h(IC50=5.61uM)

MCF7+Taxol10nM+PEI48h (IC50=2.52uM)

MDA-MB-231+PEI48h (IC50=15.69uM)

MDA-MB-231+Taxol100nM+PEI48h (IC50=1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 1

%
 c

o
n

tr
o

l  
  .

Taxo

Effect of PEI combine with Taxol (

MCF7+Taxol48h (IC50=111.3nM)

MCF7+PEI5uM+Taxol48h (IC50=3.0nM)

MDA-MB-231+Taxol48h (IC50=410.3nM)

MDA-MB-231+PEI10uM+Taxol (IC50=8.1nM)

Figure 2 Effect of combination of PEITC and taxol on growth inhibitio
treated with fixed concentration of PEITC and various concentrations of tax
end of the treatment. Vertical bars represent the means +/− SD of 3 or mo
and taxol concentration ranged from 0.1 to 10,000
nM (Figure 1). PEITC suppressed cell growth in a
time- and concentration-dependent manner. The
IC50 (the concentration at which 50% of cell growth
is inhibited) of PEITC for MCF cells at 48 hours is
5.6 μM, the IC50 of PEITC for MB cells at 48 hours
is 15.6 μM. It appears that 5 μM and 10 μM are the
concentrations that can cause growth suppression in
a linear fashion for MCF and MB cells, respectively.
These concentrations were therefore chosen for fur-
ther combination studies. The IC50 of taxol for MCF
and MB cells at 48 hours is 111 nM and 410 nM, re-
spectively. The 10 nM and 100 nM concentrations of
taxol were chosen for further combination studies for
MCF and MB cells, respectively. It appears that MB
cells are more resistant to PEITC (>2 x IC50) and
taxol (4x IC50) than MCF cells, and higher concentra-
tions of taxol did not further enhance the effect on
growth inhibition.
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Effect of PEITC and taxol in combination on breast cancer
cell growth
We further tested the effect of the combination of the two
agents on breast cancer cell growth at 48 hours. To search
for the optimal concentrations of the two agents, various
concentrations were tested. When cells were treated with a
fixed concentration of taxol, IC50 of PEITC for MCF and
MB cells decreased by more than 2.6 folds and 7.3 folds, re-
spectively (Figure 2). When the cells were treated with a
fixed concentration of PEITC, the taxol IC50 for MCF and
MB cells decreased by more than 37 folds and 50 folds,
respectively (Figure 2). This effect was further ana-
lyzed for synergism using computer modeling. For
both MCF and MB cells, there is a clear synergistic
effect when PEITC and taxol are combined, although
antagonistic effects were seen in certain combinations
(Figure 3).
Effect of combination of PEITC and taxol on cell cycle in
breast cancer cells
It is known that taxol can suppress cell growth through
blocking cell cycle arrest at G2M phases. We therefore
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Figure 3 Combination dose-effect of PEITC and taxol on MCF7 and MD
PEITC and taxol at various concentrations as indicated in the tables for 48 hou
done using Calcusyn software. CI: combination index. Fa: fraction affected; Ind
examined the effect of combining both agents on cell cycle
progression. Taxol and PEITC as single agent at low con-
centrations caused an accumulation of cells in G2M
(PEITC: 8.94% and 17.08%; taxol: 6.43% and 14.35%, for
MCF and MB, respectively) (Figure 4). When PEITC and
taxol were added concurrently in the cell culture for
48 hours , there was a significant increase (43.2% and 57.1%
for MCF and MB, respectively) in the number of cells
arrested in the G2M phases (P < 0.001) and a correspond-
ing decrease of cells in the G1 phases (P < 0.001).

Effect of combination of PEITC and taxol on apoptosis of
breast cancer cells
Using TUNEL assay, the effect of PEITC and taxol on
cell apoptosis was examined. Compared with either
agent alone, the combination of PEITC and taxol
increased apoptosis by 3.4- and 2.8- folds, respectively,
in MCF cells, and by more than two folds in MB cells
(Figure 5).

Discussion
Paclitaxel has been a major chemotherapeutic agent for
breast cancer and a variety of solid tumors [22-24]. Its
Group PEI(µM) Taxol(nM) Fa CI

1 1 10 0.72 1.26

2 2.5 10 0.61 0.99

3 5 1 0.62 1.53

4 5 10 0.35 0.47

5 5 100 0.19 0.23

6 5 1000 0.15 0.31

7 10 10 0.25 0.51

CI For experimental values

Group PEI(µM) Taxol(nM) Fa CI

1 1 100 0.55 0.48

2 2.5 100 0.49 0.41

3 5 100 0.41 0.37

4 10 1 0.60 0.96

5 10 10 0.44 0.52

6 10 100 0.31 0.34

7 10 1000 0.22 0.38

CI For experimental values

A-MB-231 breast cancer cells. Cells were cultured in the presence of
rs. The number of cells were then enumerated. The dose-effect plot is
ex >1.0 indicates antagonism, index <1.0 indicates synergism.
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Figure 4 PEI and taxol combination increases G2M cell cycle arrest in MCF7 and MDA-MB-231 breast cancer cells. The MCF7 cells were
treated with 5 μM of PEITC and 10 nM of taxol alone or in combination. Due to higher resistance of MDA-MB-231 cells, PEITC at 10 μM and taxol
at 100 nM were used. The DNA content was by flow cytometry to determine the distribution of cells in each phases.
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major clinical limitations are neurotoxicity and cellular
resistance after prolonged treatment. PEITC is a novel
epigenetic agent with a dual effect of histone deacetylation
and DNA methylation [13,14]. This study found that the
two agents have a profound synergistic inhibitory effect
on the growth of two different breast cancer cell lines,
MCF and MDA-MB-231. The IC50 of PEITC and taxol
decrease dramatically when the two chemicals are used in
combination. These results suggest that it is highly
possible to significantly reduce side effects of taxol
while maintaining or enhancing clinical efficacy by
combining the two drugs.
We hypothesize that by combining PEITC and taxol, it

is possible to significantly reduce toxicity in vivo by
reducing the dosage of taxol needed while maintaining
clinical efficacy for breast cancer and other solid tumors.
This hypothesis appears to be supported by this in vitro
study, and can be tested further in mouse model carrying
breast cancer xenografts.
Novel agents targeting different molecular pathways
are being actively studied for targeted cancer therapy
[18,21,42-46]. A recent study has shown that the HDAC
inhibitor vorinostat can up-regulate estrogen receptors
and make breast cancer cells more sensitive to tamoxifen
[47]. A preliminary report from a recent clinical study
seems to corroborate this laboratory finding, where
patients with hormone-refractory breast cancer showed
responses to tamoxifen again after vorinostat treatment
[48]. Since PEITC is a HDAC inhibitor as well as a
tubulin-targeting agent, it would be worthwhile to test
the combination of PEITC and tamoxifen for therapy of
hormone-refractory breast cancer.
Similar to previous reports, we also observed that very

high concentrations of taxol did not further increase
growth inhibition and apoptosis. This may be due to the
fact that higher concentrations of taxol have the oppos-
ite effect on cell growth as reported earlier [49]. The
exact mechanism remains unclear.
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5 μM of PEITC and 10 nM of taxol alone or in combination. Due to higher resistance of MDA-MB-231 cells, PEITC at 10 μM and taxol at 100 nM
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In conclusion, this is the first study to show that the
combination of the epigenetic agent PEITC with the
chemotherapeutic agent taxol exhibits a synergistic ef-
fect on growth inhibition, cell cycle arrest, and apoptosis
in breast cancer cells. This novel strategy deserves further
study in vivo.
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