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Introduction
Melanoma is the type of skin cancer with a high mortality 
because of its high propensity to metastasize [1]. How-
ever, the molecular mechanisms that enable melanoma 
cells to colonize distant organs and their interactions with 
the metastatic niche are still poorly understood [2]. After 
conducting a significant amount of research over the past 
decade, it has been determined that the tumor microen-
vironment (TME) does not solely receive immune cells 
passively, but rather actively participates in the advance-
ment of immunosuppressive conditions, which in turn 
enhances the spread of melanoma cells to distant organs. 

Cancer Cell International

†Azadeh Rahimi and Zahra Malakoutikhah equally contributed to the 
paper as a co-first author: Zahra Malakoutikhah.

*Correspondence:
Nasim Dana
Dana.nasim@gmail.com
1Applied Physiology Research Center, Cardiovascular Research Institute, 
Isfahan University of Medical Sciences, Isfahan, Iran
2Division of Medical Education, Brighton and Sussex Medical School, 
Falmer, Brighton, Sussex BN1 9PH, UK
3Pediatric Inherited Diseases Research Center, Research Institute for 
Primordial Prevention of Non-Communicable Disease, Isfahan University 
of Medical Sciences, Isfahan, Iran
4Department of Microbiology, Faculty of biological science and 
technology, University of Isfahan, Isfahan, Iran

Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-
related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions 
involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both 
microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for 
tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor 
and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are 
actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between 
metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement 
of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate 
relationship between components of the melanoma tumor microenvironment and NK cells, delineating their 
multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of 
NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
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Whilst the metastatic niche may initially be hostile to 
the colonization of cancer cells; tumor-derived signals 
can shift the balance towards a metastasis-favoring con-
dition, leading to the development of a hospitable TME 
that promotes tumor growth and dissemination [2].

The interaction of melanoma and immune cells is a 
major contributor to tumor progression and metasta-
sis, which is defined in three distinct phases. During 
the elimination phase, the immune system efficiently 
eliminates transformed cells, thereby preventing tumor 
initiation. Next, the emergence of “immune-resistant” 
cells through the acquisition of favorable mutations and 
subsequent properties leads to the equilibrium phase. 
However, the host immune system is still able to control 
tumor growth by killing immune-sensitive cells. The final 
stage is distinguished by immune evasion, where melano-
mas use various tactics to suppress and evade recognition 
and elimination by both innate and adaptive immunity [3, 
4].

The high mutational burden of malignant melanoma 
makes it one of the most immunogenic cancers; onco-
genes commonly mutated in melanoma induce the 
expression of cytokines, chemokines, enzymes, and 
growth factors, which recruit and regulate immune cells 
[1, 5]. Melanoma cells have a great degree of plasticity, 
which allows them to quickly develop escape mechanisms 
that allows adjustment to an unfavorable TME. Both 
the ability to release immunomodulatory compounds 
and the ability to develop a less immunogenic pheno-
type are present in tumor cells. Additionally, regardless 
of whether a cell has transformed, all other TME cells 
can to adapt to the hostile TME and produce immune-
modulatory signals or mediators that affect immune cell 
activity directly or indirectly by stimulating other cells in 
the tumor site [6]. These properties can further affect the 
composition and recruitment of immune cells or other 
infiltrates within the TME, in favor of metastasis [2].

Hence, in recent years, the manipulation of the 
immune system has emerged as one of the most impor-
tant therapeutic strategies for melanoma. Numerous 
studies have provided evidence in favor of the idea that 
innate immunity, the body’s initial line of defense against 
infections and tumors, plays a significant role in the gen-
esis, progression, and prognosis of melanoma. Therefore, 
the best possible stimulation of innate immune cell popu-
lations may restore functioning immune responses and 
slow tumor growth [7, 8]. The first immune cells that par-
ticipate in non-specific immediate cytotoxicity towards 
melanoma cells are tumor-resident macrophages, poly-
morphonuclear neutrophils (PMN), NK, and dendritic 
cells [6].

NK cells, which are skin-resident innate cytotoxic lym-
phocytes, can eradicate target cells on their own without 
prior sensitization. Through germline-encoded receptors 

that are expressed on the target cells, they identify cells 
that need to be eliminated. Such ligands, which are rec-
ognized by the inhibitory or activating receptors, can 
have either inhibitory or activating effects. Because of 
this, the balance of signals sent by various receptors 
determines whether NK cells will activate or die [6, 9].

The initial immune response against melanoma is sig-
nificantly dependent on the contribution of natural killer 
cells, which not only interact with dendritic cells but 
also secrete cytokines to facilitate the development of an 
appropriate adaptive immune response [10].

In vitro experiments have conclusively demonstrated 
that NK cells possess the ability to identify and eliminate 
melanoma cells [11–13]. The efficacy of NK cells in com-
bating melanoma in vivo has been established through 
animal models [14], and the observation of changes in 
natural killer cells, such as the reduction of activating 
receptors or exhaustion, in patients with melanoma pro-
vides additional evidence to support this idea [15, 16]. 
These observations suggest that melanoma cells may 
have developed mechanisms to evade NK cell-mediated.

In this review, we examine the connection between 
the components of the melanoma tumor microenviron-
ment and the significant role played by natural killer 
cells in controlling melanoma metastasis. We also pres-
ent potential therapeutic strategies to utilize natural 
killer cells for the prevention or treatment of this can-
cer, given their influential role in the melanoma tumor 
microenvironment.

Relationship between melanoma and tumor 
microenvironment components
The tumor microenvironment is a highly complex and 
dynamic ensemble of cells that influences cancer cell 
behavior and can define cancer initiation, growth, devel-
opment, and multidrug resistance [17].

The TME consists of cancer cells and various types of 
tumor stromal cells, including stromal fibroblasts, endo-
thelial cells, and immune cells such as microglia, mac-
rophages, and lymphocytes. Additionally, non-cellular 
extracellular matrix components such as collagen, fibro-
nectin, hyaluronan, and laminin are also present in the 
TME (Fig. 1) [18, 19].

A tumor microenvironment is the collection of cellu-
lar and molecular components that provide the setting 
in which the tumor begins, develops, and finally spreads 
through normal tissue [20].

Normal epithelial cells; fibroblasts that form the tis-
sue’s supporting structure or stroma; blood vessels that 
grow in response to tumor signals; resident and infiltrat-
ing immune cells; signaling molecules provided by both 
cancerous and normal cells; and the extracellular matrix 
(ECM) comprise the tumor microenvironment [17].
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The rapid growth of tumor cells and their high meta-
bolic demands place additional needs on cells, creat-
ing a highly selective environment known as the tumor 
microenvironment. This environment includes changes 
and temporal fluctuations in the biochemical conditions 
within the tissue, such as hypoxia, low pH, and nutrient 
deprivation [21].

Melanoma cells have a highly interactive behavior with 
their surrounding environment, which involves not only 
direct interactions with other cells and the extracellular 
matrix but also the release of growth factors and cyto-
kines into the surrounding area [22]. For melanoma cells 
to successfully settle in a new location during the initial 
stages of invasion, they need to initiate a mechanism that 
enables them to move, infiltrate, and survive in an unfa-
miliar environment with varying microenvironmental 
conditions. Melanomas trigger growth factor loops that 
govern cell sticky qualities, allowing them to survive in 
otherwise unfavorable environmental settings [23].

The tumor microenvironment has long been recog-
nized as an active participant in carcinogenesis. Stromal 
makeup differs from tumor to tumor. In cutaneous mela-
noma, the stroma is either desmoplastic (fibroblasts and 
fibrocytes with considerable fibrillar ECM component 
accumulation) or myxoid (atypical spindle cells with sig-
nificant proteoglycan accumulation) [24]. The main ECM 

component in the dermis is collagen I, which is generated 
primarily by fibroblasts.

Up to 80% of the melanoma tumor mass may be com-
prised of fibroblasts [25], and normal fibroblasts can 
inhibit melanoma growth by the paracrine attraction of 
immune cells [26]. However, melanoma secretes several 
substances, including transforming growth factor-beta 
(TGF-β) and Nodal (a TGF superfamily member), which 
induce the transformation of normal fibroblasts into pro-
tumorigenic cancer-associated fibroblasts (CAFs) with a 
myofibroblast phenotype [27–30].

The number of CAFs within the tumor population may 
increase as melanoma progresses, and they may exhibit 
a variety of functions, including immunosuppression 
caused by the activity of TGF-β [31]. These cells may 
affect the development of melanoma in several ways, 
such as by producing matrix metalloproteinases that 
promote melanoma invasion [32]. Furthermore, CAFs 
secrete vascular endothelial growth factor (VEGF) and 
multiple chemokines in the surrounding tumor sites, 
promote angiogenesis, and actively recruit endothelial 
progenitor cells to the tumor site [25].

Activated fibroblasts impact on the resistance of mela-
noma treatment by producing various growth factors. 
CAFs have diverse functions in the development, metas-
tasis, and resistance to medication in melanoma. These 

Fig. 1  This figure illustrates the relationship between the tumor microenvironment (TME) and the progression of melanoma cancer. The TME is com-
posed of various cell types, such as cancer-associated fibroblasts (CAFs), blood endothelial cells, immune cells, and the extracellular matrix (ECM)
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functions are influenced by intercellular communication, 
the release of extracellular matrix components, growth 
factors, and cytokines [32, 33].

Lymphocytes (including NK cells, T cells, and B cells), 
mast cells, myeloid-derived suppressor cells, dendritic 
cells, and macrophages are among the immune cells 
found in the tumor microenvironment [34].

Melanoma cells hinder the development of dendritic 
cells, thereby allowing them to evade the complex pro-
cess of T-cell activation. These tumor cells secrete inhibi-
tory cytokines which impede dendritic cell maturation. 
Consequently, this disease impairs the ability of dendritic 
cells to present antigens to T cells, leading to a weakened 
immune response [35]. Additionally, patients with mela-
noma experience reduced dendritic cell counts, which 
has been associated with a poor prognosis [36]. DC 
subsets regulate T-lymphocyte function and impact the 
clinical outcome of melanoma [37]. A lower count of DCs 
is associated with metastatic melanoma, while a higher 
count indicates no metastasis or a low risk of recurrence 
[38]. Overall, the function of DCs plays a crucial role in 
determining the prognosis of melanoma.

Dendritic cells are activated through Toll-like recep-
tors (TLRs), recognizing the molecular characteristics 
of potential pathogens [39].TLRs are an important fam-
ily of receptors of the innate immune system responsible 
for detecting the conserved molecular patterns exhibited 
by pathogens [40]. Notably, recent investigations have 
revealed that the activation of TLR-4 induces a substan-
tial increase in the expression of pro-inflammatory and 
immunosuppressive cytokines, as well as inflammatory 
factors, when specific ligands are applied to melanoma 
cells [41, 42]. Proinflammatory cytokines and type I IFNs 
are produced by DC in response to TLR ligands [37]. 
Additionally, studies indicate that tumor-derived TLR2 
ligands, stimulating TLR2+ DCs, impair the activity of 
DCs in mice melanoma [39]. DC modulation affects both 
tumor development and anti-melanoma immunity.

As melanoma progresses, the number of other immune 
cells and neutrophils infiltrating the tumor increases [43]. 
Neutrophils can be divided into two populations: the N1 
subtype, which is the dominant group in the early mela-
noma microenvironment and shows anti-tumor effects, 
and the N2 subtype, which emerges in later stages and 
exerts immunosuppressive effects [44]. In contrast, mast 
cells (MCs), which are long-lived tissue-resident cells 
abundant in human skin, are associated with melanoma 
stroma (MAMCs). Due to their pro-tumorigenic function 
and influence on melanoma development and metasta-
sis, mast cells have shown diverse effects on melanoma 
[45]. Mast cells contribute to the growth of melanoma 
by reacting to substance P-induced neurogenic inflam-
mation [46]. Consequently, mast cells release a variety of 

cytokines, proteases, and biological factors that weaken 
antitumor defenses [47].

Other extracellular components and cells in the tumor 
niche, such as keratinocytes, miRNAs or exosomes, and 
adipose tissue, can also influence the unique immune 
response in the TME [48]. MiRNAs and small non-cod-
ing RNAs that regulate protein translation attenuation or 
suppression play a role in modulating the immune micro-
environment of melanoma [49]. As mentioned above, 
different types of lymphocytes play important roles in 
melanoma. B lymphocytes are the cells in charge of 
acquired and humoral immunity. Although one of their 
secondary functions is to retain immunological memory, 
their major function is to mediate the production of anti-
gen-specific immunoglobulins [50]. These professional 
antigen-presenting cells (APCs) play a wide range of roles 
in melanoma [51].

The development of resistance to targeted therapy 
is facilitated by tumor-associated B cells (TAB), which 
account for more than 33% of the TME immune cells in 
melanoma. TABS also promote angiogenesis and persis-
tent inflammation. Furthermore, melanoma cell metasta-
sis is increased and overall patient survival is decreased 
when B lymphocytes are present in the tumor infiltrate 
[52].

Several studies have presented conflicting results con-
cerning the activation of these cells within the melanoma 
tumor microenvironment. Recent studies on melanoma 
have indicated that non-metastatic melanoma is dis-
tinguished by a high density of B-cells, which correlates 
with a better prognosis. However, other studies have dis-
covered that melanoma cells generate fibroblast growth 
factor 2 (FGF2), which stimulates B-cells to produce 
insulin-like growth factor 1. This, in turn, could poten-
tially lead to resistance against BRAF and MEK inhibitors 
[52, 53]. However, tumor-associated B cells may function 
in a reverse manner in melanoma in response to immu-
notherapy. A particular TAB subtype can make it easier 
for CD8 + T lymphocytes to enter the tumor compart-
ment, which can improve melanoma response to ICIs. 
According to scientists, pretreated melanoma patients 
with larger quantities of these B cells respond better to 
subsequent immunotherapy therapies [54].

The other types of lymphocytes are T cells that identify 
antigenic peptides that are presented by other immune 
system elements that make up the immuno-microenvi-
ronment [55]. Through the release of certain cytokines, 
CD4+ T cells serve as immune response “adjuvants”. In 
contrast, CD8+ T lymphocytes are directly involved in 
antigen/tumor cell differentiation and elimination [56]. 
A recent study of metastatic melanoma samples revealed 
that the presence of tumor-associated CD8+ T cells and 
CD20+ B cells is associated with increased survival [57]. 
In CD8+/CD20+ tumors, the development of tertiary 
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lymphoid structures is associated with a gene profile that 
forecasts melanoma patient-reported outcomes using 
immune checkpoint inhibitors (ICIs).

A subset of T lymphocytes with elevated concentra-
tions of the inhibitory receptor PD-1 and T-cell immu-
noglobulin domain and mucin domain 3 (TIM3) was 
found in patients with advanced melanoma. TIM3 inhi-
bition improved T cells’ antitumor efficiency and par-
tially reversed their dysfunctional state. These findings 
justify concurrent PD-1 and Tim3 inhibition as a poten-
tial treatment strategy to restore CD8 + T cell activity in 
melanoma [58]. In a recent analysis of tumor infiltrate in 
melanoma, it was discovered that the defective CD8 + T 
cell subgroup exhibited significant clonal expansion. 
The authors highlighted the importance of understand-
ing the differentiation and reactivity of these cells, as it 
is probable that they have an important function in con-
trolling the anti-cancer activity and resistance to immu-
notherapeutic drugs. Consequently, these cells become 
an appealing objective for immunotherapeutic treat-
ments that are more precise and efficient in treating mel-
anoma [59].

The third group of lymphocytes, known as natural 
killer cells, can be categorized into two main subgroups 
based on the expression of CD56 and CD16. Certain nat-
ural cytotoxicity receptors (NCRs) play a crucial role in 
facilitating tumor destruction by NK cells [60]. Notably, 
NKp30, NKp44, and Natural-Killer Group 2 Member D 
(NKG2D) are the main receptors responsible for activat-
ing NK cells’ anticancer properties. However, it is worth 
noting that the expression of these receptors can be sup-
pressed by various factors present in melanoma TME 
[61].

The TME’s NK cells can directly lyse tumor cells, which 
is just one of their many effects on tumor cells. The 
buildup of activating signals that outweigh the inhibitory 
signals triggers NK cell-mediated cytotoxicity. During the 
malignant transformation process, many cancers exhibit 
increased expression of ligands for NK cell-activating 
receptors. Despite this, numerous types of cancer, includ-
ing melanoma, have developed tactics to evade detection 
and elimination by NK cells [62]. There are various ways 
in which NK cells can be avoided by melanoma cells, such 
as through direct interaction with tumor cells, secretion 
of cytokines or molecules by tumor cells or immune-sup-
pressive cells, and the creation of a hypoxic environment 
within the tumor [10]. The survival rate of melanoma in 
mouse models was found to decrease significantly when 
NK or CD8 T cells were depleted, despite treatment with 
anti-PD-1 anti-CTLA-4. This suggests that NK and CD8 
T cells work together to eliminate the tumor in response 
to these therapies [63]. Patients with advanced melanoma 
receiving anti-PD-1 therapy have significantly more 
CD16 NK cells [64].

NK cells occupy a crucial position between the innate 
and adaptive immune systems and have significant func-
tions in the melanoma tumor microenvironment. In the 
following sections, we will examine the important role of 
NK cells in managing melanoma metastasis and suggest 
potential therapeutic methods to utilize NK cells for pre-
venting or treating this cancer.

The significance of natural killer cells in 
recognizing melanoma
More than forty years ago, tumor-related effects on 
the activity of natural killer cells in melanoma patients 
were reported for the first time [65, 66]. Recognition 
of melanoma cells by NK cells occurs following diverse 
ligand-receptor interactions, particularly as research 
has demonstrated that melanoma cells express diverse 
ligands for various NK cell activation receptors. Gen-
erally, NK cell activities are dynamically controlled by 
the interaction of activating and inhibiting signals. The 
abundance of ligands for the NK cell activation recep-
tors increases only during situations of cellular stress, 
such as viral infection or the onset of malignancy [67]. 
On the other hand, major histocompatibility complex 
(MHC) class I molecules or human leukocyte antigen 
(HLA) class I, typically expressed on healthy nucleated 
cells, provide inhibitory signals to NK cells cytotoxicity in 
a normal setting by interacting with a variety of killer cell 
immunoglobulin-like receptors (KIRs) and/or Natural 
Killer Group 2 A/ CD94 (NKG2A/CD94) [1, 6]. KIRs are 
the most known important inhibitory receptors found 
on NK cells, which belong to a family of receptors with 
a high degree of polymorphism and are capable of recog-
nizing MHC class I molecules. Significantly, only a cer-
tain subset of NK cells express each form of KIR [68, 69]. 
Even though most KIRs are inhibitory receptors, some 
of them are activating receptors, which are thought to 
have evolved from inhibitory KIRs [70]. KIRs commonly 
interact with HLA types A, B, or C, whereas HLA type 
E usually binds to the NKG2A/CD94 inhibitory recep-
tor (Fig.  2) [1, 6]. MHC I molecules are inadequately 
expressed whenever melanomas progress.

Natural cytotoxicity receptors ,and NKG2D, and 
DNAX accessory molecule-1 (DNAM-1) are important 
receptors that are involved in the activation of NK cells 
against melanoma [62]. NCRs play a key role in the elimi-
nation of tumors by NK cells. NK cells in humans express 
the NCRs including NKp46, NKp80, and NKp30; how-
ever, NKp44 is increased following the activation of cer-
tain NK cells by interleukin-2 [71, 72]. It was found that 
melanoma cells hindered the immune function of natural 
killer (NK) cells by suppressing the expression of key NK 
receptors such as NKp30, NKp44, and NKG2D. This inhi-
bition led to a decline in the NK cell’s ability to destroy 
different types of melanoma cell lines [73]. Additionally 
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the surface density of NCR controls the ability of NK cells 
to kill susceptible target cells [74]. Ligands of NCRs can 
also be impacted by tumor heterogeneity and anatomi-
cal origin in metastatic melanoma. For instance, NKp30 
ligands had a very low level of expression in metastatic 
melanoma, whereas NKp44 and NKp46 ligands had vari-
able levels of expression [75]. Another NK cell activation 
receptor, NKG2D, has been discovered to be associated 
with NK cell degranulation and Interferon-gamma (IFN-
γ) expression [15].

NKG2D can recognize two different MHC-like mol-
ecules, the MHC class I chain-associated proteins (MIC) 
A and B, as well as unique long 16-binding proteins 
(ULBPs) induced by stresses like malignant transforma-
tion [76, 77]. After examining different melanoma cells, it 
was discovered that MICA/B and ULBPs are extensively 
present in melanoma cells [13]. DNAM-1 (also called 
CD226) is a transmembrane protein whose expression 

has been reported different in NK cells [78]. Both CD112 
(Nectin-2), as well as CD155 (poliovirus receptor, PVR), 
which are widely expressed by cancer cells such as mela-
noma, are recognized by DNAM-1 [13, 79]. By attaching 
to the Fc component of immunoglobulins IgG1, IgG3, 
IgG2, and IgG4 in NK cells, CD16a functions as a proto-
type NK cell-activating receptor. By facilitating antibody-
dependent cell cytotoxicity (ADCC), CD16 helps kill 
melanoma cells using the engagement of CD16a to IgG, 
in contrast to other activating NK cell receptors. Tumor 
cells are killed when CD16a binds to IgG, causing NK 
cells to produce perforin and granzyme B [62].

NKG2A the other significant NK cell inhibitory recep-
tor, builds heterodimers with CD94 and identifies HLA-E 
[80]. Although HLA-E is either absent or just weakly 
expressed in melanoma, the presence of NK cells fol-
lowed by a high Interferon-gamma response is likely 
what increases HLA-E in melanoma cells [81]. Activating 
and inhibiting NK cell receptors in melanoma cells that 
have been reported are summarised in the Table 1.

Presence of natural killer cells in the tumor 
microenvironment of melanoma
The importance of NK cells in the melanoma microen-
vironment is attributed to the interaction of ligands and 
cell surface receptors with other TME cells, particularly 
melanoma cells. Cellular stress induces the recruit-
ment of NK cell-activation receptors. The transformed 
melanoma cells in the early stage significantly decreased 
the expression of HLA molecules in such a way that it 
moved the balance toward the activation of NK cells 
against these cells. However, melanoma cells with the aid 
of other TME components (cells, factors, and stroma) 
can dampen the activation receptors and upregulate 
the inhibitory receptors on NK cells, thereby promot-
ing tumor progression. These changes include a marked 
reduction in NKp46 expression in blood NK cells from 
patients with stage IV metastatic melanoma as well as a 
change in their functional capabilities [1, 86].

Although NK cells are found in lymph nodes draining 
a tumor, they are usually absent in primary melanoma 
lesions. High levels of laminin and collagen type IV in 
the tumor stroma help in preventing mature and effector 
NK cell subpopulation from penetrating the tumor’s core. 
The rate of melanoma metastasis decreases in direct pro-
portion to how effectively NK cells break this protective 
barrier. However, melanoma metastases lack this tumor 
escape mechanism and NKs can be found in the center 
and periphery of tumor metastases [87].

Evidence shows that the transcription of NK cells pres-
ent in melanoma metastasis differs significantly from 
the circulating NK cells of the same patients. Most cir-
culating NK cells are characterized by a cluster of cells 
with a well-defined cytotoxicity gene expression profile. 

Table 1  Major NK cell receptors in melanoma
Receptor Molecular

structure
Expression Sample 

type
Func-
tion

NKp 30 (NCR) Immunoglobu-
lin Superfamily

Resting and 
activated NK 
cells

stage IV 
mela-
noma 
patients

Acti-
vator 
[75]

NKp 46 (NCR) Immunoglobu-
lin Superfamily

Resting and 
activated NK 
cells

stage IV 
mela-
noma 
patients

Acti-
vator 
[75]

NKp 44(NCR) Immunoglobu-
lin Superfamily

Activated NK 
cells

1106mel 
mela-
noma cell 
line

Acti-
vator 
[82]

NKp 80 (NCR) Immunoglobu-
lin Superfamily

Resting and 
activated NK 
cells

mela-
noma 
metas-
tasis 
patients

Acti-
vator 
[83]

NKG2D C-type lectins NK, gamma 
delta T, CD8+

T cells

stage 
III–IV 
mela-
noma 
patients

Acti-
vator 
[1]

DNAM-1(CD226) Immunoglobu-
lin Superfamily

All NK cells, 
T cells and 
monocytes

B16F10 
mela-
noma cell 
line

Acti-
vator 
[84]

KIR Immunoglobu-
lin Superfamily

NK, T cells stage 
I–IV mela-
noma 
patients/ 
mela-
noma cell 
line

Inhib-
itor/ 
Acti-
vator 
[62]

NKG2A/CD94 C-type lectins NK, Cytotoxic 
T-lymphocyte

B16F10 
mela-
noma cell 
line

Inhib-
itor 
[85]
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Tumor-infiltrating NK cells, however, show increased 
variability in their transcriptional states [83].

Tumor-induced biomolecules such as growth factors, 
cytokines, microRNAs, and exosomes can affect NK cells 
directly or indirectly through TME interactions [34]. 
TME key cells like CAFs, Tregs, MDSCs, TAMs, and 
DCs play pivotal roles in suppressing NK cell cytotoxic-
ity [3]. Cancer cells stimulate CAFs, and the high level of 
MMPs secretion by CAFs in melanoma TME decreases 
the MICA/B expression, which prevents the activation 
of NK cells. CAFs also produce IDO, PGE2, and TGF-β 
which suppress activating receptors, leading to weakened 
NK cell-mediated anti-tumor immunity [88]. Recruit-
ment of cyclooxygenase (COX)-2/PGE2 pathway by 
tumor cells and other cells, such as melanoma-derived 
fibroblasts, is involved in immune evasion. PGE2 appears 
to contribute to decreased NK cell activity through the 
down-regulation of NK-activating receptors, perforins, 
and granzymes. Moreover, PGE2 also affects NK cell 
function indirectly by providing an immunosuppressive 
microenvironment through the induction of Treg cells, 
macrophages, and MDSCs. Melanoma cells also recruit 
Tregs to provide immune-tolerant conditions. These lym-
phocytes inhibit the effector function of NK cells through 
the secretion of immunosuppressive chemokines includ-
ing IL-10, IL-35, and TGF-β. Moreover, they can engage 
DCs through the CTLA-4 pathway to block anti-tumor 
immune responses [89].

Increased distance from tumor vessels, abnormal 
tumor vasculature, and high oxygen demand of cancer 
cells result in hypoxia in TME. Along with genetic muta-
tions, these conditions trigger metabolic reprogramming 
of melanoma cells, which increases glycolysis. The energy 
demand for melanoma is primarily based on glycoly-
sis. Overproduction of lactate and protons by glycolytic 
melanoma cells causes the TME to become more acidic. 
TME acidification in melanoma helps tumors evade 
immune responses by affecting the number and function 
of immune cells such as NK cells. Surprisingly, NK cell 
suppression can be reversed by the neutralization of the 
acidic TME [87, 90].

In the presence of hypoxic stress, tumor cells initiate 
the transcription and secretion of hypoxia-inducible fac-
tor 1 alpha (HIF-1α). Nevertheless, HIF-1α is subject to 
regulation independent of oxygen levels, underscoring 
the complex interplay between oxygen-dependent and 
oxygen-independent mechanisms in determining the 
pathogenesis of melanoma [91, 92]. Within melanoma 
cells, melanogenesis and its highly reactive intermedi-
ates exert a dual effect by amplifying the accumulation of 
HIF-1α and inducing substantial augmentation of both 
the HIF-1-dependent and HIF-1-independent pathways. 
This concerted activation contributes to the progression 

of melanoma and promotes resistance to immunotherapy 
[23].

The release of ADAM10 induced by HIF-1α results in 
the cleavage of MICA/B ligands present on the surface 
of tumor cells. This cleavage leads to the production of 
soluble MICA/B, which in turn reduces the expression of 
NKG2D on the surface of NK cells. As a result, the abil-
ity of NK cells to eliminate tumor cells is compromised, 
allowing the tumor to escape from NK-mediated killing. 
Additionally, hypoxic regions within primary tumors 
cause the fragmentation of NK cell mitochondria, lead-
ing to a decrease in NK cell survival and their capacity to 
eliminate tumor cells [87].

NK cells try to survive in this hypoxic condition by 
expression of HIF-1a; however, they fail to express 
activating NKG2D receptors in response to IL-2 or 
other activating cytokines (IL-15, IL-12, and IL-21). In 
response to hypoxia, HIF1a-induced COX overexpres-
sion causes increased PGE2 secretion [68]. Hence despite 
the preserved degranulation level of NK cells as well as 
the surface expression of other NK cell ligands and recep-
tors, hypoxia reduces the NK cell-mediated killing of 
melanoma cells. In contrast, melanoma cells up-regulate 
the HLA-G on the surface, which can directly or indi-
rectly hinder NK cell-mediated killing [6].

NK cells are plastic, and the function of NKs in mela-
noma depends on the soluble chemicals (such as TGF-β, 
TNF-α, PGE2, IL-10, IL-12, etc.) in the melanoma TME 
and the interactions between cells, whether it be between 
tumor cells or other cells, can cause infiltrating NK cells 
to undergo dynamic phenotypic changes. This can result 
in a gradual shift from NK cells that are capable of caus-
ing cell death in the early stages to cells that are depleted 
or have an immunosuppressive effect in the advanced 
stages (Fig. 2) [6, 93].

Immunosuppressive properties of the tumor 
microenvironment on NK cells
In the majority of solid tumors, the response of NK cells 
is generally ineffective, which could be attributed to two 
distinct factors. Firstly, the suppressive TME may have a 
negative impact on the presence of fully competent NK 
cells at the tumor site. Secondly, the persistence of the 
tumor may promote immunoediting, further contribut-
ing to the ineffectiveness of NK cell responses [94].

In the case of dermal melanoma, as with many other 
types of cancer, the NK cells present in the TME are 
known to be functionally impaired. The impairment can 
be attributed to various factors, including the dysregu-
lation of the activating receptor NKG2D, which has a 
significant impact on the regulation of cytotoxic activ-
ity, cytokine production, and other receptors expressed 
in NK cells and other lymphocytes [95]. The defective 
NK cells observed in cancer models have been linked to 
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tumor growth. The development of NK cells throughout 
the disease can be influenced by both the tumor itself 
and its surrounding environment [96, 97]. Melanoma 
cells have stress molecules that stimulate the activation 
of NK cells, but they also release immunosuppressive 
factors that affect the expression of different NK recep-
tors responsible for activation [12, 73, 98]. A study was 
conducted to investigate the relationship between HLA-E 
molecules and melanoma, revealing elevated levels of 
soluble HLA-E molecules in stage IV melanoma patients 
[99, 100].

The NK cells present in the TME of melanoma can 
eliminate tumor cells directly and/or induce anti-tumoral 
activities through other immune subpopulations. Never-
theless, the intrinsic pathways of cells within melanoma, 
as well as their ability to attract and activate suppressive 
subpopulations, can significantly hinder the cytolytic 
and anti-proliferative functions of NK cells [9]. In animal 
models of melanoma, the differentiation of NK cells into 
mature cells that produce IFN-γ is hindered due to the 
downregulation of the IL-15 receptor, leading to an accu-
mulation of immature NK cells [101]. Human fibroblasts 
present in melanoma lesions can also impede the activa-
tion of NK cells, substantially diminishing their cytolytic 
activity [88].

The expression of activating receptors on NK cells can 
be influenced by human melanoma cells through the 
modulation of their cognate ligands. Interestingly, it has 
been observed that overexpression of activating ligands 

can paradoxically lead to the downregulation of these 
receptors, and this mechanism has been identified as a 
major contributing factor [102, 103].

Studies have demonstrated a correlation between ele-
vated levels of the NKG2D ligand ULBP2 in the serum 
of melanoma patients and larger tumor size, disease pro-
gression, and unfavorable prognosis [104]. Moreover, 
the levels of NKG2D ligands are frequently linked to the 
stage of the disease, wherein the expression of NKG2D 
ligands is lower in melanoma metastases compared to 
primary tumors [105]. According to Konjević et al., [106] 
the cytotoxic activity of NK cells in patients with meta-
static melanoma is impaired due to low expression levels 
of CD161 and NKG2D.

Additionally, it has been observed that human mela-
noma cells have the ability to re-express MHC class I 
molecules, which appears to be influenced by the release 
of IFN-γ by infiltrating NK cells within the tumor. Nota-
bly, melanoma cells that exhibit high levels of MHC class 
I molecules are found close to the infiltrating NK cells 
[11].

In conclusion, the TME in solid tumors, including skin 
melanoma, can have immunosuppressive effects on natu-
ral killer NK cells, leading to impaired cytolytic and anti-
proliferative functions. The dysregulation of activating 
receptors, downregulation of IL-15 receptor, and modu-
lation of cognate ligands by melanoma cells are some of 
the factors that contribute to the ineffectiveness of NK 
cell responses. Understanding the mechanisms underly-
ing the immunosuppressive properties of the TME on 
NK cells is crucial for the development of effective immu-
notherapies for melanoma.

Effect of chemotherapy on NK cells’ ability to recognize 
melanoma cells inside TME
Chemotherapy, the primary therapeutic modality 
employed in the early stages of skin melanoma, yields 
favorable clinical responses but does not demonstrate 
substantial efficacy in enhancing overall survival [95]. In 
vitro and in vivo studies have shown that NK cells can 
fight melanoma (8), and changes in NK cells, such as a 
reduced expression/function of NCRs and production of 
cytokines in patients with melanoma (9, 10), reveal the 
improvement of escape mechanisms to rescue melanoma 
cells from NK cell-mediated destruction [15, 107].

Since it has been established that human melanoma 
cell lines express different ligands for natural cytotoxic-
ity receptors, understanding the interactions between 
these receptors will help to understand the different 
stages of melanoma [13].  As melanoma spreads, there 
is a decreased surface expression of activating ligands, 
with metastatic lesions expressing these molecules at 
lower levels than their primary counterparts [12, 108]. 
NKG2D ligands MICs and ULBPs have received the 

Fig. 2  The tumor microenvironment can affect the activity of NK cells in 
melanoma. The presence of immunosuppressive immune cells in the TME 
can directly impact the function of NK cells. Therefore, understanding the 
complex interactions between immune cells and NK cells in the TME is 
crucial for developing effective immunotherapies for melanoma
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most attention as ligands shed by melanoma cells, but it 
has also been reported that B7-H6, which is activated by 
NKp30, is also shed. As anticipated, shed ligands exhibit 
a different pattern than their surface counterparts and 
increase throughout the illness [104, 109]. Contrary to 
popular belief, overexpression of activating natural killer 
cell receptors is identified as an important key to reduc-
ing NK cell functional responses [102, 110]. Even in epi-
thelia, persistent NKG2D ligand expression impairs NK 
activity and increases tumor susceptibility throughout 
the body [110].

NK cells that migrate into tumors have been dem-
onstrated to have diminished NKG2D-dependent and 
-independent activation pathway functions when stud-
ied ex vivo, regardless of their molecular basis. Chronic 
stimulation of NK cells by tumor cells expressing NKG2D 
ligands can be used to explain widespread NK cell toler-
ance. It is essential to determine the elements and cir-
cumstances that cause NKG2D function to change from 
NK cell activation to NK cell tolerance to utilize NKG2D 
function in tumor immunity [102]. Different investiga-
tions have shown that melanoma patients’ NK cells fre-
quently exhibit decreased activating receptor expression, 
and a diminished ability to react to cancer cells [1, 15, 
111].

The activation of the stress response after DNA dam-
age causes cancer cells apoptosis and blocks their prolif-
eration. It can also sensitize tumor cells to elimination by 
NK cells by enhancing the expression of NKG2D ligands 
[112]. Chemotherapeutic drugs, such as dacarbazine, 
temozolomide, and cisplatin, may function against mela-
noma in part by amplifying the DNA damage response, 
which causes an increase in NKG2D ligand expression 
[113]. Dacarbazine mediates the upregulation of NKG2D 
ligands by melanoma cells that activate NK cells and pro-
duce IFN-γ, which leads to an increase in MHC-I presen-
tation by melanomas [114, 115]. It has been suggested 
that melanoma patients with high levels of NKG2D 
ligands on tumor cells and activation of NK cells after 
dacarbazine consumption may respond better to immu-
nomodulation [114].

The antitumor action of both adaptive and innate 
immunity must be triggered in the tumor microenviron-
ment to effectively inhibit tumor growth. Fregni et al. [86] 
in their study showed that in patients with metastatic 
stage IV melanoma, circulating NK cells exhibit distinc-
tive phenotypes and function toward melanoma cells. 
They observed that patients exhibited changes in NK 
phenotype and function after chemotherapy. Their find-
ings demonstrate that NK cells participate in the immune 
response to melanoma and provide fresh experimental 
justification for their application in immunotherapy regi-
mens for patients with melanoma. In addition, patients 
with melanoma who received dacarbazine showed an 

increase in NK cells expressing NKp46, lending credence 
to this idea [86]. Furthermore, patients who responded 
to dacarbazine showed increased NK cell cytotoxicity in 
melanoma cells [116].

Cisplatin has been shown to have a similar ability to 
increase the expression of NKG2D ligands, which allows 
it to increase the cytotoxicity of NK cells. In addition, 
cisplatin increases the expression of other activators 
such as B7-H6, a ligand expressed by tumor cells, once 
it interacts with its natural receptor NKp30 and activates 
NK cell-mediated cytotoxicity [117]. This ligand is only 
expressed by malignant cells such as melanoma, and not 
by normal cells [118, 119]. ICAM-1 and Fas are also other 
activators affected by cisplatin [120, 121]. Furthermore, 
cisplatin can make cancer cells more susceptible to gran-
zyme B by increasing the penetration of cancer cells and 
the expression of the granzyme-target caspase-3, which 
mediates the implementation phase of apoptosis [122, 
123].

Different studies have shown that paclitaxel reduces 
NK cell cytotoxicity by affecting microtubule dynam-
ics [124–126]. Other reports, however, disputed these 
findings, suggesting that paclitaxel might improve the 
removal of tumor cells through NK cells by boosting their 
cytotoxic effects, prompting the expression of ICAM-1 
and MIC-B, and/or by making melanoma cells more sus-
ceptible to death [122, 126, 127]. These seemingly incon-
gruous results likely depend on the dosages of paclitaxel 
used in the various studies, as low-dose chemotherapy 
may induce immunomodulation, whereas high doses are 
typically thought to be openly immunosuppressive [128].

The immunological effects of docetaxel and paclitaxel 
are mostly interchangeable. The impact of docetaxel on 
NK cell-mediated killing varies in studies; some investi-
gators have reported its suppressive effect, while others 
demonstrated that docetaxel increases NK cell cytotox-
icity [126, 129]. The molecular mechanism that has been 
considered for paclitaxel is that it may increase tumor 
cell killing by NK cells by enhancing the expression of 
NKG2D ligands and ICAM-1 [130]. Together, these data 
show that melanoma chemotherapy drugs can affect the 
expression of NK cell ligands on melanoma cells and 
their elimination through NK cells.

Effect of chemotherapy on NK penetration into melanoma 
TME
In the TME, before the onset of clinical melanoma and 
without the need for prior antigen sensitization, NK 
cells can identify premalignant melanocytes and mount 
an antitumor response [111]. Additionally, it has been 
shown that MHC class I molecules are frequently down-
regulated in both human and mouse melanoma cells, 
increasing their susceptibility to NK cell-mediated lysis 
[12, 131, 132]. Upon contact with circulating melanoma 
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cells, NK cells eliminate them [111, 133, 134]. However, 
their function in the tumor body is severely constrained 
by their weak permeability to the melanoma tumor 
microenvironment [135, 136]. Therefore, the ability to 
permeate melanoma tumors designed to increase NK cell 
infiltration would be beneficial to take advantage of their 
inherent cytotoxicity.

It has been shown that alkylating medications affect 
immune cell infiltration within the TME [137]. Also, they 
directly increase the susceptibility of melanoma cells to 
immune cell-mediated clearance [138]. Both DTIC and 
TMZ have been found to cause melanoma cells to secrete 
chemokines like CCL5, CXCL9, CXCL10, and CXCL11 
in an animal model of melanoma [138].

T lymphocytes express appropriate CCR5 and CXCR3, 
so the increased chemokine secretion leads to strong 
infiltration of effector T lymphocytes in the melanoma 
tumor microenvironment. It has been shown that it cor-
relates with melanoma patients’ outcomes both in terms 
of survival and tumor response [139, 140]. Since NK 
cells have these receptors similar to effector T cells, they 
might be attracted to the melanoma TME via a similar 
mechanism [141].

Other studies on cisplatin and DTX have shown that 
the expression of Cisplatin-induced CXCL10 and DTX–
induced CXCL11 by melanoma cells affects lymphocyte 
recruitment and infiltration within tumors [142, 143]. It 
has been demonstrated that PTX recruits effector cells 
via a different mechanism. Paclitaxel stimulated lym-
phocyte relocation and infiltration within the melanoma 
microenvironment by downregulating L-selectin, a type-I 
transmembrane glycoprotein that is expressed on leuko-
cytes and NK cells [144, 145].

The structure of the tumor stroma, in particular the 
compactness of collagen fibers that restrict chemo-
kine accessibility, is another factor affecting lymphocyte 
infiltration [139]. In this situation, it has been demon-
strated that dacarbazine-sensitive melanoma lesions 
over-expressed genes related to an extracellular matrix 
organization. This indicates that dacarbanize may acti-
vate different pathways that work in concert to promote 
the efficient recruitment of killer cells [146]. Thus, the 
alterations in stroma composition brought about by che-
motherapy may promote the migration of NK and other 
cytotoxic cells within the tumor microenvironment, 
which could help solve one of the major issues with ICI 
therapy, which is the inadequate infiltration of therapeu-
tic cells [20].

NK cell-based therapeutic strategies to overcome 
resistance in Melanoma
Extensive evidence from in vitro and in vivo preclinical 
studies substantiates the crucial involvement of NK cells 
in the immune response against tumors. Nevertheless, 
within the TME, various mechanisms exist that regulate 
NK cells and hinder their functionality, thereby compro-
mising their ability to exert effective antitumor activi-
ties. The combined effects of diminished infiltration of 
NK cells into the tumor site and the impairment of their 
functional capabilities contribute to their inability to 
effectively control tumor growth [95].

The NK cells present in skin melanoma exhibit 
impaired functionality, contributing to the progression 
of the tumor. Dysregulation of the activating receptor 
NKG2D has been identified as one of the underlying 
mechanisms responsible for the defective state of NK 
cells. Consequently, therapeutic interventions aimed at 
reinstating the optimal functioning of NK cells in skin 
melanoma hold promise as a valuable strategy in the field 
of tumor immunotherapy [9].

Various strategies have been explored to reinstate the 
functionality of NK cells. One approach involves the acti-
vation of NK cells through the administration of cyto-
kines, such as IL-12 and IL-15, which enhance NKG2D 
expression and signaling, thereby promoting cellular 
destruction [147, 148]. Another approach involves the 
genetic engineering of NK cells to express chimeric anti-
gen receptors (CARs) that specifically target NKG2D 
ligands on melanoma cells, thereby initiating potent 
cytotoxic responses against the tumor (Fig. 3) [95, 149].

The utilization of antibodies targeting TGF-β can effec-
tively impede resistance mechanisms and reinstate the 
cytotoxic functionality of NK cells [150]. Additionally, 
there exists a range of targeted antibodies that can ame-
liorate the compromised activity of NK cells and augment 
their antitumor efficacy. The options mentioned include: 
monalizumab, which targets the inhibitory receptor 

Fig. 3  This schematic diagram elucidates the mechanisms by which NK 
cells can be selectively targeted to exert their cytotoxic effects against 
melanoma tumor cells, leading to tumor cell death and subsequent 
regression
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NKG2A and stops it from suppressing the immune sys-
tem; nivolumab, which blocks the interaction between 
the checkpoint receptor PD-1 and the PD-L1 ligand on 
tumor cells, thus preventing its inhibitory effects; and 
cetuximab, which specifically targets the EGFR receptor 
on melanoma cells and stops the transmission of inhibi-
tory signals [95].

PD-1 and T-cell immunoreceptor with Ig and ITIM 
domains (TIGIT), which are expressed on NK cells, not 
only play a role in inhibiting NK cell responses but have 
also been shown to play a role in NK cell instruction. 
In the absence of TIGIT, NK cells no longer respond to 
stimuli [151]. TIGIT negatively regulates NK cell func-
tion by inhibiting cytotoxicity and IFN-γ production. 
Blocking TIGIT has been shown to enhance NK cell 
cytotoxicity and slow tumor growth in a mouse model 
of melanoma [152]. There has been expanding interest in 
anti-TIGIT in clinical trials (ClinicalTrials.gov Identifier: 
NCT02676869, NCT02913313) [62].

Furthermore, antibodies that specifically target NK cell 
inhibitory receptors, like those that target KIRs, NKG2A, 
and TIGIT, can boost NK cell responses and subse-
quently kill tumor cells. Some of these antibodies are cur-
rently being tested in clinical trials. Thus, NK cell-based 
multiple immune combination therapy, based on the 
pan-specific recognition property of NK cells, is a strat-
egy to further improve the antitumor efficacy [153].

ACT (Adoptive cell therapy) may be a treatment option 
for people with metastatic melanoma that is resistant 
to conventional therapies. NK cell therapy has shown a 
promising clinical safety profile with little toxicity, offer-
ing a promising treatment option. NK cells differ from 
T cells in that they are activated by down- regulation of 
HLA class I molecules, thereby overcoming the hurdle of 
tumor immune escape [154].

A decrease in the function of NK cells has, however, 
been observed in melanoma patients, resulting in a dete-
rioration of the natural defense system. One instance of 
a clinical need that is largely unmet is in advanced mela-
noma. The allogeneic cytokine-induced memory-like NK 
cells (CIML) had potent cytolytic activity and cytokine 
production toward allogeneic and autologous melanoma 
target cells, as demonstrated by the authors’ in vitro 
experiments and use of mass cytometry, indicating that 
this particular class of NK cell effectors can get around 
the dysfunction that is frequently noticed in patients with 
melanoma [155].

Parkhurst et al. [156] studied autologous NK cells to 
treat patients with melanoma. After non-myeloablative, 
lymphodepletion chemotherapy, seven patients with 
melanoma in this study received in vitro activated autolo-
gous NK cells. The patients did not exhibit any objective 
clinical response. The low expression of NKG2D, which 
is required for persistent NK cells to exert cytotoxic 

function, was cited by researchers as the cause of this 
response [156].

The HLA molecules on tumor cells match the KIR mol-
ecules on autologous NK cells, so the NK cells don’t get 
activated because of the lack of alloreactivity. To over-
come self-tolerance and achieve the highest levels of NK 
cell activity, strategies were developed that mismatch 
the expression of KIR on allogeneic NK cells with that 
of HLA ligands on tumors. Mismatching KIR-ligands 
was first applied to hematopoietic transplants [157]. In 
a subsequent research, Miller and colleagues [158] uti-
lized the same method. They conducted a phase I clinical 
trial in 2005, where haploidentical allogeneic peripheral 
blood NK cells were used. The trial involved administer-
ing low-dose cyclophosphamide/methylprednisolone and 
adoptive NK cell transfer to ten patients with metastatic 
melanoma who participated in the study. After the ini-
tial infusion, four subjects showed stable disease states. 
The second infusion, however, led to a progression of the 
disease. In the same study, patients pretreated with high 
doses of cyclophosphamide/fludarabine showed in vivo 
adoptive NK expansion, suggesting that this high dose of 
lymphodepletion regimen may be beneficial for patients 
with melanoma. In addition to peripheral blood, (stem 
cells from) bone marrow and umbilical cord blood, as 
well as induced pluripotent stem cells (iPSCs), are addi-
tional sources of allogeneic NK cell therapy [159].

It was shown that the CIML NK cells were more effec-
tive than traditional NK lymphocytes against trans-
planted melanoma tumors in a mouse xenograft model 
[160]. Using NK cell lines as a source for ACT is a great 
advantage due to their unlimited supply, which is one of 
their greatest advantages. In a short period of culture, 
their numbers can be expanded. There is, however, a lim-
itation to their efficacy and persistence because the NK 
cell lines need to be irradiated before infusion for safety 
reasons. In 2008, in a phase I clinical trial, Arai et al. [161] 
used NK-92 cells: Among the melanoma patients, only 
one responded to the infusion. However, the patient’s 
condition worsened and he died 255 days after the NK 
cell infusion.

To overcome the absence of pre-treatment with a lym-
phodepletion regimen, a high dose of NK-92 cells was 
required to achieve NK-92 cytotoxicity before the onset 
of a T-cell immune response. This was accomplished by 
infusing three doses of NK-92 cells in a short period of 
five days. It is reasonable to predict that NK cell immu-
notherapies, in whatever form they may take, will soon 
play a significant role in the overall oncologic strategy 
for treating cancer patients [155]. Therefore, it is possible 
that the use of NK cells in this way can reduce the resis-
tance of melanoma cells and provide more effective treat-
ment based on innate immunity.
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Adoptive transfer CAR-NK cells in melanoma
NK cells can be genetically manipulated to express a 
chimeric antigen receptor, which specifically recognizes 
tumor-associated antigens, to improve the targeting of 
tumor cells [162]. Furthermore, because CARs, unlike 
TCRs, recognize target antigens independently of MHC 
recognition and antigen presentation by target cells, they 
can overcome resistance observed in several malignan-
cies [163].

The chimeric antigen receptor is a fusion protein 
designed and synthesized that includes several intracel-
lular signaling domains as well as an extracellular antigen 
recognition region. The single-chain variable fragment 
(scFv), an extracellular antibody-like component of the 
CAR that is designed to bind to a particular antigen, and 
a hinge region with different lengths depending on the 
location of the epitopes on the target cell [164–166]. In 
principle, a transmembrane domain (to anchor the chi-
meric receptor to the membrane of T/NK cells), one or 
more co-stimulatory domains, and a cytoplasmic signal-
ing domain that induces cytotoxicity as a result of antigen 
binding are also present in CARs architecture [167, 168].

Over time, the receptors’ architecture has seen sub-
stantial change and the term “generations” of CAR often 
refers to the number and type of intracellular signaling 
domains. The first generation of CARs included an acti-
vation motif (ITAM, often CD3z) and a domain with 
scFv to detect tumor antigens [164]. Unfortunately, these 
CARs were unable to provide the long-term markers of 
cell proliferation necessary to maintain antitumor effi-
cacy. Additionally, CD134 (OX40), CD28, and CD137 
(4-1BB) molecules were inserted into the second and 
third-generation CARs to increase their ability to pro-
liferate and to be cytotoxic [169]. The following (fourth) 
generation of CARs is designed to release cytokines and 
are frequently equipped with several co-stimulatory mol-
ecules, such as CD134, CD28, or CD137, to boost their 
cytotoxic power against tumor cells and to stimulate the 
immune system (Fig. 4) [170, 171].

Furthermore, several next-generation CARs with 
advanced features have been developed and are presently 
being tested in experiments [172–174]. CAR-modified 
T/NK-cell therapy has demonstrated significant efficacy 
in the treatment of some hematological malignancies, 

Fig. 4  Chimeric antigen receptors (CARs) of the first, second, and third generations, as well as CAR NK cell-based immunotherapy, are depicted schemati-
cally. Synthetic extracellular receptors for target antigen recognition, a transmembrane domain, and one intracellular signaling domain are all present 
in first-generation CAR molecules. For enhanced signaling, second and third-generation CAR constructions are equipped with one or more intracellular 
co-stimulatory domains. A constitutive or inducible expression cassette for a transgenic protein is a further modification made to fourth generation CARs 
(also known as TRUCKs (T cells redirected for antigen-unrestricted cytokine-initiated killing)). Upon CAR antigen identification, fourth-generation CARs 
can activate downstream transcription factors, such as nuclear factor of activated T cells (NFAT), leading to the production of cytokines

 



Page 13 of 20Rahimi et al. Cancer Cell International          (2023) 23:312 

including lymphoma, chronic lymphocytic leukemia 
(CLL), and acute lymphoblastic leukemia (ALL). Espe-
cially remarkable complete response rates of 70–90% 
were achieved in ALL patients treated with CD19–tar-
geting CAR-T cells [175].

CAR-T/NK cell therapy for melanoma is developing 
rapidly, and clinical experiments using CAR-T cells are 
currently investigating c-MET, CD70, GD2, and VEGFR2 
as melanoma-specific antigens [176, 177].

One of the promising candidates among cell types with 
therapeutic potential is the NKT cell, which is a subset 
of the innate immune system present in the circula-
tion [178]. NKT cells play a crucial role in bridging the 
innate and adaptive immune systems by producing vari-
ous bioactive molecules, and contribute significantly to 
the upregulation of the immune system and the suppres-
sion of the tumor microenvironment [179]. Moreover, 
enhanced cytolytic capabilities and a remarkable ability 
to infiltrate the TME, greatly improve their efficacy in 
targeting tumor cells [180, 181].

NKT cells can further stimulate other immune cells 
by secreting interleukin 2 (IL-2) and IL-21, resulting in 
the activation of NK cells and T cells. The incorpora-
tion of chimeric antigen receptors (CARs) into NKT cells 
enhances their cytotoxic potential, making them a potent 
therapeutic strategy against various types of cancer [182].

High molecular weight melanoma-associated antigen 
(HMW-MAA), also known as chondroitin sulfate pro-
teoglycan 4 (CSPG4), is another significant melanoma-
specific tumor antigen and is found in more than 90% 
of melanomas [183]. Simon et al. [184] generated func-
tional and effective CAR-NKT cells that expressed fewer 
cytokines than CD8 + T cells, limiting the possibility of 
cytokine release syndrome, by electroporating natural 
killer T (NKT) cells with RNA encoding the chimeric 
receptor that recognizes HMW-MAA. By employing a 
GD2-specific target module, Mitwasi et al. [185] demon-
strated in vitro specific lysis of melanoma cells expressing 
disialoganglioside GD2. Additionally, even after losing 
their transduced CARs, the intrinsic cytotoxic activity of 
NK CAR cells was preserved after mRNA-based recep-
tor transfer, indicating that they might still contribute to 
cancer immunosurveillance. So, CAR-NKT melanoma 
treatment strategies, as alternatives to the current treat-
ment methods, may represent a beneficial alternative to 
conventional CAR-T cells in the future development of 
innovative treatment techniques. Furthermore, in 2D 
or 3D in vitro experiments, CAR NK-92 cells effectively 
target CD276 (B7-H3), which is highly expressed in mel-
anoma cells. It has been demonstrated that the immuno-
suppressive milieu around solid tumors adversely affects 
the cytotoxic capacity of NK cells. This study investi-
gated how soluble factors released by cancer cells or 
cancer-associated cells, such as TGF-β, affect the effector 

function of CAR-mediated NK-92 cells. Overall, there 
was no evidence of an adverse effect on CD276-CAR 
NK-92 cell-mediated cytotoxicity when immunosuppres-
sive mediators such as TGF or co-incubation with can-
cer-associated fibroblasts were present. The function of 
CD276-CAR NK-92 cells was only minimally influenced 
by tumor cell supernatants and prolonged hypoxic cul-
ture conditions [186].

Conclusion
The induction of the antitumor response of the immune 
system depends heavily on NK cells. Although higher 
tumor-infiltrating NK cell content has been associated 
with a better prognosis in some human solid tumors, 
the immunosuppressive TME decreases their efficacy in 
favor of neoplastic growth. It is crucial to understand the 
mechanisms used by the TME to impair NK cell function 
and how they can be neutralized to create effective anti-
melanoma therapeutic protocols.

NK cells are plastic, and the function of NKs in mela-
noma depends on the soluble chemicals in the melanoma 
TME and the cell-cell or tumor-cell interactions those 
results in dynamic phenotypic changes in infiltrating NK 
cells, with a gradual transition from lethal NK cells in the 
early stage to depleted or immunosuppressive cells in the 
advanced stage.

Overall, the TME is essential for NK cells to func-
tion normally and that additional research and preclini-
cal studies in this area will probably be required to fully 
understand NK cell biology and reveal novel and exciting 
anti-melanoma therapeutic opportunities.

Many cancer immunotherapies have been developed 
that entail genetically altering NK cells before adoptive 
transfer into patients. It may be possible to modify NK 
cells so that they are immune to both the immunosup-
pressive molecules produced by the tumor and TME, as 
well as the metabolically constricting TME.

To develop individualized NK cell-directed therapies, it 
is essential to improve our understanding of how NK cells 
interact with metastatic melanoma cancer cells. There is 
an urgent need to create better preclinical models that 
depict the physical interactions between melanoma cells 
and NK cells during metastasis.
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