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Abstract

Background: Taxol is a powerful chemotherapy agent leading to mitotic arrest and cell death; however, its clinical
efficacy has been hampered due to the development of drug resistance. Taxol specifically targets the cell cycle.
Progress through mitosis (M stage) is an absolute requirement for drug-induced death because cell death is
markedly reduced in cells blocked at the G;-S transition. The measured doubling time for ovarian cancer cells is
about 27 h. As such, during treatment with Taxol most of the cells are not in the M stage of the cell cycle. Thus, the
effect of cell-cycle synchronization was investigated in regard to reversing Taxol resistance in ovarian cancer cells.

Methods: Giemsa-Wright staining was used for assessing the morphology of the cells. The doubling time of the cells
was calculated using formula as follows: Td = In2/slope. The resistant index and cell cycle were measured via MTT
assays and flow cytometry. Thymidine was used to induce cell-cycle synchronization, and cell apoptosis rates
following exposure to Taxol were measured using a flow cytometer.

Results: The growth doubling time of two Taxol-resistant cell lines were longer than that of Taxol-sensitive cells.
Apoptotic rates in Taxol-sensitive and -resistant cell lines after synchronization and exposure to Taxol were all higher
compared to unsynchronized controls (p <0.05).

Conclusions: Synchronization of the cell-cycle resulted in an increased effectiveness of Taxol toward ovarian cancer
cell lines. We speculated that formation of drug resistance toward Taxol in ovarian cancer could be partly attributed

to the longer doubling time of these cells.

Keywords: Thymidine, Cell cycle, Chemoresistance, M stage, Cell-cycle synchronization

Introduction

Ovarian cancer is the third leading cause of death and
has the highest mortality rate among the gynecologic
malignancies. Because of the effectiveness of Taxol on
uncontrolled ovarian cancer, Taxol has quickly become
the first-line chemotherapy treatment [1-3]. Taxol has
high cytotoxic action on many types of cell lines in vitro,
especially ovarian, breast, and lung [4-6]. Although com-
bination chemotherapy, such as Taxol and cisplatin, has
improved the prognosis for the initial treatment of ovar-
ian cancer, the 5-year survival rate of advanced-stage
ovarian cancer is still between 15-20%, due to the emer-
gence of a broad resistance pattern that is either intrinsic
to the tumor or acquired after chemotherapy [7-11].
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Acquired resistance to taxol was investigated in the
current study.

Taxol was first isolated from the bark of the western
yew and has been shown to have cytotoxic activity
against a wide range of neoplasms. Taxol is an anti-
mitotic agent that binds to microtubules and stabilizes
them against depolymerization; therefore, Taxol inhibits
cell replication by disrupting normal mitotic spindle
formation and arresting cell growth in the M phase of
the cell cycle [12-14]. Reversal of drug resistance in can-
cer chemotherapy is a complex phenomenon involving
diverse molecular mechanisms. Currently, research on
drug resistance involving Taxol has been associated with
induction of the multidrug resistance (MDR) phenotype,
overproduction of p-glycoprotein, mutation of tubulin
sites, and abnormal expression of bcl-2 [15-19]. Indeed,
such research concerning Taxol resistance emphasizes
alterations during the cell cycle.
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Taxol induces apoptosis by blocking cells in the G2/M
phase of the cell cycle. Although several studies have
suggested a correlation between drug resistance and the
cell cycle, the exact mechanisms have not been fully in-
vestigated. As such, drug resistance at the molecular
level still requires further investigation [20,21]. Normal
cells proliferate through the G1, S, G2, M, and G1 stages
via serial, strictly monitored mechanisms. Cells with ab-
normal cell-cycle progression typically die after under-
going apoptosis. The nature of cancer is related to
alterations in the mechanisms influencing the cell cycle.
The mechanism of action of many kinds of anti-tumor
drugs on cancer cells is attributed to the disturbance of
cell-cycle control [22-24]. Taxol (also known by its
generic name paclitaxel) is known to invoke a mitotic
checkpoint; however, the full mechanisms of action re-
main incompletely characterized. Cells that are rela-
tively resistant to these drugs block mitosis, whereas
cells sensitive only transiently block mitosis before
undergoing nuclear fragmentation and death. Passage
through mitosis is an absolute requirement for Taxol-
induced death because death is markedly reduced in
cells blocked at G;-S and G, [25,26]. The cell cycle re-
flects the station of a group of cells rather than a single
cell. While growing in the same medium, all cells are
not at the same stage and concordance is absent. This
greatly reduces the efficacy of Taxol. The replication
time of some ovarian cancer cells is approximately 27 h
and resistant cell lines even more longer. During the
whole cells cycle, most cells were in GO/G1 or S stage
[27]. Thus, a disparity exists between the longer doub-
ling time of cancer cells and the shorter window of
action in which Taxol functions, as such most cells do
not occupy the M stage during the short window of
Taxol action. Synchronization of the cell cycle via thy-
midine results in arrest of most cells at the S stage be-
cause DNA synthesis is not completed and the cells
cannot proliferate to the next stage (M phase). After the
medium containing thymidine is changed with common
medium, most cells gradually enter the M phase at
approximately the same time. The effect of cell-cycle
synchronization via thymidine on reversing Taxol resist-
ance in epithelial ovarian cancer cell lines was investi-
gated in this current study.

Materials and methods

Drug and reagents

Taxol was obtained from Bristol-Myers Squibb Co.
(Princeton, NJ, USA) and stored at a concentration of 10
nM diluted in DMEM at room temperature. High-
glucose medium (HG-MEM) was purchased from Gibco
BRL (Grand Island, NY, USA). MTT and DMSO were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
RNase A was purchased from Beijing NuPu Biological
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Company (Beijing, China). A cell apoptosis kit was pur-
chased from Beijing BaoSai Technological Corporation
(Beijing, China). Thymidine was purchased from Merck
& Co (Whitehouse Station, NJ, USA).

Cell lines and cell culture

The SKOV3 cell line was obtained from the Biological
Cell Institute of Chinese Peking Union Medical College
(Chinese Academy of Medical Science). The Taxol-
resistant cell line, SK-TJ2500, was induced from SKOV3
cells by intermittent exposure to 2.5 pM Taxol. While
growing to the logarithmic phase, cells were given re-
peat stimulation with Taxol for approximately 1 h over a
period of 16 months. A2780 and its Taxol-resistant cell
line, TA2780, were obtained from the Oncologic Institution
of Guang Xi Medical College. All the cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) con-
taining 10% fetal calf serum, 100 U/ml penicillin and
streptomycin. Cells were kept at 37°C in a humidified
atmosphere of 5% CO2 and 95% air. These cell lines
grew in monolayers and were passaged when cultures
were 70-80% confluent.

Morphological observations

For light microscopy, exponentially growing cells were
transfered to 30-mm dishes containing sterile glass slides
and allowed to adhere in 5% CO2 at 37°C for several
days. When the cells were 70-80% confluent, the slides
were washed, fixed in methanol for 10 min and stained
by the Wright-Giemsa method. (Philips, Eindhoven, The
Netherlands).

Resistant index (RI) and MTT assays

Cells were harvested from exponential phase and
digested using 0.25% trypsin. Single-cell suspensions
were prepared. Cells were counted using a hemo-
cytomhemo cytometer and then dispersed within 96-
well microtiter plates. Six duplicate wells were used for
each determination. Plates were maintained at 37°C in a
humidified atmosphere of 5% CO2 and 95% air. A 24-h
preincubation time was allowed prior to addition of
drugs. Taxol were added to each well in six grades. After
incubation of 72 h, MTT (5 g/1) 20 ul was added to each
well. Four hours later, 100 ul of DMSO was added and
incubated for 10 min at room temperature. Absorbance
at 540 nm on each well was measured using Immu-
noskan 340 (Labsystems, Vantaa, Finland). Control wells
for absorbance readings contained cell-free medium. All
experiments were performed at least three times.
Resistance index (RI) equals the ratio of the inhibitory
concentration 50% (IC50) values of resistant to sensi-
tive cells.
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Table 1 Resistant index and group doubling time of four
kinds of cells

Cell lines Doubling time(hours) Resistang index(RI)
SKOV3 2749+4.21 1

TJ2500 3761 +3.34% 6235+113

A2780 2707 £ 858 1

TA2780 31.23 £6.624* 25+65

Legend: **(p<0.01) compared with SKOV3, * (p<0.05) compared with A2780.

Doubling time assays

Cells were added to 24-well plates (5x 10° cells/well)
and cultured at 37°C with 5% CO,. Three duplicate wells
were used for each determination. Four cell counts for
each replicate from each cell line were made every 24 h
for 7 days. The data were subjected to liner regression
analysis, in which the doubling time (Td) was calculated
from the formula: Td = In2/slope.

Cell-cycle analysis by flow cytometry
Monodispersed cells 1x10° were harvested during the
exponential growth phase.
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The cells were washed with PBS, fixed in 70% ethanol,
and stored at -20°C overnight. The fixed cells were washed
twice in PBS, resuspended in PBS containing 200 pg
RNase A (Sigma) and incubated at 37°C for 30 min. The
samples were stained with 20 pg propidine iodide
protected from light for 30 min and the distribution of
cells in the cell cycle was analyzed using a flow cytometer.
(BD Company, Franklin Lakes, NJ, USA). All experiments
were performed at least three times.

Cell-cycle synchronization

When cells growing in 6-well plates had grown to 60-70%
confluence, 2 mmol/L. thymidine was added to the
medium. After 11-16 h of culture, the culture medium
was replaced with fresh medium, and the cells were subse-
quently treated with thymidine for an additional 16 h
(Harper JV 2005 UK). Then, the cells were separated into
two groups. One group of cells was collected for cell-cycle
analysis and the other group of cells continued culturing
and Taxol (100 nmol/l) was added to the medium 8 h later
and maintained for 4 h. Finally, the cells were collected
48 h after Taxol was withdrawn, and cell apoptosis rates
were determined using a flow cytometer. All experiments
were performed at least three times.
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Figure 1 Images and corresponding growth curves for the four cell lines. Legend A: morphology of four cell lines by inverted microscope
at original magnification x 20 and 40 respectively. Legend B: The cell growth curves of the human ovarian cancer cell lines. SKOV3, A2780 and
their drug resistant sublines TJ2500 and TA2780. Four cell counts for each replicate from each cell line were made every 24 h. for 7 days. Cell
counts using trypan blue exclusion to assess viable cells were used to determine Td for each cell line. Td was calculated as described in Materials
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Apoptosis assays

After trypsinization and centrifugation, the cells (be-
tween 5x10° and 1x10°) were rinsed twice with PBS and
the supernatant was discarded. The cells were then
suspended in 0.2 ml of buffer. Annexin-V FITC (10 ul)
and PI (5 ml) were added in the dark. The cell suspension
was mixed slightly and maintained at room temperature
for 15 min and then at 4°C for 30 min. Buffer (0.3 ml) was
added to detect the cell apoptotic rate using a flow
cytometer over a 1 h period (baosai Technological Corpor-
ation Beijing china). The same experiment was repeated at
least three times.

Statistical analysis

The experimental data are shown as the mean + SD.
Employing SPSS v.12.0 software (SPSS, Chicago, IL,
USA), a t-test was used to assess pairwise differences be-
tween the treatment and control groups. A p-value of
<0.05 was considered statistically significant.

Results

Rl and group doubling times

Table 1 shows the different RIs of the sensitive and re-
sistant cell lines. The growth doubling time for the
sensitive cell lines (SKOV3 and A2780) were about 27 h
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and that of resistant cell lines (T]J2500 and TA2780) were
statistically longer and difference is significant. Growth
curves for the four cell lines are shown in Figure 1.

Analysis of sensitive and resistant cells stained with
Giemsa (Figure 1) showed that aberrant nuclei among
TJ2500 cells were more prevalent than among SKOV3
cells and that the appearance of the TA2780 cells was
mostly fusiform compared to the round shape of A2780
cells. We speculated that these changes in morphology
might be related to their sensitivity and resistance to-
ward Taxol, as these biological properties likely reflect
the growth and fission of cells.

Cell-cycle analysis

Cell cycle analysis was carried out to further investigate
the longer doubling times of the resistant cell lines com-
pared to the sensitive cell lines. Results in Figure 2 show
that the resistant cell lines have a significantly higher
proportion of cells existing in the GO-G1 stage of the
cell cycle and a significantly reduced number of cells in
the S phase compared to the sensitive cell lines. How-
ever, the number of cells in the M stage was not changed
significantly. The increased number of cells existing in
the GO-G1 stage in the resistant cell lines may reduce
the potency of Taxol.
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Figure 2 Cell cycle analysis for the four cell lines. Legend A: the results of cell-cycle analysis by flow cytometry the initial and last red peak
represent GO-G1, G2-M stage respectively, middle is S stage. Legend B: The percentage of resistant cells in GO-G1 was increased and reduced in
the S phase compared with sensitive cells. **(p<0.01) compared with SKOV3, * (p<0.05) compared with A2780.
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Cell-cycle synchronization with thymidine

In order to test the above assumption, we added thymidine
to the medium, which prohibited the synthesis of DNA
and hampered the progression of the cells into the next
stage, resulting in most of the cells arresting in the S phase.
The proportion of cells in the G2/M phase was subse-
quently reduced. Following the removal of the thymidine,
most of the cells gradually entered the M phase several
hours later. The time at which most sensitive cells
(SKOV3) synchronized with thymidine entered the M
phase was approximately 6-8 h; the Taxol-resistant cell line
(TJ2500) required 8-10 h. In contrast to Figure 2, the re-
sults in Figure 3 show that with the addition of thymidine,
more cells of the sensitive cell lines (SKOV3 and A2780)
had entered the M phase compared to the resistant cells
lines (TJ2500 and TA2780) when assessed at the same time
point. This indicated that the speed at which the resistant
cells proliferated was slower compared to the sensitive cell
lines. We therefore choose 8 h as the time point to add
Taxol and to assess apoptosis after synchronization.

Cell apoptotic rates
After synchronization with thymidine, cell lines (both
sensitive and resistant) were incubated in common
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medium without thymidine for about 8 h and then stim-
ulated with Taxol (100 nmol/L) for 4 h. The apoptosis
rates of the cells were detected after withdrawed Taxol
48 h later. Independent trials were performed at least in
triplicate. Figure 4 shows the significantly different
apoptotic rates among the four cell lines compared with
unsynchronized controls (p <0.05). Furthermore, apop-
totic rates of the resistant cells after synchronization
were lower than that of the sensitive cells, especially in
regard to the TA2780 cell line.

Discussion

Microtubules represent effective targets in cancer ther-
apy. Taxol, a member of the Taxane family of anticancer
drugs, stabilizes microtubules. At the molecular level,
Taxol binds directly to microtubules, leading to a potent
suppression of microtubule dynamics, increased micro-
tubule stabilization, and interphase microtubule bund-
ling; consequently, cells undergo robust mitotic arrest
and subsequent apoptotic cell death. The mitotic check-
point is thought to be invoked by these microtubule-
disrupting drugs via mechanisms that monitor correct
spindle formation and tension. In normal cells this check-
point helps ensure that equal numbers of chromosomes

SKOV3 TJ2500

DNA contents

A2780

TA2780

2

I T T T I

% ]

0 —— ™

[=2]
o
T

50
40
30
20
10

0 . :

cell cycle perentage (%)

m G0-G1
oS
0G2-M

SKOV3 TJ2500  A2780 | TA2780

Figure 3 The percentage of different phases of cell cycles synchronized with thymidine and changed with common medium 8 h later.
Legend A: the results of cell-cycle analysis by flow cytometry in cells synchronized with thymidine and changed with common medium 8 h later.
the initial and last red peak represent GO-G1, G2-M stage respectively, middle is S stage. Legend B: percentage of cells in the M stage was greater
than those cells without synchronization for all four cell lines. At the same time point after synchronization, significantly more sensitive cells were
in the M stage compared to resistant cells, difference is significantly. ** (p<0.01).
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are distributed to daughter cells and, thus, avoid mis-
segregation and the potentially catastrophic consequences
of aneuploidy [28,29]. The development of protocols using
RNA interference to specifically silence gene expression
has provided the ability to test the potential function of
specific components of this checkpoint. Our prior
research found that these drugs induced nuclear frag-
mentation mainly after cells had progressed into mi-
tosis; conversely, the lethal effects of these drugs were
significantly lessened when cells were prevented from
progressing into mitosis [26]. Current models propose
that the mitotic checkpoint proteins (BubR1, Bubl,
Bub3, Madl, and Mad2) sense a lack of tension or at-
tachment between the kinetochore and microtubules of
the mitotic spindle and transmit a “wait signal” to in-
hibit the anaphase-promoting complex [30,31]. Certain
cancer lines evolved a less robust mitotic checkpoint,
and such defects in the mitotic checkpoint may confer a
growth advantage by enabling cells to tolerate chromo-
somal instability or aneuploidy or by allowing faster
proliferation. In support of the latter, Shichiri et al.
found few mutations of BubR1 or Bubl in a series of

surgically resected colorectal tumors, but the subset
that showed low mRNA expression was associated with
a significantly higher recurrence rate [30]. The results of
Lee et al suggested that cell death after drug treatment
with Taxol in SkBr3 cells was a consequence of entering
mitosis. To formally exclude the possibility that cell
death may result earlier from effects at other phases of
the cell cycle, they synchronized SkBr3 cells in G1-early
S phase and followed their progression through the cell
cycle following release and drug treatment. The addition
of Taxol 2 h after release did not have a discernable ef-
fect on progression into either the S or G2 phase com-
pared with control cells. However, at a time when the
control cells had largely completed mitosis and returned
to the G1 phase, cells treated with Taxol showed sub-
stantial nuclear fragmentation and death [26]. Experi-
ments have also suggested that the integrity of the
mitotic checkpoint is an important determinant of sen-
sitivity of cancer cells toward microtubule-disrupting
chemotherapy and that resistant cell lines show a robust
mitotic checkpoint, including strong expression of the
BubR1 and Madl. The drug resistance of these cells
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could also be reversed by silencing of BubR1 [26,32].
However, others have provided evidence that expression
of BubR1 is reduced and the function of the spindle
checkpoint is weakened in cell lines with Taxol resistance
[33,34]. Drug resistance is often a multifactorial process,
and although we cannot exclude the possibility that mech-
anisms distinct from the spindle checkpoint contribute to
Taxol resistance, there must exist other factors affecting
formation of drug resistance during cell cycle. Passage
through mitosis is an absolute requirement for drug-
induced death. It is tempting to speculate that the clinical
response of certain tumors to microtubule-disrupting
drugs may be at least partially reflected in the intrinsic
sensitivity of cell lines derived from these tumors. For ex-
ample, the efficacy of Taxol in treating patients with breast
and ovarian cancer is well established, whereas results in
treating sarcomas, colorectal, and renal cancer have been
disappointing [35-37]. It is likely that these mitotic check-
point proteins participate in different pathways to effect
orderly mitotic progression; as such, their relationship
with Taxol resistance requires further investigation.

The focus of this current study was on the formation
of acquired drug resistance. The resistant cells lines in
this experiment were obtained by intermittent exposure
of sensitive cells to Taxol. The group doubling time of
ovarian cancer lines (SKOV3 and A2780) were approxi-
mately 27 h, and that of resistant cells (TJ2500 and
TA2780) was even longer. Figure 2 show cell cycle of
four cells line which unsynchronizated. cells in GO-G1
and S stage occupied 80-90%, M-stage only 10-20%, es-
pecially resistant cells (TJ2500, TA2780) in GO-G1 stage
much more than sensitive cells lines, difference is signifi-
cantly. While growing in the same medium, cells are not
all at the same stage of the cell cycle and concordance is
absent, which results in a lower efficacy of Taxol, as its
effectiveness is limited to a short time period while cells
in M stage. Only over a treatment time of approximately
27 h could it be possible to conclude that most cells had
passed through the M stage. We speculated that forma-
tion of drug resistance toward Taxol in ovarian cancer
could be partly attributed to the longer doubling time of
these cells.

We used cell-cycle synchronization to test the above as-
sumption. After adding a high concentration of thymidine,
most of the cells arrested at the S phase and could not pro-
gress to the next stage (M phase). After a fresh medium
change, most of the cells gradually entered the M phase at
nearly the same time, at this point Taxol was added to the
medium. Figure 3 show cell cycle of four cells line which
synchronizated. cells in GO-G1 and S stage particularly
ruduced and M-stage much increased, especially sensitive
cells(SKOV3,A2780) in M stage more than resistant cells
lines. The apoptotic rates of cells treated with thymidine
were significantly increased compared with the cells
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without thymidine, and this was not only observed in sen-
sitive cells but also in resistant cells. Taxol-resistant cells
may require a longer time of action when compared to
sensitive cells in order to achieve optimal results; this is be-
cause the proliferation period or growth doubling time of
the resistant cells was longer and most of these cells were
in the non-M phases during the window of Taxol action.

Cell-cycle synchronization resulted in an increase in
the number of cells passing through the M stage at a
given time and reduced the toxicity of Taxol toward
cells in the non-proliferative phase, improving its effect-
iveness and decreasing the chance of drug-resistant for-
mation. This method may be an efficient approach to
strengthen the effectiveness and reverse drug resistance
related to Taxol.

However, apoptosis of resistant cells after synchronization
was lower than that of sensitive cells, especially in re-
gard to TA2780 cells. This observation partly implied
that resistance formation towards Taxol is a complex
phenomenon involving diverse molecular mechanisms,
as opposed to a single factor. The observation that entry
into mitosis seems to be a requirement for rapid killing
after microtubule disruption in drug-sensitive cells has
implications for the sequential application of these
drugs and other forms of anticancer treatment. For ex-
ample, initial use of Taxol may reduce the lethal effects
of microtubule-disrupting drugs. Thus, it may be prefera-
ble to administer therapy inducing cell-cycle synchro-
nization before paclitaxel treatment to possibly reduce the
likelihood of the development of drug resistance.
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