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Abstract

Background: Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality
and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity,
and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies
have demonstrated sequential mast cell infiltration and degranulation during squamous cell
carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of
hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells
in carcinogenesis is unclear.

Aim: This study explores the effects of mast cells on the proliferation and gene expression profile
of mucosal squamous cell carcinoma using human mast cell line (HMC-I) and human glossal
squamous cell carcinoma cell line (SCC25).

Methods: HMC-I| and SCC25 were co-cultured in a two-compartment chamber, separated by a
polycarbonate membrane. HMC-| was stimulated to degranulate with calcium ionophore A23187.
The experiments were done in quadruplicate. Negative controls were established where SCC25
were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of
SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study
differential gene expression between co-cultured and control SCC25.

Results: HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34%
compared with |10% for the control by 72 hours, p < 0.001), and dysregulation of genes TRAIL,
BIRC4, CDK®, Cyclin G2 and CDC6 in SCC25.

Conclusion: We show that mast cells have a direct inhibitory effect on the proliferation of
mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle
control.
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Background

Mucosal squamous cell carcinoma of the head and neck
(HNSCC) is the sixth most common cancer afflicting men
in the developed world. Despite diagnostic and therapeu-
tic advances, there has been little improvement in the
mortality over the last three decades [1]. Although the
genetic events underlying HNSCC progression are slowly
unravelling [2], very little is known about the interactions
between the tumor and its microenvironement, more spe-
cifically the host's local immunity, and how the latter con-
tributes to the biological behavior of the tumor. Among
the immune cells (i.e., tumor-associated macrophages,
dendritic cells, neutrophils, T cells and mast cells) in the
microenvironment, mast cell has probably received the
least attention despite well-established evidence for its
roles in carcinogenesis [3].

Mast cells originate from the bone marrow and the imma-
ture progenitors migrate to peripheral tissues where they
mature in-situ. Mast cells abound in intense peritumoral
inflammation that often surrounds aggressive cancers,
including melanoma, breast carcinoma and colorectal
adenocarcinoma [4]. In laryngeal SCC specimens, mast
cells are frequently present in clusters, whereas they scatter
singly in the submucosa in healthy tissues [5]. Flynn et al
demonstrate a direct correlation between sequential mast
cell infiltration and activation, and distinct stages of
hyperkeratosis, dysplasia, carcinoma in-situ and invasive
squamous carcinoma in the oral cavity in vivo [6]. Mast
cells have been implicated in conferring the angiogenic
phenotype in pre-malignant lesions, and contributing to
neovascularization during squamous epithelial carcino-
genesis [7]. The effects of mast cells on carcinogenesis are
likely to be mediated through multiple pathways, includ-
ing immunosuppression, enhancement of angiogenesis,
disruption of the extracellular matrix, and promotion of
tumor cell mitosis [3].

Using MTIT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl
tetrazolium bromide) cell proliferation and cDNA micro-
array assays, we investigated the effects of a human mast
cell line co-culture on the rate of proliferation, and gene
expression profile of a human tongue squamous cell car-
cinoma (SCC) cell line. We demonstrated mast cell-medi-
ated cytotoxicity, and dysregulation of apoptotic and cell
cycle genes in the mucosal SCC cell line.

Results

HMC-1/SCC25 co-culture resulted in suppression of
growth rate for SCC25, which became statistically signifi-
cant by 24 hours (p < 0.001) (Figures 1 and 2). The
growth discrepancy increased with time, and by 72 hours
the growth rate of co-cultured SCC25 was less than a third
that of the control (34% and 110% respectively). At 24
hours, the co-cultured SCC25 cell count dipped below the
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starting value (Figure 2), although the rate of proliferation
improved subsequently. Morphology differences in the
co-cultured SCC25 cells were obvious as compared to the
control. Co-culture with HMC-1 resulted in considerably
more rounded and shrunken SCC25 cells, many of which
subsequently became non-viable and detached from the
confluent monolayer.

HMC-1 affected the gene expression profile of SCC25 in
co-culture (Figure 3) (Table 1). Two members of the apop-
tosis panel were found to be significantly up-regulated,
tumor necrosis factor-related apoptosis-related ligand
(TRAIL) and baculoviral inhibitor of apoptosis repeat-
containing protein 4 (BIRC4). Several candidate genes
known to play a role in cell division were found to be dys-
regulated, including up-regulation of cell division cycle 6
(CDC6), and down-regulation of cyclin-dependent kinase
6 (CDK6) and cyclin G2 (CCNG2).

Discussion

Like other inflammatory cells, mast cells are attracted to
tumors by various factors, including hypoxia, cellular
damage, tissue ischemia and tumor-derived chemoattract-
ants, including stem cell factor, interleukins-3 (IL-3) and
IL-4 [8]. They in turn produce various cytokines, such as
tumor necrosis factor-a (TNF-a), IL-1, IL-4 and IL-6,
which can induce apoptosis of tumor cells. Mast cells are
also known to stimulate anti-tumor lymphocytes through
IL-8 and RANTES [9]. The cytokines produced by mast
cells effecting genetic changes in the target cells, however,
are beyond the scope of this study.

SCC25 co-cultured with (a) HMC-1 and (b) control SCC25
at 12 hours did not show discernible growth difference on
microscopic examination. At 72 hours, (d) control SCC25
had outgrown (c) co-cultured SCC25, forming a confluent
monolayer on the lower compartment of the culture plate.
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Figure 2

Rate of proliferation of SCC25 as determined by MTT colorimetric assay. Co-culture of HMC-| with SCC25 caused a
decreased rate of proliferation evident by 12 hours, and the discrepancy in proliferation continued to increase at 24, 48 and 72

hours.

Apoptosis panel

Our study shows that TRAIL is up-regulated in the co-cul-
tured SCC-25 target cells, possibly through mast cell-
derived interferon-y (IFN-y). Up-regulation of TRAIL gene
expression and protein synthesis is known to occur in
Ewing sarcoma, and thyroid carcinoma cell lines follow-
ing intereferon (IFN)/cytokine treatment, contributing to
apoptosis of the malignant cells in an autocrine and para-
crine manner [10,11]. TRAIL serum levels in melanoma
patients are found to be significantly elevated following
IFN-o administration [12]. The protein encoded by this
gene is a cytokine that belongs to the TNF ligand family
[13]. It is an immunological apoptotic inducer that pref-
erentially kills virus-infected, transformed and tumor
cells, but spares normal cells [13,14]. The binding of
TRAIL to its receptors triggers activation of MAPK8/JNK,
caspase 8 and caspase 3 [13]. Recent finding that TRAIL
induces apoptosis in endothelial cells suggests that it may
have an indirect anti-angiogenesis property in addition to
its tumor cytotoxic effect [15]. Preclinical experiments
have demonstrated the efficiency of recombinant human
TRAIL and monoclonal antibody against TRAILR1 and
TRAILR2 on human breast, colon, and uterine cancers
[16].

BIRC4, an endogenous apoptosis inhibitor, is found to be
up-regulated. The protein encoded by BIRC4 belongs to a
family of highly conserved apoptosis suppressor proteins
that bind to TNF receptor-associated factors, TRAF1 and

TRAF2. It inhibits apoptosis induced by menadione, cas-
pase 3 and caspase 7 [13].

Cell cycle panel

HMC-1 down-regulates CDK6 expression in SCC25.
CDKs are important regulators of cell cycle progression.
CDKG6, which first appears in mid-G1 phase, is important
for G1 phase progression and G1/S transition. Together
with CDK4, they regulate the activity of Retinoblastoma
(Rb) tumor suppressor protein [13]. Exit from the G1
phase of the cell division cycle is regulated by phosphor-
ylation of pRb by cyclin D/CDK4 and cyclin D/CDK6
complexes. Dysregulation of these critical kinases causes
PRb inactivation resulting in deregulation of the cell cycle
control. Increased expression of CDK6 has been shown as
a mechanism for Rb inactivation in oral SCC [17].
Recently, the growth of melanoma cell lines has been suc-
cessfully retarded in vitro by down-regulating their CDK6
gene expression with small interfering RNA [18]. Down-
regulation of CDKG6, coupled with reciprocal up-regula-
tion of Rb (unpublished data, fold change 1.9, p = 0.09)
will result in suppression of cell growth as observed in this
study.

In addition to up-regulation of BIRC4 and CDC6, and
down-regulation of CCNG2 contradict our finding of
HMC-1 exerting an overall inhibitory effect on SCC25
proliferation. The DNA replication licensing protein
encoded by CDC6 assembles to form one of the pre-repli-
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Schematic representation of dysregulation of apoptotic and cell cycle genes in SCC25 when co-cultured with HMC-1.

cative complexes required for DNA replication. CDC6 is
over-expressed in dysplastic cells. CDC6 mRNA expres-
sion increases in a linear fashion in cervical squamous car-
cinogenesis, from normal cervix through cervical
intraepithelial neoplasia to invasive cervical carcinoma
[19].

CCNG2 has been suggested as a negative regulator of cell
cycle progression. Its dysregulation is implicated in epi-
thelial transformation and the early stages of human oral
cancer development. Transfection of human oral SCC cell

Table I: Dysregulated genes in SCC25 after co-culture with HMC-1.

line with CCNG2 induces cell arrest in the G1 phase,
resulting in a significant inhibition of cellular prolifera-
tion [20].

As some mast cells secrete a myriad of mediators, many
with opposing effects, it is not surprising that genes that
are known to inhibit and promote tumor proliferation are
both dysregulated. The net effect on growth undoubtedly
depends on an intricate interplay between these genes.
Our study demonstrates an overall inhibitory effect of
mast cells on the proliferation of HNSCC.

Accession no. Gene name Average fold change p value
NM_003810 TRAIL/TNFSFI0 1.6 0.0l
NM_ 001167 BIRC4 1.7 0.02
NM 001254 CDCé 2.1 0.0l
NM_004354 CCNG2 0.5 0.02
NM_001259 CDKé 0.5 0.04
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Our co-culture study represents the simplest of models to
study the effects of mast cells on HNSCC, in a one-to-one
relationship. In reality, mast cells are among a very heter-
ogenous population of cells in the tumor microenviron-
ment [4,8]. They are exposed to a multitude of signals
with different temporal patterns from the tumor cells,
non-malignant resident cells (e.g., fibroblasts) and other
inflammatory/immune cells (e.g., macrophages).

Our study has failed to show an unequivocal direction in
the change of gene expression in the target cells, reinforc-
ing the screening nature of microarray tests. Validation of
the proposed genes with RT-PCR, and if confirmed, fol-
low-up investigation of potential mast cell-derived medi-
ators effecting change in the target cells e.g., TNF-a, IL-1,
IL-4 and IL-6 by siRNA gene knock-down study or subject-
ing the co-culture supernatant to Western-blotting would
be a logical approach.

Given the plasticity and versatility of mast cells, their phe-
notype may change, being inhibitory or stimulatory to
tumor development, depending on the microenviron-
ment [21]. It is also possible that mast cells are initially
recruited to the tumors as part of the host defence system,
but subsequently become enmeshed within the stroma
participating in carcinogenesis [21].

The challenge to targeting mast cells in cancer treatment
therefore lies in selective inhibition of tumor-promoting
mediators while sparing cytotoxic ones, or identifying and
blocking causative factors contributing to their unfavora-
ble phenotypic alteration.

Conclusion
Mast cells inhibit HNSCC proliferation in vitro by dysreg-
ulating apoptotic and cell cycle gene expression.

Materials and methods

Cell lines

Human mast cell line (HMC-1) was obtained from Dr J.
Butterfield (Mayo Clinic, MN, USA) and grown in Iscove's
medium (with 25 mM HEPES, sodium bicarbonate, L-
glutamine; without alpha thioglycerol or beta mercap-
toethanol) (Gibco, NY, USA), 10% iron-supplemented
bovine calf serum (Hyclone, Auckland, NZ) and 1.2 mM
alpha thioglycerol (Sigma, MO, USA) at 37°C and 5%
CO,. SCC25 was obtained from American Type Culture
Collection and maintained in 1:1 mixture of DMEM and
Ham's F12 medium (with 1.2 g/L sodium bicarbonate,
2.5 ml L-glutamine, 15 mM HEPES and 0.5 mM sodium
pyruvate supplemented with 400 ng/ml hydrocortisone)
(Gibco, NY, USA) and 10% fetal bovine serum (Hyclone,
Auckland, NZ) at 37°C and 5% CO,. For the purpose of
the co-culture experiment, SCC25 was subsequently har-
vested by trypsinization and cultured in fresh Iscove's
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medium as described. This did not impact negatively on
the viability as determined by tryptan blue exclusion test.

Co-culture of SCC25 and HMC-I

SCC25 at a cell density of 3.5 x 104/ml (x2.5 ml) was cul-
tured in the lower compartment of a 35-mm co-culture
well (Corning, MA, USA). 5.8 x 10%4/ml of HMC-1 (x1.5
ml) was seeded on the polyester transwell filter (pore size
0.4 um) (Corning, MA, USA) in the upper compartment,
giving an HMC-1:SCC25 co-culture ratio of 1:1. The cells
were co-cultured in Iscove's medium as specified above.
HMC-1 were then degranulated with 1 uM calcium iono-
phore A23187 (Sigma, MO, USA). The cells were co-cul-
tured for 72 hours. Negative controls were established in
which SCC25 were cultured alone without HMC-1, and
A23187 was added to the empty upper compartment of
the co-culture chambers. Culture medium was renewed
every 24 hours. Histamine release was adopted as a surro-
gate marker for measurement of mast cell degranulation
[22]. 1 uM A23187 was used as secretagogue in this study
as higher concentrations did not show further increase in
histamine release (Figure 4), and at 1 pM, A23187 did not
affect viability of cultured cells as determined by tryptan
blue exclusion test. Degranulation of HMC-1 was shown
to plateau at 12 hours after stimulation (Figure 4).

Cell proliferation assay

Co-culture experiments were conducted for 12, 24, 48 and
72 hours, at the end of which SCC25 were subjected to
colorimetric quantification of proliferation and viability
with MTT assay (Sigma, MO, USA). Four sets of co-culture
experiments were performed for each time frame (n = 4).

Data for the co-culture experiments was subjected to anal-
ysis of variants with terms for co-culture effect, time and
the interaction between co-culture effect and time, done
with the log of the data, and with a random term for the
culture wells.

cDNA microarray analysis

RNA extraction and cDNA synthesis

Six sets of co-culture experiments and negative controls
were carried out. The upper compartment of the co-cul-
ture chambers containing HMC-1 was discarded at 72
hours. SCC25 cells were lysed directly in their culture
wells with Trizol (Sigma, MO, USA), and total RNA
extracted as per manufacturer's instructions. The total
RNA isolated was pooled. The quantity, purity and integ-
rity of the RNA samples were assessed with spectropho-
tometer and gel electrophoeresis.

Reference RNA pooled from 14 human cancer cell lines
was available upon request (Pacific Edge Biotechnology,
Dunedin, NZ). cDNA synthesis from SCC25 and reference
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Optimal degranulation of HMC-I with calcium ionophore A23187 was achieved with | pM concentration. Degranulation pla-

teaued at |12 hours.

RNA was carried out with SuperScript III Reverse Tran-
scriptase (Invitrogen, CA, USA) as per protocol.

cDNA labeling and microarray hybridization

SCC25 and reference cDNA samples were labeled with
DMSO-suspended Molecular Probes, Alexa Fluor 647 and
Alexa Fluor 555 (Invitrogen, CA, USA), respectively. The
c¢DNA samples were then purified with the QIAquick PCR
Purification Kit (Qiagen, CA, USA).

Genome-scale (30 000), oligonucleotide microarray slide
(Pacific Edge Biotechnology, Dunedin, NZ) post-process-
ing, pre-washing, and hybridization were performed
according to the manufacturer's recommendations.

Data filtering and analysis

Signal intensity and analysis were determined using Gene-
PixPro 4.0 Array Acquisition and Analysis Software for
GenePix 4000B. Ratio count for the two wavelengths on
the histogram was scaled to 0.95 - 1.05. Signal intensities
were taken as "foreground median - background", and
were excluded if they were below 50. Any spot less than 10
nm in size and that was not present on all slides was
excluded. Each array was normalized using the lowess
smoother method. The filter for gene expression fold
change (up-regulation and down-regulation) was set at >
1.5. 6 525 genes fulfilled these criteria.

Data analysis was performed with Biometric Research
Branch - Array Tools 3.1.0. SCC25 co-cultured and con-
trol samples were subjected to class comparison and two-
sample t-test. A p-value of < 0.05 was taken to indicate sta-

tistical significance. 458 of the 6 525 genes satisfied this
criterion.

These 458 genes were analysed against known gene ontol-
ogies of tumorigenesis, metastasis, apoptosis and cell
cycle as profiled in BioRag (Bioresource for Array Genes)
[23], PubMatrix [13] and Source Database, Stanford
Genomic Resources [24], totalling 250 individual genes
[see Additional file 1]. 5 genes matched. Further analysis
on remaining genes forms the basis of another ongoing
study.

Additional material

Additional file 1

Genes known to feature in tumorigenesis, metastasis, apoptosis and cell
cycle control gene ontologies. This table lists 250 genes that are known to
be involved in tumorigenesis, metastasis, apoptosis and cell cycle control.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2867-6-28-S1.doc]
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