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Abstract
Background: Zerumbone is a cytotoxic component isolated from Zingiber zerumbet Smith, a
herbal plant which is also known as lempoyang. This new anticancer bioactive compound from Z.
zerumbet was investigated for its activity and mechanism in human liver cancer cell lines.

Results: Zerumbone significantly showed an antiproliferative activity upon HepG2 cells with an
IC50 of 3.45 ± 0.026 μg/ml. Zerumbone was also found to inhibit the proliferation of non-malignant
Chang Liver and MDBK cell lines. However the IC50 obtained was higher compared to the IC50 for
HepG2 cells (> 10 μg/ml). The extent of DNA fragmentation was evaluated by the Tdt-mediated
dUTP nick end labelling assay which showed that, zerumbone significantly increased apoptosis in
HepG2 cells in a time-course manner. In detail, the apoptotic process triggered by zerumbone
involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-
2 protein expression. The changes that occurred in the levels of this antagonistic proteins Bax/Bcl-
2, was independent of p53 since zerumbone did not affect the levels of p53 although this protein
exists in a functional form. Western blotting analysis for Bax protein was further confirmed
qualitatively with an immunoassay that showed the distribution of Bax protein in zerumbone-
treated cells.

Conclusion: Therefore, zerumbone was found to induce the apoptotic process in HepG2 cells
through the up and down regulation of Bax/Bcl-2 protein independently of functional p53 activity.

Background
Carcinogenesis is composed of a multi-stage process of
initiation, promotion and progression. In the steady-state,
cell division must be counterbalanced by cell death. This
important active process of cell death is known as apopto-
sis or programmed cell death. The term "apoptosis" was
introduced by Kerr to describe a form of hepatocellular
cell death in ischaemic liver disease [1]. Apoptosis has
been recognized as a tightly controlled mechanism

involving death factors and death receptors in the control
of cell proliferation. The recognition of tumor develop-
ment involves an imbalance between cell proliferation
and apoptotic cell death, which is the current dogma in
tumor biology [2]. Evidence showed that hepatocellular
apoptosis is essential in all three stages of hepatogenesis,
involving the initial genotoxic insult (initiation), through
the clonal expansion from a premalignant to a tumorous
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lesion (promotion) and finally to the progression of
tumor growth by further clonal expansion [3].

Hepatocellular carcinoma (HCC) derived from hepato-
cytes is one of the most common malignancies through-
out the world. It is characterized by its high incidence in
hepatitis B virus-associated cirrhotic liver disease [4] and
other risk factors such as hepatitis C virus, aflatoxin, sex,
hormones and some metabolic diseases [4,5]. The differ-
ent epidemiology distributions of HCC have facilitated
the identification of these associated risk factors series [4].
Thus, a great deal of research has been turned towards
novel chemotherapeutic drugs from the plant kingdom in
search of cancer inhibitors and cures. Pezzuto reported
that the bioactive components obtained from herbal
plants have high potential in preventing and controlling
carcinogenesis [6].

Zingiberaceae is one of the largest families of the plant
kingdom most frequently used as raw material for making
various traditional medicine formulations that are com-
monly sold in the market [7,8]. It is an important natural
resource that provides many useful products for food,
spices, medicines, dyes perfume and aesthetics to man.
Traditionally, the rhizome of Zingiber zerumbet are
employed as medicine in relieving stomachache, macer-
ated in alcohol which is regarded as tonic and depurative.
Besides, it is also used as the spice ginger and a novel food
factor for mitigating experimental ulcerative colitis.

Scientific research towards Zingiber zerumbet proved that it
contained a suppressive effect which was conducted by a
bioactive compound, zerumbone. It is also has been
found able to exert antitumor activity [9,10], anti-inflam-
matory effects and possesses antiproliferative potentials in
a variety of cell culture [11]. It is identified that the inhi-
bition of Epstein-Barr virus (EBV) early antigen (EA) acti-
vation which was induced by tumor-promoters in vitro
correlated well with the zerumbone anti-tumor promot-
ing effect in vivo [10,12]. Mechanisms of inducing apopto-
sis in the hepatocarcinoma cells by zerumbone was
carried out in vitro using a well-differentiated transformed
cell line, HepG2 cells which have been widely used and
considered to be a good model for liver cancer research
[13].

Zerumbone is a crystalline sesquiterpene derived from the
wild ginger, Z. zerumbet. This bioactive component has its
unique structure, with a cross-conjugated ketone in an 11-
membered ring, as well as an interesting biological activ-
ity [14]. Antiproliferative activity of Z. zerumbet is mainly
modulated by the zerumbone component which is the
main cytotoxic compound that constitute about 37% of
the whole Z. zerumbet content [15]. As Murakami et al.
stated, zerumbone also displayed a selective cytotoxic

characteristic towards cancer cell lines and normal cell
lines. Zerumbone was also found to inhibit the prolifera-
tion of human colonic adenocarcinoma cell lines in a
dose dependent manner while less effective towards the
growth of normal human dermal and colon fibroblasts
[11]. Thus, this study aims to elucidate if the cytotoxic and
antiproliferative action of zerumbone is mediated by the
apoptotic mode of cell death.

Results
Effect of zerumbone on cell viability
Figure 1 shows that, zerumbone was able to exert the anti-
proliferative effects towards human cancer cell line,
HepG2 tested in time-dependent manner. The IC50 values
which is the concentration required for 50% growth inhi-
bition of zerumbone towards HepG2 cell viability is 3.45
± 0.026 μg/ml. Zerumbone also inhibits the proliferation
of non-malignant Chang Liver and MDBK cells with an
IC50 value of 10.96 ± 0.059 μg/ml and 10.02 ± 0.03 μg/ml
respectively whereby the IC50 value exceeding > 10 μg/ml
is the highest compared to other cancer cells.

Comparatively, cisplatin, a drug with antineoplastic activ-
ity was used in this study. Cisplatin is used widely in the
treatment of ovarian, bladder and testicular cancer. Cispl-
atin imposed an inhibitory effect on HepG2 cells with an
IC50 value of 7.23 ± 0.036 μg/ml. Cisplatin was also found
to be effective toward non malignant cells of Vero and
Chang Liver with IC50 values of 9.06 ± 0.044 μg/ml and
7.08 ± 0.073 μg/ml respectively (Figure 2)

Zerumbone induced apoptotic cell death
To further define the mechanism of antiproliferative effect
of zerumbone, HepG2 cells were treated with zerumbone
at 3.45 μg/ml in a time-course manner to determine
whether this bioactive compound induced HepG2 cell
death via apoptosis or necrosis (Figure 3). Cisplatin was
used as positive control while negative control was treated
with DMSO (Figure 3[A]). HepG2 cells which were treated
with zerumbone for 24 hours (Figure 3[B]), showed active
apoptosis and the fragmented DNA were labeled with flu-
orescence 12 dUTP in the nuclei. At the beginning of the
treatment, the intensity of the yellow fluorescence was
dim. However, more fluorescence TdT-binding occurred
at 48 hours of treatment, thereby indicating more cells
were undergoing apoptosis (~80%) (Figure 3[C]). At 72
hours of treatment, HepG2 cells showed membrane bleb-
bing and the presence of apoptotic bodies (Figure 3[D]).
Apoptosis was also shown by the typical oligonucleo-
somal ladders which indicated DNA from treated cells was
fragmented into 180 until 200 base pair of nucleosomal
multimers (Figure 5). The same phenomenon occurred
when HepG2 cells were treated with cisplatin, however
the intensity of yellow fluorescence was not as bright as
the fluorescence in zerumbone-treated HepG2 cells (data
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not shown). In HepG2 cells treated with DMSO as nega-
tive control, no fluorescence was detected in the nuclei,
due to the absence of fragmented DNA (Figure 3[A]). The
percentages of apoptotic cells after zerumbone treatment
increased in a time-course manner with > 50% at 24 hours
and ~80% by 48 hours. Untreated cells which represent
the control showed only 6% of cell death via apoptosis
(Figure 4 [Control]).

Zerumbone up-regulated Bax and suppressed the 
expression of Bcl-2 protein
To determine which apoptosis-related proteins are regu-
lated by zerumbone, the expression of p53, Bax and Bcl-2
protein were measured after 3.45 μg/ml zerumbone treat-
ment for 0, 3, 6, 12 and 48 hours in HepG2 cells using
Western Blotting analysis (Figure 6). Exposure of HepG2
cells to zerumbone increased the pro-apoptotic protein,

Bax and decreased the expression of anti-apoptotic, Bcl-2
protein. The up-regulation of Bax by zerumbone was con-
firmed via immunostaining (Figure 7). However, the
expression of protein suppressor tumor, p53 did not show
any significant changes compared to control throughout
the treatment. The result implies that apoptosis induced
by zerumbone may be mediated by the Bax and Bcl-2
pathways in liver cancer cells, HepG2.

Discussion
The aim of this study was thus to elucidate the mechanism
of the apoptotic effect induced by zerumbon in HepG2
cells. In Asia, medicinal herbs are used as treatment for
various ailments including malignancies [16]. Previous
study showed that this active compound able to exhibit
versatile biological activities such as repressed insulin-like
grow factor-1 and induced Waf-1 gene expression [17],

Effects of zerumbone on cell viability of HepG2 cancer cell lines and non-cancer Chang Liver and MDBK cellsFigure 1
Effects of zerumbone on cell viability of HepG2 cancer cell lines and non-cancer Chang Liver and MDBK cells. Treatment of 
zerumbone on HepG2 cell lines significantly reduced the number of viable cells with IC50 values being obtained less than 5 μg/
ml. Non-malignant Chang Liver cells was also affected but the IC50 was the highest compared to other malignant cell lines while 
the IC50 of zerumbone-treated non-malignant MDBK cells was 10.02 ± 0.03 μg/ml.
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glutathione S-transferase activity [18] and heat shock pro-
tein [19]. Zerumbone was also found to exert antiprolifer-
ative activity which inhibits tumor cell growth [20],
induction of differentiation [21], apoptosis [22] and cyto-
protective activity [23]. According to Matthes et al., Z.
zerumbet from the family of Zingiberaceae has cytotoxic
effects on many types of cancer cells [20] and dramatically
suppresses the EBV activation [11]. The data obtained in
this study revealed the inhibitory effect of zerumbone on
HepG2 cancer cell growth (IC50 of 3.45 ± 0.026 μg/ml).
Zerumbone did show the ability to act as a cytoselective
anticancer agent since zerumbone was three times less
effective towards non-malignant Chang Liver cells (IC50 >
10 μg/ml) and non-malignant MDBK cells (IC50 = 10.02 ±
0.03 μg/ml). Previous research showed the minimum
effect of zerumbone towards non-malignant MDBK cells
with IC50 value of 7.20 ± 0.32 μg/ml in comparison with

MCF-7 cells (IC50 = 2.49 ± 0.13 μg/ml) [24]. Hoffmann et
al. indicated an appropriate dose of zerumbone induced a
high intracellular redox potential which stopped the pro-
liferation of cancer cells but not the normal cells [25]. This
was also proven by Murakami et al. who reported that
zerumbone inhibited the proliferation of human colonic
adenocarcinoma cell line in a dose dependent manner
while the growth of normal human dermal (2F0-C25)
was less affected [11]. Thus, the effects of zerumbone were
specific towards tumor cells.

However the effect of cisplatin was not cytoselective since
its antiproliferative effect was towards both cancerous and
non-cancerous cells. Recent evidence indicated that the
nephrotoxic effects of cisplatin is still a common adverse
effect in both adults and children even with the use of
hyperhydration and other protective measures [26-28].

Effects of cisplatin on cell viability of HepG2 cancer cells and non-malignant Vero and Chang liver cell linesFigure 2
Effects of cisplatin on cell viability of HepG2 cancer cells and non-malignant Vero and Chang liver cell lines. The effectiveness of 
cisplatin on HepG2 cells and non-malignant Chang Liver cells did not significantly differ since the IC50 obtained for both malig-
nant and non-malignant were 7 μg/ml. The IC50 of cisplatin-treated non-malignant Vero cells was 9.06 ± 0.044 μg/ml.
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Our data indicated that cisplatin gave a low IC50 value
towards normal Chang Liver cells (IC50 7.08 ± 0.073 μg/
ml) and normal Vero cells (IC50 9.06 ± 0.044 μg/ml).
However, the effect of cisplatin towards cancerous cells
especially on HepG2 cells show that it is not as effective as
zerumbone. This is because, the effects of zerumbone
towards HepG2 cells was (IC50 = 3.45 ± 0.026 μg/ml)
twice lower in comparison with the effects of cisplatin
(IC50 7.08 ± 0.073 μg/ml). Thus, these finding suggested
that zerumbone has more ability to inhibit the prolifera-
tion of human liver cancer, HepG2 cells compared to cis-
platin.

To confirm that zerumbone-treated cell death was via
apoptosis, the extent of DNA fragmentation was analyzed

and Apoptotic Index calculated. Apoptotic Index (AI) is
described as percentage of apoptotic cells and apoptotic
bodies within the overall population of total cells [29].
When HepG2 cells were treated with zerumbone (3.45
μg/ml), TUNEL-positive cells detected at 24 hours of treat-
ment was > 50%. Gavrielli et al. reported that in the early
process of apoptosis, DNA fragmentation occurs at the
periphery of the nucleus within minutes [30] while lyso-
somal degradation ended within hours depending on cell
type and tissue [31-33]. This can be seen in the increase of
apoptotic scores ~80% by 48 hours and 90% after 72
hours of zerumbone treatment. Morphologically, in the
late stage of cell death, the effect of zerumbone produced
fragmentation of condensed chromatin into several dis-
crete mass. Untreated control cells only recorded ~6% of

HepG2 cells were treated with 3.45 μg/ml zerumbone for 24 (B), 48 (C) and 72 (D) hoursFigure 3
HepG2 cells were treated with 3.45 μg/ml zerumbone for 24 (B), 48 (C) and 72 (D) hours. DMSO treated HepG2 cells served 
as negative control (A) and thus gave TUNEL-negative results indicating less apoptotic signal. Arrows indicated cells with frag-
mented DNA due to apoptosis which occurred actively at the beginning of the treatment and the presence of apoptotic bodies 
after 72 hours at the end of treatment. Magnification: 1000×.
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apoptotic cells. Figure 3(B), 3(C) and 3(D) showed
HepG2 cells underwent DNA fragmentation with similar
characteristics of apoptotic cells [34-36].

Zerumbone was also found able to cleave the double-
stranded DNA into fragments of 180–200 base pair. This
can be observed after the treatment with zerumbone at
concentration of 3.45 μg/ml. DNA fragmentation is the
primary physiological characteristic which indicate an
early event in apoptosis and it represents a point of no
return from the path to cell death. This is due to no more
new cellular protein will be synthesized for cell survival.
As shown in Figure 5, multiple-unit of apoptotic DNA lad-
der was detected in zerumbone treated HepG2 cells and
the apoptotic signal increased with the duration of treat-
ment. Previous study showed that, the cleavage of double-
stranded DNA in apoptotic DNA degradation occurs via
the activation of endogenus Ca2+/Mg2+ dependent endo-
nuclease that specifically cleaves between nucleosomes to
produce DNA fragments that are multiples of ~180 base
pair [37,38].

In further analysis, we demonstrated that zerumbone
markedly inhibited the variability of HepG2 cells and this
was a consequence of the induction of apoptosis as evi-

denced by Western Blot profiles, TUNEL assay and DNA
fragmentation analysis. The data showed that the funda-
mental event that occurred when HepG2 cells were treated
with zerumbone, is a marked decrease in the level of these
two antiapoptotic and proapoptotic factors. The suscepti-
bility of tumor cells to the induction of apoptosis by
chemotherapeutic agents is controlled by the ratio of Bcl-
2/Bax proteins in the mitochondria [39]. The pro-apop-
totic activity of Bax and the related protein was held at bay
by the formation of complexes with anti-apoptotic pro-
tein, Bcl-2. When cells in culture received death signals,
Bax moves to mitochondria and other membrane sites
and triggers a catastrophic transformation of mitochon-
drial function which includes release of cytochrome c to
the surrounding cytosol, loss of transmembrane potential
and induction of mitochondrial permeability transition
events that result in apoptotic cells [40]. From data
obtained (Figure 6), treatment of liver cancer cells elicit
the down-regulation in Bcl-2 and significantly up-regu-
lated the expression of Bax. Takada et al. reported, the
downregulation of Bcl-2 protein led to the potentiation of
apoptosis induced by cytokines and chemotherapeutic
agents [41]. In particular, an important role seems to be
exerted by Bcl-2 when present at a higher level in
untreated HepG2 cells. Bcl-2 reacts on interceding and

Percentages of HepG2 cell death via apoptosis after zerumbone treatmentFigure 4
Percentages of HepG2 cell death via apoptosis after zerumbone treatment. HepG2 cell death via apoptosis increased signifi-
cantly in a time-dependent manner.

0

10

20

30

40

50

60

70

80

90

100

Control 24 48 72
Duration of zerumbone treatment (hours)

%
 o

f 
A

p
op

to
ti

c 
In

d
ex
Page 6 of 11
(page number not for citation purposes)



Cancer Cell International 2007, 7:4 http://www.cancerci.com/content/7/1/4
blocking the Bax induced events at several levels including
preventing the Bax redistribution after a death signal [42]
Therefore zerumbone act in balancing the ratio of Bax/
Bcl-2 and the increase of Bax protein in HepG2 cells seems
to contribute to the apoptotic effect.

In contrast to the expression of p53 protein, the activation
of apoptosis by zerumbone is independent of p53 since
the expression levels of p53 did not show any significant
increase after zerumbone treatment (Figure 6). However,
Muller et al. reported p53 gene in HepG2 cells was not
mutated and existed as a functional wild form [43]. Thus,
this showed that zerumbone can induce apoptosis of
HepG2 cells in p53 deficiency. Although p53 is a tran-
scription factor that involves stabilization of the protein
and establishes programmes for apoptosis, senescence,
and repair in response to a variety of cellular stresses,

including DNA damage, hypoxia, nutrient deprivation
and untimely expression of oncogenes [44-46] the relative
importance of p53-independent and p53-dependent
apoptotic mechanisms in suppressing tumorigenesis
remains unclear. A lot of anticancer drugs such as meth-
otrexate, bleomisin [43] cause the death of cancer cells via
activation of p53 tumor suppressor gene. However this
strategy does not work since many types of cancer arose by
spontaneous occurrence of mutation in p53 gene or inac-
tivation of p53 protein function by viral protein, such as
Hepatitis B virus × [47].

Conclusion
Our study demonstrates that zerumbone induced apopto-
sis in HepG2 cells by inhibiting the proliferation of cancer
cells. The inhibition was caused by decreasing the levels of
anti-apoptotic protein, Bcl-2 and up-regulation of proap-

Agarose gel of electrophoresis of DNA from HepG2 cells treated with zerumbone for 24, 48 and 72 hours (Lane C, D, E)Figure 5
Agarose gel of electrophoresis of DNA from HepG2 cells treated with zerumbone for 24, 48 and 72 hours (Lane C, D, E). 
DNA fragmentations with a ladder pattern are characteristic of apoptosis. Lane A and H were the molecular marker while lane 
B was the negative control (untreated cells). Lane F and G showed apoptotic DNA in HepG2 cells treated with cisplatin at 24 
and 72 hours.
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optotic Bax without involving p53. Therefore, we suggest
that zerumbone could be further investigated as a new
alternative chemotherapeutic agent for human hepatoma.

Materials and methods
Chemicals
Dulbecco's modified Eagle's medium (DMEM), dimethyl
sulfoxide (DMSO), penicillin, propidium iodide, strepto-
mycin, fungizon, miramycin and tryspin-EDTA were
bought from Sigma Chemical Co. (St. Louis, MO, USA).
Fetal bovine serum (FBS) was obtained from GIBCO BRL
(Gaithersburg, MD). TUNEL Kit was purchased from
Promega (Madison, WI). All other chemicals used were of
the highest pure grade available. Cell culture plasticware
were from Nunc Co. (Denmark).

Cell Culture
Human liver cancer cells (HepG2), non-malignant cells of
Chang's Liver, MDBK and Vero were obtained from Amer-
ican Type Cell Culture Collection (ATCC), Maryland,
USA. All cultured cells were maintained in the logarithmic
phase of growth in DMEM supplemented with 10% fetal
bovine serum (GIBCO BRL), penicillin-streptomycin, fun-
gizon and miramycin at 37°C in a humidified incubator
with 5% CO2 and 95% air. Cultures were regularly exam-
ined using inverted microscope.

Antiproliferative assay
Trypsinized cells were counted using hemocytometer and
plated in a microtiter plate of 96 wells. After an overnight
incubation to allow cells attachment, medium were
changed and 0.2 ml of new supplemented medium were
added in each well. Cells were then treated with 2 μl
zerumbone in a dose dependent-manner, 0.1% DMSO
(negative control) and cisplatin (positive control) and
were incubated at 37°C, 5% CO2 for 72 hours. Each con-
centration of the compounds was assayed in triplicates.
The antiproliferative effect of zerumbone was monitored
employing the Methylene Blue method [48]. The absorb-
ance was measured on an ELISA reader at a test wave-
length of 660 nm.

TUNEL assay
The mode of cell death induced by zerumbone was deter-
mined by morphological observations done with TUNEL
assay. Cells were grown on microscope slides and were
treated with zerumbone based on the IC50 value obtained
from the antiproliferative assay. The fragmented DNA of
apoptotic cells was quantified by Tdt-mediated dUTP nick
end labelling (TUNEL) with the Apoptotic Detection Kit
(Promega Inc. USA). Briefly, the cells were fixed with 4%
methanol-free paraformaldehyde at 4°C and washed with
phosphate-buffered saline (PBS) for 30 minutes. Each

In vitro expression of Bax and Bcl-2 protein for 0, 3, 6, 12, 24 and 48 hoursFigure 6
In vitro expression of Bax and Bcl-2 protein for 0, 3, 6, 12, 24 and 48 hours. p53 expression did not change significantly since the 
p53 was constitutively expressed in both control and treated cells.
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Immunostaining of Bax protein showed a low level of Bax in the untreated HepG2 cellsFigure 7
Immunostaining of Bax protein showed a low level of Bax in the untreated HepG2 cells. However, the immunofluorescence of 
Bax protein increase and can be seen after 24-h treatment with zerumbone.
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slide was then added with 0.1 ml of equilibrium buffer
and covered with parafilm for 10 minutes at 37°C. A mix-
ture of 1 μl TdT (terminal deoxynucleotidil transferase)
enzyme, 5 μl nucleotide mix and 45 μl equilibrium buff-
ers were prepared in the dark and 50 μl of the mixture
were added on each slides. Next, the slides were incubated
for 1 or 2 hours at 37°C in a container, to protect it from
any light source. After that 2× SSC were added for 15 min-
utes in a room temperature to stop the TdT enzyme's reac-
tion. After washing with PBS which is to eliminate the
unbound fluorescen-12-dUTP, the slides were immersed
in propidium iodide for 15 minutes in the dark to stain
the cells. Slides were dried after rinsing with deionized
water and cover slip was later overlaid on the cell area of
the slides. This assay specifically detects apoptotic cells
when examined through the Zeiss fluorescent microscope.

DNA fragmentation
Soluble DNA from the cells was extracted by a previously
reported method. briefly, after washing with PBS, cells
were lysed with 500 μl of lysis buffer (10 mM Tris-HCl,
pH 7.8; 5 mM EDTA and 0.5% sodium dodecyl sulfat)
containing 50 μg/ml proteinase K and incubated at 45°C
for 3 hour. The resulting products were extracted twice
with phenol: chloroform: isoamyl alcohol 25:24:1, and
chloroform once and then treated with 100 μg/ml of
RNase A for an hour at 37°C. DNA was extracted again
with chloroform twice to ensure a complete removal of
phenol. DNA was precipitated with 70% ethanol (dis-
solved in Tris-EDTA buffer) and analyzed by 1.5% agarose
gel electrophoresis.

Western blotting
Protein expression of Bax, Bcl-2 and p53 were analyzed by
Western Blotting. Cells were harvested, aliquoted and
lysed in lysis-buffer. Protein sample (30 ug) from both
zerumbone-treated and untreated cells were separated on
15% SDS-polyacrylamide gels. After electrophoresis, the
proteins were blotted onto polyvinyl-difluoride (PVDF)
membranes (PolyScreen, NEN Life Sciences, USA). The
membranes were dried, preblocked with 5% non-fat milk
in PBS-Tween (0.1%), then incubated with the primary
antibodies (p53, Bax and Bcl-2) diluted in 1: 2000. The
p53 antibody used can detect both wild-type and mutant
p53 protein. The secondary antibody used was horserad-
ish peroxidase labeled to rabbit or mouse IgG. A densit-
ometry analysis was performed using a GS 670 Imaging
Densitometer with software Molecular Analyst (BioRad,
Hercules, USA) after exposure on a Kodak OMAT X-ray
film. The membranes were reprobed with β-actin antibod-
ies (Sigma) as an internal control and to confirm equal
loading.
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