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Abstract

This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory
non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsi-

ble for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer
development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate
RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential
new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising
results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowl-
edge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further stud-

ies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy

of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential,
but careful consideration is required to minimize off-target effects, the article additionally discusses the potential
clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by provid-
ing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their
potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
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This autophosphorylation event is triggered by the bind-
ing of an extracellular signaling ligand. Subsequently, a
phosphorylation cascade is initiated within the down-
stream signaling pathway. Under normal circumstances,
the activation of RTKs and their downstream pathways,
as well as the binding of extracellular ligands, are tightly
regulated. However, in pathological conditions like can-
cer, receptor tyrosine kinases RTKs can become consti-
tutively activated in a ligand-independent manner [3].
Several crucial pathways, including epidermal growth
factor receptor (EGFR), vascular endothelial growth fac-
tor receptor (VEGFR), platelet-derived growth factor
receptor (PDGFR), stem cell tyrosine kinase receptor
(c-Kit), c-Met, and insulin-like growth factor receptor
(IGFR) signaling pathways, are particularly significant in
this context [4—10]. These pathways are targeted by miR-
NAs, further emphasizing their importance in regulating
aberrant RTK signaling.

Dysregulation of RTK signaling, which is commonly
observed in various types of cancer, has been implicated
in tumor growth, invasion, and metastasis [11, 12]. To
tightly control the expression and activity of RTKs, mul-
tiple mechanisms come into play, including post-trans-
lational modifications, protein—protein interactions, and
regulation by non-coding RNAs (ncRNAs) [13]. ncR-
NAs, which do not code for proteins but play crucial
roles in gene regulation are particularly important in this
context. They can be classified into two major groups:
housekeeping and regulatory ncRNAs. While the former
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classification was based on size, the newer categorization
focuses on their importance in gene regulation (Fig. 1).
RTK-RNAs are a class of ncRNAs that specifically reg-
ulate the expression and activity of RTKs. These ncRNAs,
mostly including microRNAs (miRNAs), piwi-interacting
RNAs (piRNAs), long non-coding RNAs (IncRNAs), and
circular RNAs (circRNAs) as a subtype of IncRNAs, have
been shown to play important roles in the development
and progression of solid tumors by regulating the expres-
sion of RTKs [14]. Depending on the specific RTK and
RNA involved, RTK-RNAs can either activate or inhibit
RTK signaling pathways [15]. For example, some RTK-
RNAs may bind to and stabilize RTK mRNA, leading to
increased expression and activation of the receptors. On
the other hand, other RTK-RNAs can bind to and degrade
RTK mRNA, resulting in decreased expression and activ-
ity of the receptors. Recent studies have identified sev-
eral new RTK-RNAs that play important roles in cancer
development and progression [16, 17]. These RNAs hold
potential as targets for the development of novel cancer
therapies. Additionally, therapeutic strategies targeting
RTK-RNAs have shown promise in preclinical studies
[18]. Overall, the regulation of RTK expression and activ-
ity by ncRNAs, specifically RTK-RNAs, is an important
mechanism in cancer development and progression.
Understanding the molecular mechanisms underlying
the modulation of RTK signaling pathways by RTK-RNAs
could lead to the development of new cancer therapies
that target specific RTK-RNA interactions. Furthermore,
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Fig. 1 Classification of RNAs. RNAs can be classified into two major groups, coding RNA and non-coding RNAs. Traditionally, n\cRNAs were
categorized based on their size as small ncRNAs and long ncRNAs. However, a more recent classification system has emerged, which distinguishes
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the identification of RTK-RNAs as potential biomarkers
for cancer diagnosis, prognosis, and treatment response
could enable more personalized and effective cancer
therapies.

This review article aims to provide a comprehensive
overview of the potential therapeutic targets of ncRNAs
in RTK signaling for solid tumors. The review specifi-
cally focuses on the different classes of ncRNAs, includ-
ing miRNAs, tsRNAs, piRNAs, IncRNAs, and circRNAs,
exploring their roles in cancer processes. The article then
delves into the future prospects of ncRNA-based thera-
pies targeting RTK signaling in solid tumors, empha-
sizing the potential to enhance cancer patient care.
The growing understanding of the "dark matter" of the
genome highlights the significant potential of targeting
ncRNA signaling to impact cancer patient care. Through-
out the review, the discussion centers on the current sta-
tus and future directions of ncRNA-based therapies for
RTK signaling in solid tumors.

RTK-RNAs and their role in cancer
For a long time, health research primarily focused on
studying the small portion of the genome responsible for
coding proteins. It was believed that the remaining 98%
had no significant function [19]. However, the ENCODE
project revealed that this part of our genetic material is
transcribed into numerous RNA molecules, known as
non-coding RNAs (ncRNAs). These ncRNAs play a cru-
cial role in regulating our body’s functions and can be
implicated in diseases, including cancer [20].

ncRNAs have emerged as key players in gene regula-
tion and intercellular communication. They are involved
in various processes such as coding, decoding, regulation,
and expression of genes. Studies on ncRNA regulatory
roles have demonstrated the existence of diverse ncRNA
networks associated with different types of cancer. This
breakthrough enables scientists to develop targeted strat-
egies for cancer treatment and prevention by focusing on
the specific ncRNAs encoded by our genes [21].

Deregulated expression of ncRNA has been directly
linked to the development and progression of cancer,
specifically affecting RTKs signaling pathways. RTKs
are proteins on the cell surface that play a crucial role in
cell proliferation and differentiation. Genetic alterations
in ncRNA genes have also been associated with RTK-
related cancers [22]. The different classes of ncRNAs
can be broadly categorized based on their size including
small ncRNAs such as miRNAs, siRNAs, and piRNAs
along with IncRNAs, all of which contribute significantly
to cancer biology.

While genetic variations in genes encoding ncRNAs
have been linked to cancer, the number of identified cases
is fewer compared to protein-coding genes. Additionally,
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the production or reduction of specific ncRNA molecules
related to cancer can occur through different mecha-
nisms, such as epigenetic, transcriptional, or post-tran-
scriptional processes. Further research is needed to fully
understand the precise control mechanisms of ncRNAs
on genes and to explore ways to harness this knowledge
for effective cancer treatment and prevention.

Small non-coding RTK-RNAs

The role of microRNAs in the RTK pathway in cancer
MicroRNAs (miRNAs) are a type of regulatory ncR-
NAs that primarily function to regulate gene expres-
sion by interacting with recognition sites in the 3’-UTR
region of mRNA, thereby affecting mRNA stability [23].
The expression of miRNA involves several post-tran-
scriptional cleavage steps. Initially, the transcription of
the miRNA locus results in the production of primary
miRNA (pri-miRNA). The pri-miRNA then undergoes
two cleavage steps, first by the microprocessor enzyme
in the nucleus and then by the dicer enzyme in the cyto-
plasm. The first cleavage step generates pre-miRNA,
which is subsequently transported into the cytoplasm
by exportin-5 for the final cleavage step, resulting in the
formation of mature miRNA. The mature miRNA is a
double-stranded polyribonucleotide consisting of a guide
strand and a passenger strand. Following the production
of the mature form, the miRNA is attached to the argo-
naute protein (AGO), the passenger strand is removed,
and the miRNA-induced silencing complex (miRISC) is
formed, consisting of AGO and the guide strand. Any
alterations in miRNA expression can impact the expres-
sion of target genes and disrupt cellular homeostasis,
potentially leading to the development of various dis-
eases, including cancer [24]. These alterations can arise
from changes in components of the miRNA processing
pathways (e.g., mutations in the dicer gene), genetic vari-
ations in miRNA-encoding loci, epigenetic regulation of
miRNA expression, and silencing of miRNA expression
by long non-coding RNAs (Fig. 2) [25-28].

Among the various genes that are targeted by miRNAs,
RTKs play a crucial role in conjunction with microRNAs,
particularly in stress signaling. This association is espe-
cially significant in disease-related pathological condi-
tions such as cancer. miRNAs have the ability to function
as both oncogenes and tumor suppressors by participat-
ing in downstream RTK signaling pathways and regu-
lating the expression of RTK genes [29, 30]. A variety of
microRNAs have been associated with the regulation
of the signaling pathways downstream of the activated
RTKs. For instance, miR-216 modulates the EMT process
by modulating the JAK2/STAT3 pathway [31].

The actions and effects of RTKs mentioned above have
led to the observation of alterations in their expression
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in various types of malignancies. One of the key factors
contributing to these alterations is the investigation of
changes in the levels of miRNAs that target RTKs. This
area of research has received significant attention and has
been extensively studied.

miR-34a is a microRNA that targets various factors
associated with cancer. It regulates cellular processes
such as cellular survival, stemness and differentiation,
cell cycle, invasion, epithelial-mesenchymal transition
(EMT), metabolism, immunity, and epigenetics. RTKs
including c-Met, EGFR, AXL, PDGFR-B, and ErbB2 are
among the targets of miR-34a [32]. Down-regulation of
miR-34a has been reported in several malignancies like
breast cancer, colon cancer, gastric cancer, non-small cell
lung cancer, and prostate cancer [33—-37]. On the other
hand, up-regulation of miR-34a in both tissue and serum
levels has been observed in medullary thyroid cancer,
making it a potential biomarker for this malignancy [38,
39]. In breast cancer, miR-34a negatively impacts pro-
cesses like vasculogenic mimicry, migration, and invasion
by affecting the AXL receptor tyrosine kinase axis [40].
Overexpression of miR-34a suppresses tumor growth,
invasion, and drug resistance in breast cancer [41]. In a
meta-analysis conducted in 2017 by Imani et al., the use
of miR-34a as a biomarker for breast cancer risk was
examined. The analysis indicated a pooled sensitivity of
85.5% (OR 83.8-87% (95% CI)) and specificity of 70%
(OR 65.8-74.1% (95% CI)). The overall area under the
curve (AUC) was calculated to be 0.8 [42]. These find-
ings indicate that miR-34a shows promise as a potential
biomarker for breast cancer. Furthermore, the tumor
suppressive effects of miR-34a suggest that it could be
utilized as a treatment approach for breast cancer. Sev-
eral studies have already been conducted on this matter
[43-46]. These studies have explored the possibility of
using an appropriate drug delivery system to target and
deliver miR-34a specifically to breast cancer cells, thereby
enhancing its therapeutic effects. miR-34a is also a regu-
lator of RTKs by affecting MET gene expression and plays
a role in gastric cancer proliferation and metastasis [35,
47, 48]. Furthermore, miR-34a regulates downstream
signaling pathways such as PI3K/Akt and Wnt/p-catenin
[49, 50].

miR-7 is a well-studied regulatory microRNA that
has been extensively researched. Its target genes such
as EGFR and its downstream effectors, protein kinase B

(See figure on next page.)
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(Akt) and extracellular kinase regulator % (ERK %), are
associated with RTK [51]. Studies on breast cancer cell
lines have demonstrated that miR-7 plays a role in regu-
lating various cellular processes, including EMT, metas-
tasis, tumor-associated angiogenesis, as well as increased
radiosensitivity [52—54]. In gastric cancer, miR-7 directly
inhibits the expression of IGFIR, EGFR, and mTOR,
which are the downstream effectors of the PI3K/Akt
pathway. This leads to increased sensitivity to cisplatin
treatment, apoptosis, as well as negative regulation of
metastasis and proliferation in gastric cancer tissues
[55-58]. The under-expression of miR-7 is considered a
poor prognostic indicator and therapeutic delivery of this
microRNA has been shown to reduce vasculogenesis and
inflammation in gastric cancer [59]. miR-7 influences a
variety of RTK-associated signaling pathways including
EGFR downstream pathways Ras/Raf/MEK/ERK1/2 and
PI3K/Akt/mTOR, as well as IGF1R/IRS pathway. It is also
implicated in gefitinib-mediated cytotoxicity by affecting
the expression of these molecular components [60, 61].
Additionally, miR-7 acts as a mediator in regulating cel-
lular proliferation, migration, and invasion in non-small
cell lung cancer (NSCLC) through the ERK/MAPK sign-
aling pathway [62].

In addition to miR-7, other microRNAs such as miR-
146a, miR-375, and miR-495, target the EGFR-encoding
mRNAs [48, 63, 64]. miR-146a is a regulator of cellular
proliferation, apoptosis, and invasion. Its expression is
down-regulated in gastric cancer tissue samples com-
pared to controls [65-68]. The expression levels of miR-
146a show a 98% sensitivity in distinguishing affected
tissue from normal surroundings. In addition, higher
expression of miR-146a indicates a better response to
chemotherapy [69]. miR-375 targets ErbB2 and EGFR
subtype, along with the receptor d’Origine Natais (RON)
RTK, and the downstream signaling effector JAK2. It is
involved in regulating cellular proliferation, migration,
and invasion in gastric cancer. Higher levels of miR-375
are also an indicator of favorable treatment response [64,
70, 71]. Moreover, lower serum levels of this microRNA
serve as a marker of poor prognosis with an AUC of
0.871 and are associated with lymph node metastasis and
a higher tumor stage [72]. miR-375 is under-expressed
in NSCLC tissue and plasma samples, and is associated
with lymph node and brain metastasis, advanced disease
stage, and shorter overall survival [73—75]. Such a pattern

Fig. 2 RTK-Mediated Signaling Pathways and Associated microRNAs in Solid Tumors This figure illustrates the signaling pathways mediated

by receptor tyrosine kinases (RTKs) in solid tumors, along with the microRNAs that target different components of these pathways. The microRNAs
have the ability to regulate the expression of both the RTK receptors and the downstream signaling cascades. The figure was created using

the Servier Medical Art Commons Attribution 3.0 Unported License (http://smart.servier.com, accessed on 10 July 2023). Please note that the figure
is for illustrative purposes only and may not depict the exact molecular interactions or signaling pathways in every solid tumor
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of alteration has also been implicated in lung squamous
cell carcinoma [76]. miR-495 is also another regulator of
cellular apoptosis and migration through modulation of
the Akt/mTOR pathway and ErbB2 expression [47, 48].
On the other hand, miR-206 mediates the regulation of
¢-MET, IGF1R, and MAPK3’s expression in gastric can-
cer. It induces apoptosis and inhibits resistance to cispl-
atin, metastasis, and proliferation [77-79].

miR-145 is a microRNA that targets the PI3K/AKT
pathway, which is a downstream signaling pathway of
various RTKs. By inhibiting the expression of AKT3, miR-
145 can enhance the response to treatment [80] and regu-
late the proliferation and migration of breast cancer cells
[81]. Additionally, miR-145 also regulates the expression
levels of IGE-1R, another RTK. Results of both in vitro
and in vivo investigations on adenoviral transfection of
the miR-145 encoding gene in breast cancer cells have
shown promising results in inhibiting tumor growth [82].

On the other hand, there are microRNAs such as miR-
21, miR-10b, miR-373, and miR-155 that are oncogenic
and contribute to breast cancer progression. miR-10b
targets HOXD10, which itself plays a role in cellular
migration and angiogenic switch in malignant breast can-
cer. It is also highly expressed in the tumor vasculature.
Upregulation of miR-10b expression is associated with
breast cancer, as well as glioblastoma, colorectal cancer,
and pancreatic adenocarcinoma [83]. miR-21 is also over-
expressed in breast cancer tissues and induces metasta-
sis and migration by targeting a variety of effectors like
smad7 and PTEN [84, 85]. Both tissue and serum levels
of miR-21 have been extensively investigated as potential
biomarkers for breast cancer, showing significant associa-
tions with a variety of clinicopathological characteristics
including tumor grade, risk of metastasis, and hormonal
receptor expression profiles [86]. miR-21 has also been
extensively studied in hepatocellular carcinoma (HCC)
and lung cancer. In HCC, miR-21 targets the tumor sup-
pressor protein PTEN and its overexpression has been
observed in serum samples [87, 88]. A meta-analysis by
Qu et al. investigating the use of serum miR-21 as a diag-
nostic biomarker for HCC reported a pooled sensitivity
of 85.2%, specificity of 79.2%, and an AUC of 0.89, sug-
gesting its potential for early disease detection [89]. In
lung cancer, miR-21 is considered an oncogenic micro-
RNA and has been found to be overexpressed in NSCLC
tissues [90]. A recently conducted meta-analysis has esti-
mated the pooled sensitivity and specificity of miR-21 in
lung cancer diagnosis to be 77% and 86%, respectively,
with an AUC of 0.87. In addition, this biomarker pos-
sesses prognostic values with a hazard ratio (HR) of 1.49
for overall survival [91]. Additionally, miR-155, which
also regulates the expression of PTEN, is overexpressed
in NSCLC tissues and is a predictor of poor outcome [92,
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93]. A meta-analysis on the diagnostic and prognostic
value of miR-155 reported a pooled sensitivity of 0.82,
specificity of 0.78, AUC of 0.87, and a hazard ratio (HR)
of 1.26 for poor overall survival [94].

The miR-155, which targets the SOCS1 gene, has
shown heterogeneous results in various studies regard-
ing its role in regulating and promoting breast cancer
progression [95, 96]. Some studies have reported con-
flicting findings. However, higher levels of miR-155 have
been detected in the serum of breast cancer patients
compared to controls, suggesting its potential as a diag-
nostic biomarker. The validity of miR-155 as a biomarker
was supported by an AUC of 0.89 and its elevated levels
were significantly associated with tumor grade, stage, and
size [97]. These discrepancies in study outcomes may be
attributed to differences in study population and condi-
tions. Therefore, it is crucial to conduct studies with con-
trolled conditions and larger sample sizes to obtain more
conclusive results.

miR-155 and miR-99a have also been indicated as
potential biomarkers for HCC diagnosis. miR-99a, a
tumor suppressor, is downregulated in HCC and targets
IGF-1R and mTOR. Both microRNAs show promise
as diagnostic and prognostic biomarkers, with AUC of
0.799 and 0.84, respectively, according to the findings of
a recently conducted meta-analysis [98, 99]. Additionally,
high levels of these microRNAs are significantly associ-
ated with poor survival time. Furthermore, miR-99a has
been explored as a therapeutic approach in both in vitro
and in vivo studies, utilizing nano-particle delivery sys-
tems [100].

MicroRNAs play a crucial role in regulating various
metastasis-associated cellular processes in colorec-
tal cancer (CRC). Among these processes, the EMT is
regulated by miR-612, which targets AKT2, and miR-
200b, miR-200c, and miR-141, which target ZEB1 and
ZEB2. In metastatic CRC tissues, miR-612 is found to
be under-expressed, while the miR-141, miR-200b, and
miR-200c show patterns of over-expression compared to
control tissues [101, 102]. Additionally, miR-1249, miR-
590-5p, miR-206, and miR-126 are involved in regulat-
ing angiogenesis and hypoxia response by inhibiting the
expression of VEGFA. These microRNAs are relatively
under-expressed in metastatic CRC tissues. Furthermore,
miR-25-3p and miR-143 targets the RTKs VEGFR2 and
IGF1R, respectively, to regulate the aforementioned cel-
lular processes [103—-108]. miR-18a and Let-7c target
KRAS mRNA and regulate cellular proliferation and
invasion, respectively [109, 110]. Another important reg-
ulator, miR-124, targets STAT3 and is found to be down-
regulated in CRC tissue samples, which is a predictor
of poor prognosis. In a study by Wang et al., the hazard
ratio of the downregulated levels of miR-124 for overall
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survival and disease-free survival were estimated at 4.634
(p=0.002) and 4.533 (p=0.002), respectively [111].

miR-126 plays a significant role in the progression of
lung cancer by targeting various genetic components.
The Reduction in STAT3 expression levels results in
induction of cellular proliferation and migration, as well
as decreased susceptibility to apoptosis, as indicated by
the under-expression of caspase 3 in NSCLC [112]. Fur-
thermore, miR-126-mediated inactivation of the VEGFA/
VEGFR2/ERK pathway is associated with apoptosis and
inhibition of metastatic characteristics in NSCLC [113].
Apart from these processes, EMT and angiogenesis are
also modulated by miR-126 via targeting PI3K/AKT/
Snail and VEGEF/FGF-mediated signaling pathways,
respectively [114, 115].

The down-regulation of miR-125a-3p is a key factor
in determining poor prognosis in NSCLC and is sig-
nificantly correlated with tumor size and metastasis.
Conversely, higher expression of this marker is associ-
ated with higher overall and disease-free survival rates
in NSLC patients [116]. Similar to miR-126, miR-125a
inhibits cellular proliferation and metastasis in NSCLC
by targeting STAT3 [117]. It is also a modulator of the
HER2 receptor in small cell lung cancer (SCLC), and
its under-expression is associated with the anti-tumor
effects of cytotoxic drugs in HER2-positive SCLC [118].

miRNA-1 is a tumor suppressor that is highly con-
served and targets multiple pathways, including members
of the tyrosine kinase receptor family such as c-met and
EGFR [119]. The down-regulation of miRNA-1 expres-
sion has been associated with a variety of malignancies,
including ovarian cancer, colorectal cancer, squamous
cell carcinomas from different origins, osteosarcoma,
prostate cancer, gastric cancer, lung cancer, and rhab-
domyosarcoma [120-129]. These malignancies exhibit
an up-regulation of the aforementioned tyrosine kinase
receptors, contributing to the importance of miRNA-1 in
their development and progression.

The significance of these alterations and their role
in the development and advancement of malignancies
has prompted the conduction of studies exploring the
potential use of these non-coding RNAs as biomarkers
and treatment approaches, yielding promising results. In
addition to the studies discussed in this section, Table 1
provides a comprehensive summary of the most exten-
sively investigated miRNA-based biomarkers. Moreover,
Table 2 highlights some of the therapeutic applications of
miRNAs that have been investigated in these studies.

The limited effectiveness of current therapeutic inter-
ventions contributes to the unfavorable prognosis of
HCC [130]. Synthetic miRNA antagonists or mimics,
when administered intravenously, tend to accumulate
in the liver and kidney. This characteristic renders liver
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cancer an appropriate model for evaluating the efficacy of
miRNA-based therapeutic strategies [131, 132]. Biodistri-
bution studies of nanoparticles indicate that a significant
proportion of administered nanomaterials tend to accu-
mulate in the liver prior to undergoing hepatic clearance,
rendering it a favorable target for various delivery sys-
tems. In cases of liver cancer, miR-122, which is known
for its high abundance and liver-specific expression, has
been observed to be downregulated. Restoring miR-122
through the use of a lentiviral expression vector has been
shown to inhibit invasion, tumorigenesis, and metasta-
sis in vivo. The inhibition of HCC metastasis is achieved
through the modulation of ADAM17 and cyclin G1 by
miR-122 [133, 134]. On the other hand, the expression of
miR-21 is significantly upregulated in HCC. Inhibition of
miR-21 in cultured HCC cells leads to increased expres-
sion of the PTEN tumor suppressor and decreased tumor
cell proliferation, migration, and invasion [135, 136].

Lung cancer is a prominent contributor to cancer-asso-
ciated mortality worldwide, with 5-year survival rates
ranging from 4 to 17%. Liposomes derived from lung
surfactants offer a practical option for delivering drugs to
the lungs, making them suitable vehicles for miRNA-tar-
geting agents. The downregulation of miR-34a, a miRNA
known for its tumor suppressor function, has been
observed in different types of solid tumors, including
lung cancer. A study conducted by Wiggins et al. dem-
onstrated that the administration of synthetic miR-34a
encapsulated in liposomes effectively suppressed tumor
growth in mice with NSCLC. Importantly, this treatment
approach exhibited no signs of immunogenicity or toxic-
ity. These findings align with prior in vitro studies con-
ducted on genetic variations of NSCLC cell lines, which
demonstrated that miR-34a decreased cell prolifera-
tion and the formation of cell colonies through the p53
pathways [137, 138]. Kasinski et al. introduced a novel
approach involving the utilization of NOV340 liposomes
for the concurrent delivery of tumor suppressors miR-
34 and let-7b in NSCLC. The implementation of this
method led to a notable 40% improvement in the survival
rate of mutant mice [139]. Furthermore, the utilization of
miR-200c loaded-NOV340 liposomes has been shown to
augment the radiosensitivity of lung cancer cells through
the upregulation of oxidative stress response mecha-
nisms and inhibiting DNA double-strand breaks caused
by radiation [140].

In 2013, the initial phase of clinical testing involved the
administration of MRX34, which consisted of miR-34
mimics enclosed within NOV340 liposomes. This thera-
peutic approach represented the first instance of utilizing
miRNA for therapeutic purposes. Nevertheless, the study
was terminated in 2016 as a result of the occurrence of
significant unfavorable incidents among the participants
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Table 1 Summary of the studies conducted on application of commonly investigated miRNAs as biomarkers in solid tumors

Malignancy  MicroRNA Target N. of cases Pattern of Application  Site of Validity Associated References
alteration measurement determinants
of prognosis
Breast cancer miR-21 PTEN 102 Up-regulation  Diagnostic, Serum AUC=0.721 Visceral metas-  [209]
prognostic tasis (p <0.001)
miR-195 Raf1 210 Down-regu-  Diagnostic, Serum AUC=0859 - [210,211]
lation treatment
response
miR-155 SOCS1T 103 Up-regulation  Diagnostic, Serum AUC=0.801 - [95,212]
treatment
response
Colorectal miR-21 PTEN 200 Up-regulation  Diagnostic Serum AUC=0802 - [213]
cancer miR-92a  PTEN 200 Up-regulation  Diagnostic, Serum AUC=0.786  Poorsurvival  [213,214]
prognostic (p=0.03)
miR-200c  ZEB1/ZEB2 446 Up-regulation  Prognostic Serum - Higher disease  [102,215]
stage, lymph
node metasta-
sis (p=0.0026),
distant metas-
tasis (0.0023),
overall survival
(p=0.0064),
tumor
recurrence
(HR=4.51,
p=0.005)
Gastric cancer miR-182 FOXO1 47 Down-regu- Diagnostic Serum AUC=0.898 - [216,217]
lation
miR-21 PTEN 50 Up-regulation  Diagnostic Serum, PBMC AUC=0912 - [218]
(serum),
AUC=0.898
(PBMC)
miR-106b  ALEX1 90 Up-regulation  Diagnostic Plasma AUC=0.7733 - [219, 220]
Pancreatic miR-21 PTEN 49 Up-regulation  Diagnostic Plasma AUC=0.62 - [221,222]
cancer miR-7 MAP3K1 8 Down-regu- Prognostic Plasma - Advanced [223,224]
lation tumor stage,
poor survival
200c ZEB1/ZEB2 84 Up-regulation  Prognostic Tissue - Poor overall [102,225]
survival
(p=0.013)
HCC miR-122 IGF1R 50 Up-regulation  Diagnostic, Serum AUC=0.954 Favorite [226,227]
prognostic prognosis
(p<0.001)
miR-21 PTEN 126 Up-regulation  Diagnostic Plasma AUC=0953 - [221,228]
NSCLC miR-21 PTEN 152 Up-regulation  Diagnostic, Serum AUC=0.81 Tumor size [221,229]
prognostic (p=0.001),
higher
TNM stage
(p=0.004)
miR-126 VEGF 112 Up-regulation  Diagnostic Serum AUC=0.793 - (230, 231]
let7c IGF1R 120 Down-regu- Diagnostic Plasma AUC=0.714 - [232,233]
lation

[141, 142]. The research conducted by Wu et al. revealed
that cationic lipoplexes based on DOTMA demonstrated
a high level of efficacy in transporting miR-29b to both
NSCLC cells and xenograft mouse models. Following
a series of repeated administrations, the mice exhibited

a notable decrease in tumor dimensions and a substan-
tial increase in miR-29b expression, reaching a five-
fold amplification specifically within the tumor tissue.
This observation indicates that the release of miR-29b
from DOTMA lipoplexes is highly effective [143]. In a
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Table 2 Summary of the studies conducted on the therapeutic application of miRNAs in solid tumors.

ncRNA Pathway Malignancy Type of study Results References

miR-122 ADAM17 and cyclin G1 HCC In vivo Inhibition of migration, invasion, tumori-  [133, 134]
genesis, angiogenesis, and metastasis

miR-21 PTEN HCC Invitro and in vivo  Decreased tumor cell proliferation, migra-  [135]
tion, and invasion

miR-34a P53, RAS, CDK4,BCL2, c-MET, and MYC NSCLC Animal study Suppressed tumor growth and enhance-  [138, 139]
ment in the survival rate

let-7b RAS, BCL2, c-MET, and MYC NSCLC Animal study Enhancement in the survival rate [139]

miR-200c PRDX2, GAPB/NRF2, and SESN1 Lung cancer  Animal study Radiosensitivity augmentation of cancer ~ [140]
cells

miR-34 P53, RAS, BCL2, c-MET, and MYC Solid tumors  Clinical trial Multiple immune-related severe adverse  [141, 142]
events

miR-29b DNMT3B, CDK6 and MCL1 NSCLC Animal study Decrease in tumor dimensions [143]

miR-16 EGFR NSCLC Clinical trial 5% of the patients showed partial [144]
response

miR-125a-5p HDAC4 Breast Cancer Animal study Decrease in tumor development, metas-  [146]
tasis, and vasculature

miR-34a NOTCH]1 signaling pathway, Cyclin E2, Breast Cancer Animal study Enhanced response to chemotherapy [137,147]

and c-MYC

phase I clinical trial, nonliving bacterial nano-cells were
employed as vehicles for the administration of miR-16
to patients with NSCLC. The system specifically tar-
geted cancer cells expressing EGFR, resulting in inhib-
ited tumor growth. Nevertheless, there were documented
toxicities that were dependent on the dosage, such as
anaphylaxis, inflammation, and cardiac events. The study
recorded varying response rates, with 5% of participants
exhibiting partial response, 68% experiencing stable dis-
ease, and 27% demonstrating progressive disease [144].
Given that HER-2 positive breast cancers constitute
approximately 30% of cases characterized by an unfa-
vorable prognosis, there is an increasing focus on effec-
tively targeting this overexpressed receptor. Within
this particular framework, experiments conducted on
live mice with breast cancer have shown that the intro-
duction of the tumor suppressor miR-125a-5p through
lentiviral delivery resulted in a decrease in tumor devel-
opment, metastasis, and vasculature. This effect was
achieved by specifically targeting histone deacetylase 4
(HDAC4). Hayward et al. demonstrated that introducing
miR-125a-5p into hyaluronic acid (HA)-coated liposomes
effectively suppressed the HER-2 proto-oncogene in
21MT-1 breast cancer cells through transfection. Con-
sequently, the inactivation of the MAPK and PI3K/AKT
signaling pathways led to decreased migratory and pro-
liferative capabilities [145, 146]. The utilization of HA/
miRNA nanoparticles has shown potential in the con-
text of targeted clinical interventions for breast cancer.
The study by Deng et al. employed HA-chitosan nano-
particles for the simultaneous encapsulation of doxoru-
bicin and miR-34a, resulting in an improved response to

chemotherapy and a reduction in cancer cells migration
[147, 148]. The in vivo experiments demonstrated a sig-
nificant 58% decrease in tumor volume upon the incor-
poration of miR-9, miR-21, and miR-145 sponges into
magnetic particles within PEI particles [149, 150]. The
study conducted by Panebianco et al. discovered that the
utilization of silica nanoparticles facilitated the delivery
of miR-34a into mammary tumors, resulting in reduced
tumor growth in mice. The diminished expression of tar-
get genes, such as c-Mygc, served as an indicator of the
biological efficacy of the administered miR-34a [137].

tsRNAs and piRNAs role in RTK pathway in cancer
Transfer RNA-derived small RNAs (tsRNAs) are derived
from tRNAs. The biogenesis of tsRNAs and their down-
stream mechanisms of action are still being studied, but
it has been observed that they can be involved in regulat-
ing gene expression and translation, similar to miRNAs.
tsRNAs have been found to be associated with Argo-
naute proteins and can mediate translational repression
of mRNAs via binding to target 3’ UTRs. Interestingly, a
recent study has shown that a tsRNA derived from a leu-
cine tRNA plays a role in global protein translation by
regulating the expression of genes coding for ribosomal
components [151]. Some tsRNAs have been found to be
oncogenic, while others have been found to be tumor-
suppressive. Therefore, tsRNAs have the potential to be a
new target for anticancer therapy.

Emerging evidence suggests that piRNAs are involved
in RTK signaling in solid tumors. piRNAs, a class of
small ncRNA molecules typically 21-35 nucleotides in
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length, are primarily associated with the PIWI subfam-
ily of Argonaute proteins and are involved in transposon
silencing during germline development. In mammals,
piRNAs are generated from long, single-stranded tran-
scripts that are clustered throughout the genome, with
approximately 20,000 piRNAs present in the human
genome. While piRNAs were initially thought to func-
tion only in gonadal cells, recent research has shown
that they are also expressed in somatic tissues, although
at low levels, and misexpressed in cancers. Although the
precise functional roles of piRNAs in RTK signaling in
solid tumors are not fully understood, recent studies have
suggested that these small ncRNAs may have therapeutic
potential as targets in cancer treatment and may serve as
useful biomarkers for diagnosis and prognosis [152, 153].

Long non-coding RTK-RNAs

Linear IncRNAs role in RTK pathway in cancer

IncRNAs are a class of regulatory molecules that are
longer than 200 nucleotides with a fundamental role in
gene expression through their interaction with chroma-
tin, transcriptional machinery, and other cellular com-
ponents. Their biogenesis begins with transcription,
predominantly by RNA polymerase II, similar to mes-
senger RNAs (mRNAs). The initial transcripts, known as
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primary IncRNAs (pri-IncRNAs), often undergo splicing,
polyadenylation, and capping [154]. However, IncRNA
transcripts can exhibit unique features, such as variable
splicing and less efficient polyadenylation, which can
impact their stability and cellular localization [155]. Fol-
lowing successful processing, mature IncRNAs partici-
pate in various cellular processes. For instance, nuclear
IncRNAs can interact with chromatin and transcription
factors, thereby affecting transcriptional regulation [156].
Cytoplasmic IncRNAs, on the other hand, can modulate
mRNA stability or translation, interact with miRNAs, or
influence signal transduction pathways [157] (Fig. 3).
Regarding the interaction between IncRNA and micro-
RNAs in promoting RTK expression, extensive research
has been conducted in various types of cancer, such as
colon, gastric, breast, osteosarcoma, HCC, and NSCLC
[158-161]. For instance, IncRNA XIST has been found
to upregulate RTK family member, AXL, via sponging
miR-93-5p, resulting in the overexpression of hypoxia-
inducible factor 1-alpha (HIF1A). Ultimately, this process
participated in enhancing the tumorigenesis capacity
in colon cancer cells [162]. On the other hand, IncRNA
XIST expression can also be involved in the upregula-
tion of RTK-like orphan receptor 1 (ROR1) by spong-
ing miR-30a-5p, leading to promoting cellular growth
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[163]. Another study demonstrated that ERBB4, a mem-
ber of the RTK family, is modulated by IncRNA, called
Linc00152. Mechanistically, IncRNA Linc00152 regu-
lates the expression of ERBB4 by targeting miR-193a-3p,
which may hinder the sensitization of malignant cells
toward oxaliplatin-based chemotherapy. Targeted down-
regulation of Linc00152 expression significantly reduces
chemoresistance in malignant cells, suggesting promis-
ing implications for developing novel therapeutic strate-
gies [164]. Another IncRNA, known as H19, acts on the
ubiquitin ligase E3 family by modulating miR-675 to pro-
mote RTK stability, thereby contributing to breast cancer
development [165].

Furthermore, in neuroblastoma, IncRNA MALAT1 has
been discovered to promote cellular invasion and migra-
tion via upregulating AXL, an RTK member. Inhibition of
AXL has emerged as a promising therapeutic approach
[166]. Similarly, the upregulation of a novel IncRNA
called CALIC has been identified to enhance colon can-
cer cell migration and metastasis through regulating AXL
signaling [167]. Moreover, another investigation found
that in anaplastic thyroid cancer, IncRNA MALAT1 over-
expression can lead to the activation of the RTK signaling
pathway via a cascade of intermediary cellular signaling
pathways, offering a remarkable diagnostic advantage
[168]. In breast cancer, IncRNA MAYA has been found
to play a role in bone metastasis. Regarding the under-
lying mechanism, it has been demonstrated that IncRNA
MAYA can stimulate the formation of a heterodimeric
complex consisting of ROR1, HER3, and the other RTKs,
which subsequently activate signaling cascades and con-
tribute to cancer cell migration [169]. Another IncRNA,
SPRY4-IT1, has been shown to regulate the expres-
sion of the RTK family member FGFR2 by interacting
with chromatin and regulating the expression of nearby
genes. Additionally, SPRY4-IT1 has a regulatory effect on
EMT, which is considered an essential mechanism in cell
migration [170].

In addition to IncRNAs, which act as activators of the
RTK signaling pathway, there are several IncRNAs with
inhibitory effects on RTK regulatory pathways, resulting
in the suppression of tumor development and progres-
sion. For example, a IncRNA named LINC00526 could
function as a tumor suppressor that establishes a negative
feedback loop with AXL, indicating its potential thera-
peutic application in glioma treatment [171]. Conversely,
RTK can interfere with the functionality of IncRNAs,
thereby impacting cancer metastasis. In breast cancer, for
example, EGF has been found to decrease the expression
of a newly discovered IncRNA called LIMT, which sub-
sequently promotes tumor invasion [172]. Tumor-sup-
pressing IncRNAs also restrict the invasive potential of
melanoma and HCC by inhibiting RTK-related pathways
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[173]. Interestingly, Eph tyrosine kinase receptor A4
functions as a suppressor of the EMT process, in which
IncRNA TUSC acts as a sponge to sequester miR-10a
and increase Eph expression, thereby restricting tumor
growth. This pathway exhibits similarities to previous
studies but with the opposite effect [174].

On the other hand, it has been demonstrated that RTK
inhibitors (RTKIs) are effective therapeutic agents for
treating cancer. In this context, researchers have iden-
tified 45 IncRNAs that are differentially expressed in
NSCLC cells, which are resistant to epidermal growth
factor receptor tyrosine kinase inhibitors (EGFR-TKIs).
The downregulated LINCO01128, acting as a specific
miRNA sponge, decreases PTEN via sponging miR-
25-3p. This activates the PI3K/Akt signaling pathway
and promotes EGFR-TKI resistance. Another IncRNA,
HIF1A-AS2, has been shown to be downregulated by
RTKIs, resulting in reduced tumor growth in NSCLC
[175]. HIF1A-AS2 also regulates the expression of spe-
cific genes involved in angiogenesis, such as VEGFA, by
interacting with specific proteins. By inhibiting HIF1A-
AS2 expression, RTKIs can also indirectly decrease the
expression of these angiogenic factors, further inhibit-
ing tumor growth [176]. Similarly, a study investigated
the potential of a IncRNA called growth arrest-specific
5 (GAS5) in improving the efficacy of EGFR-TKIs in
NSCLC therapy. The results showed that GAS5 is down-
regulated in lung adenocarcinoma tissues, and lower
expression levels are associated with larger tumor sizes,
poor differentiation, and advanced pathological stages.
Furthermore, overexpression of GAS5 sensitizes resistant
NSCLC cells to EGFR-TKIs and inhibits tumor growth
in mice treated with gefitinib. These findings suggest
that GAS5 may be a potential biomarker for diagnos-
ing lung adenocarcinoma and a possible therapeutic
target to reverse EGFR-TKI resistance [177]. Moreover,
the IncRNA H19 has been shown to be involved in the
regulation of the EGFR signaling pathway. H19 regu-
lates EGFR signaling by binding to the EGFR protein
and promoting its degradation. Therefore, IncRNA H19
may play a key role in the response of cancer cells, such
as NSCLC, to EGFR-TKIs. Thereby, IncRNA H19 seems
to be a key factor in regulating RTK signaling [178].
RTKIs with a similar effect on the mentioned pathways
on UCA1 [179], CRNDE [180], and PCAT1 [181] genes
lead to the development of other types of NSCLCs. In an
alternative mechanism, LncRNA-SARCC functions as a
suppressor of the androgen receptor (AR) protein, hin-
dering the propagation of its downstream signals involv-
ing AKT, MMP-13, K-RAS, and P-ERK. This obstruction
leads to the inhibition of invasiveness in RCC cells while
also enhancing their sensitivity to Sunitinib therapy. The
findings of this investigation underscore the potential
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effectiveness of targeting LncRNA-SARCC and its under-
lying pathway as a viable therapeutic approach for treat-
ing RCC. It should be noted, however, that certain RTKIs
have been shown to induce the expression of a group of
IncRNA molecules, including LncRNA-SARCC, which
are associated with improved prognosis and contribute
to the restoration of cancer suppression in RCC [182].
Therefore, this evidence could imply that IncRNAs may
play an essential role in regulating RTKs.

Altogether, IncRNAs play a crucial role in modulating
RTK signaling pathways and the development of cancer.
However, comprehensive investigations are necessary to
elucidate the intricate mechanisms underlying IncRNA-
mediated regulation of RTK signaling and to recognize
potential therapeutic targets for improving RTK-associ-
ated diseases. Nonetheless, gaining a deeper understand-
ing of these pathways offers a new approach to managing
different types of cancer, highlighting the need for more
comprehensive investigation (Tables 3, 4).

Circular IncRNAs role in RTK pathway in cancer
CircRNAs are a novel class of endogenous IncRNAs that
form covalently closed continuous loops and are gen-
erated from pre-mRNA back-splicing events, where a
downstream splice donor is joined with an upstream
splice acceptor [183]. The biogenesis of circRNAs is
facilitated by several factors, including the presence of
complementary Alu sequences and RNA-binding pro-
teins like Quaking and Muscleblind [184]. The regulation
of circRNA biogenesis, although not fully elucidated, is
believed to be influenced by both cis-regulatory elements
and trans-acting factors [185]. Importantly, circRNAs
have been implicated in various biological processes,
including acting as microRNA sponges and interacting
with RNA-binding proteins [186] (Fig. 4).

Several studies have investigated the association
between circular RNA and receptor tyrosine kinase in
lung adenocarcinoma. One study demonstrated that
hsa_circ_0070661 suppressed cancer progression by
regulating the miR-556-5p/TEK axis [187]. Li et al. found
that circ_0001058 inhibited lung adenocarcinoma devel-
opment by modulating the miR-486-5p/TEK signaling
pathway [188]. Moreover, Wang et al. discovered that
overexpression of hsa_circ_0012673 promoted tumor
proliferation by acting as a sponge for miR-22, which led
to the upregulation of TEK expression [189]. Overall,
these findings suggest that circRNAs regulate TEK sign-
aling in lung adenocarcinoma and may serve as potential
therapeutic targets for this disease. Studies have demon-
strated a correlation between circular RNA and recep-
tor tyrosine kinase in promoting glioma progression. For
instance, circFAM53B promotes glioma proliferation and
metastasis by activating the ¢-MET/PI3K/AKT pathway
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via sponging miR-532-3p [190]. Circ_0001588 upregu-
lates ERBB4 to promote glioma malignant progression
through sponging miR-128, [191] while circ_0001162
enhances cell proliferation and invasion of glioma
through the miR-936/ERBB4 axis [192]. Furthermore,
circRNA EPHB4 modulates stem properties and prolifer-
ation of gliomas via sponging miR-637 and upregulating
SOX10, indicating that the RTK pathway may be involved
in glioma development and progression mediated by
circRNA-miRNA interactions [193]. These results high-
light the potential of circRNA as a therapeutic target for
glioma treatment and provide insights into the underly-
ing mechanisms of glioma pathogenesis. Also, in other
research, various types of cancer have been explored. For
example, Circ_0044520 has been found to regulate the
progression of laryngeal squamous cell carcinoma via
the miR-338-3p/ROR2 axis [194]. Another study shows
that circRNA_0006470 promotes gastric cancer cell pro-
liferation and migration by functioning as a sponge of
miR-27b-3p [195]. Additionally, tumor-derived exoso-
mal circRNA_102481 has been shown to contribute to
EGFR-TKIs resistance in non-small cell lung cancer via
the miR-30a-5p/ROR1 axis [196]. NSD2 circular RNA
has been found to promote colorectal cancer metasta-
sis by targeting miR-199b-5p-mediated DDR1 and JAG1
signaling [197]. The study by Zheng et al. found that
Circ_0079558 promotes papillary thyroid cancer pro-
gression by binding to miR-26b-5p, activating MET/AKT
signaling [198]. Wang et al. found that the RNA-binding
protein IGF2BP2 enhances the plenty of circ_0000745
and promotes the aggressiveness and stemness of ovar-
ian cancer cells by activating the microRNA-3187-3p/
ERBB4/PI3K/AKT signaling pathway [199]. Furthermore,
circ_LAMP1 has been found to promote T-cell lympho-
blastic lymphoma progression by acting as a competing
endogenous RNA (ceRNA) for miR-615-5p to regulate
DDR?2 expression (200).

In developing resistance to specific cancer therapies,
circular RNA correlates with receptor tyrosine kinase,
as recent studies indicate. A study conducted on lung
adenocarcinoma cells found that hsa_circ_0007312 pro-
motes third-generation EGFR-TKI resistance through
pyroptosis and apoptosis via the miR-764/MAPK1 axis
[201]. Another study identified circ_0014235 as a factor
responsible for conferring Gefitinib resistance and malig-
nant behaviors in non-small cell lung cancer (NSCLC) by
governing the miR-146b-5p/YAP/PD-L1 pathway [202].
Similarly, hsa_circ_0005576 promotes osimertinib resist-
ance through the miR-512-5p/IGF1R axis in lung adeno-
carcinoma cells [203]. In contrast, Propofol was shown to
suppress lung cancer tumorigenesis by modulating the
circ-ERBB2/miR-7-5p/FOXM1 axis [204]. According to
a study on non-small cell lung cancer patients receiving
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Table 4 Summary of the studies conducted on the therapeutic application of IncRNAs in solid tumors
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ncRNA Target Malignancy Type of study Results References

TMPO-AST ERBB2 NSCLC In vitro LncRNATMPO-AST facilitates the proliferation and metastasis of NSCLC ~ [160]
cells by up-regulating ERBB2 via sponging miR-204-3p

DANCR ERBB2 NSCLC In vitro LncRNA DANCR promoted non-small cell lung cancer cells metastasis [234]
via modulating of miR-1225-3p/ErbB2 signal

MIR137HG  MET Gastric cancer  In vitro MiR-2682-3p antagonizes its host INCRNA-MIR137HG by interacting [235]
with the same target FUS to regulate the progression of gastric cancer

CALIC AXL Colon cancer  Invivo The novel INcRNA CALIC upregulates AXL to promote colon cancer [167]
metastasis

XIST AXL Colon cancer  Invivo/invitro  LncRNA XIST modulates HIF-1A/AXL signaling pathway by inhibiting [162]
miR-93-5p in colorectal cancer

XIST ROR1 Colon cancer Clinical trial Atractylenolide Il reverses the influence of INcCRNA XIST/miR-30a-5p/ [163]
RORT1 axis on chemo-resistance of colorectal cancer cells

MALAT1 AXL Neuroblastoma In vitro LncRNA-MALAT1-mediated Ax| promotes cell invasion and migration [166]
in human neuroblastoma

TINCR AXL Melanoma Invivo/in vitro - LncRNA TINCR attenuates the proliferation and invasion, and enhances  [236]
the apoptosis of cutaneous malignant melanoma cells by regulating
the miR-424-5p/LATS1 axis

GAS6-AS2  AXL Melanoma In vivo/in vitro - Increased expression of long noncoding RNA GAS6-AS2 promotes [237]
proliferation and inhibits apoptosis of melanoma cells via upregulating
GAS6 expression

LINC00852 AXL Osteosarcoma  Invivo/in vitro  Exosome-transmitted linc00852 associated with receptor tyrosine kinase  [159]
AXL dysregulates the proliferation and invasion of osteosarcoma

HULC MET HCC In vivo/in vitro - The IncRNA “highly upregulated in liver cancer” (HULC) promotes MET [161]
expression through sponging miR-2052 in HCC

TUSC Eph HCC In vitro LncRNA TUSCY acts a molecular sponge for miR-10a and suppresses [174]
EMT in hepatocellular carcinoma

LINC00526 AXL Glioma In vitro LncRNA LINC00526 represses glioma progression via forming a double  [171]
negative feedback loop with AXL

LIMT EGF Breast cancer  Invivo/invitro LIMT is a novel metastasis inhibiting INcRNA suppressed by EGF [172]
and downregulated in aggressive breast cancer

H19 EGFRand c-met Breastcancer  Invitro H19 ncRNA-derived miR-675 enhances tumorigenesis and metastasis [165]
of breast cancer cells by downregulating c-Cbl and Cbl-b

MAYA HER3, ROR1 Breast cancer  Invivo/invitro The orphan receptor tyrosine kinase ROR1 can form heterodimers [169]
with other RTKs, such as HER3, to activate signaling pathways that pro-
mote cancer cell proliferation, survival, and invasion

MALAT1 RTKs Thyroid cancer  In vitro Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis  [168]
genes using dual MEK/Aurora kinase inhibitor “BI-847325" on anaplastic
thyroid carcinoma

HOTAIR AXL RCC In vivo/in vitro - LncRNA HOTAIR regulates HIF-1a/AXL signaling through inhibition [158]

of miR-217 in renal cell carcinoma

Gefitinib therapy, the circular RNA hsa_circ_0109320
showed significantly elevated expression levels in indi-
viduals who positively responded to EGFR-TKI treat-
ment [205]. The study by Wang et al. revealed a novel
protein encoded by circASK1 that plays a crucial role in
overcoming gefitinib resistance in lung adenocarcinoma
by competitively activating apoptosis signal-regulating
kinase 1 (ASK1)-dependent apoptosis [206]. Finally, cir-
cRNA_001895 was found to promote sunitinib resistance
to renal cell carcinoma through the regulation of apop-
tosis and DNA damage repair [207]. These findings have
shown that circRNAs can play a crucial role in develop-
ing drug resistance in cancer cells, and further research

is needed to explore their therapeutic potential (Tables 5,
6).

Future prospect

Recent advances in the field of ncRNA research have
revealed the critical role of ncRNAs in the regulation of
RTK signaling in solid tumors. Non-coding RNAs have
shown great potential as therapeutic targets for the treat-
ment of RTK-associated solid tumors. However, fur-
ther research is needed to fully understand the intricate
mechanisms underlying ncRNA-mediated regulation of
RTK signaling and to identify promising therapeutic tar-
gets (Fig. 5).
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Fig.4 RTK-mediated signaling pathways and associated IncRNAs and circRNAs in solid tumors. INcRNAs and circRNAs target various components
of these pathways, including both receptors and downstream signaling cascades. This figure was created using the Servier Medical Art Commons
Attribution 3.0 Unported License (http://smart.servier.com (accessed 10 July 2023))
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Table 6 Summary of the studies conducted on the therapeutic application of circRNAs in solid tumors

Page 24 of 33

circRNA Target

Malignancy

Type of study

Results

References

Hsa_circ_0070661 TEK+BB3:B23 Lung adenocarcinoma

Circ_0001058 TEK

circ7312 EGFR-TKI

circ-0003748 EGFR-TKI

Circ-0001398 EGFR-TKI

hsa_circ_0005576 IGF1R

hsa_circ_0012673 ERBB3

Circ_0014235 EGFR-TKI

circRNA_102481 ROR1

hsa_circ_0109320 EGFR-TKI

circ-ERBB2 ERBB2

circFAM53B c-met

Circ_0001588 EPHB4

circ_0001162 EPHB4

hsa_circ_0081519 EPHB4

Circ_0044520 ROR2

circ_0000745 ERBB4

hsa_circ_0006470 ROR1

Lung adenocarcinoma

Lung adenocarcinoma

Lung adenocarcinoma

Lung adenocarcinoma

Lung adenocarcinoma

Lung adenocarcinoma

NSCLC

NSCLC

NSCLC

Lung cancer

Glioma

Glioma

Glioma

Glioma

Laryngeal squamous cell carcinoma

Ovarian cancer

Gastric cancer

In vivo/in vitro

In vivo/in vitro

In vivo/Invitro

In vitro

In vitro

In vivo/in vitro

In vitro

In vivo/in vitro

In vitro

Clinical Trial

In vivo/in vitro

In vivo/in vitro

In vivo/in vitro

In vivo/in vitro

In vivo

In vivo

In vivo

In vitro

Hsa_circ_0070661 inhibits cancer progression
through miR-556-5p/TEK axis in lung adeno-
carcinoma

Circ_0001058 represses the progression
of lung adenocarcinoma through governing
of the miR-486-5p/TEK signaling axis

Hsa_circ_0007312 Promotes Third-Generation
Epidermal Growth Factor Receptor-Tyrosine
Kinase Inhibitor Resistance through Pyroptosis
and Apoptosis via the MiR-764/MAPK1 Axis

in Lung Adenocarcinoma Cells. J Cancer

Construction of a circRNA-MiRNA-MRNA
Regulated Pathway Involved in EGFR-TKI Lung
Adenocarcinoma Resistance

Construction of a circRNA-mMIiRNA-MmRNA
Regulated Pathway Involved in EGFR-TKI Lung
Adenocarcinoma Resistance

Hsa_circ_0005576 promotes osimertinib
resistance through the miR-512-5p/IGF1R axis
in lung adenocarcinoma cells

Increased circular RNA hsa_circ_0012673 acts
as a sponge of miR-22 to promote lung adeno-
carcinoma proliferation

Circ_0014235 confers Gefitinib resistance

and malignant behaviors in non-small cell
lung cancer resistant to Gefitinib by governing
the miR-146b-5p/YAP/PD-L1 pathway

Tumor-derived exosomal circRNA_102481
contributes to EGFR-TKIs resistance via the miR-
30a-5p/ROR1 axis in non-small cell lung cancer

Circular RNA profiling identified as a biomarker
for predicting the efficacy of Gefitinib therapy
for non-small cell lung cancer

Propofol suppresses lung cancer tumorigen-
esis by modulating the circ-ERBB2/miR-7-5p/
FOXM1 axis

CircFAM53B promotes the proliferation

and metastasis of glioma through activating
the c-MET/PI3K/AKT pathway via sponging
miR-532-3p

. Circ_0001588 Upregulates ERBB4 to Promote
Glioma Malignant Progression Through Spong-
ing miR-1281

circ_0001162 promotes cell proliferation

and invasion of glioma via the miR-936/ERBB4
axis

. CircRNA EPHB4 modulates stem properties
and proliferation of gliomas via sponging miR-
637 and up-regulating SOX10

. Circ_0044520 regulates the progression

of laryngeal squamous cell carcinoma

via the miR-338-3p/ROR2 axis

.RNA-binding protein IGF2BP2 enhances
circ_0000745 abundancy and promotes
aggressiveness and stemness of ovarian cancer
cells

circRNA_0006470 promotes the proliferation

and migration of gastric cancer cells by func-
tioning as a sponge of miR-27b-3p

[187]

[188]

[201]

[238]

[238]

[203]

[189]

[202]

[196]

[205]

[204]

[193]

[194]

[199]

[195]
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Table 6 (continued)
circRNA Target Malignancy Type of study Results References
circ_0079558 MET PTC In vivo Circ_0079558 promotes papillary thyroid [198]
cancer progression by binding to miR-26b-5p
to activate MET/AKT signaling
circ-NSD2 DDR1 Colorectal cancer In vivo/in vitro NSD2 circular RNA promotes metastasis [197]
of colorectal cancer by targeting miR-199b-5p-
mediated DDR1 and JAGT1 signaling
circ-LAMP1 DDR2 T-cell Lymphoblastic Lymphoma In vitro Circ-LAMP1 promotes T-cell lymphoblastic [200]

lymphoma progression via acting as a ceRNA
for miR-615-5p to regulate DDR2 expression

Lung cancer

* miR-21 ® Hsa_circ0012673
* miR-126 * Circ0014235

* Let7c * CircRNA 102481
* TMPO-ASI ® Hsa circ0109320
®* DANCR * ERBB2

® Hsa c¢irc0070661

®  Circ0001058

* Circ7312

*  Circ0003748

®  Circ0001398

®  Hsa circ0005576

Hepatocellular carcinoma
miR-21
miR-122
HOTAIR
HULC
TUSC

Colorectal cancer

miR-21
miR-92a
miR-200c
CALIC
XIST
LINCO00152
NSD2

® & & o o o o

Glioma
+  LINC00526 Breast cancer

» CircFAMS53B * miR-21
»  Circ0001588 * miR-195
»  Circ0001162 o $;R-155
* Hsa_circ008151 e LIMT
* HI9
¢ HOTAIR
¢ MAYA

Gastric cancer

miR-21

miR-182

miR-106b
MIR137HG
Hsa_circ0006470

Pancreatic cancer

* miR-21
* miR-7
* miR-200c

CCDC26 / AML
MALAT! / neuroblastoma

TINCR / melanoma

MALAT! / thyroid cancer

HOTAIR /RCC

LINCO00852 / osteosarcoma

Circ0044520 / laryngeal squamous ccell carcinoma
Circ 0000745 / ovarian cancer

Circ0079558 / PTC

LAMP1 / T-cell lymphoblastic lymphoma

Fig.5 Anillustration of RTK-associated ncRNAs with therapeutic application in solid tumors. This figure was created using the Servier Medical Art
Commons Attribution 3.0 Unported License (http://smart.servier.com (accessed 10 July 2023))

One promising avenue for future research is the devel-
opment of ncRNA-based therapies, such as miRNA mim-
ics, miRNA inhibitors, and circRNA-based therapeutics.
These therapies have shown promising results in pre-
clinical studies and hold great potential for the treatment

of solid tumors. Several ncRNA-based therapies have
already been developed for the treatment of various dis-
eases, including cancer. For example, the miRNA mimic,
miR-34a, is currently being evaluated in clinical trials for
the treatment of various solid tumors. Another miRNA
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mimic, miR-16, has been shown to inhibit the growth
of solid tumors in preclinical studies. Additionally, the
combination of ncRNA-based therapies with existing
conventional therapies, such as chemotherapy and RTK
inhibitors, may increase treatment efficacy and reduce
resistance.

Another area of future research is the identification
of novel ncRNAs involved in RTK signaling pathways.
Recent advances in high-throughput sequencing technol-
ogies and bioinformatics have enabled the identification
of previously unknown ncRNAs and their potential roles
in disease pathogenesis. Targeting these novel ncRNAs
may provide alternative therapeutic strategies for the
treatment of RTK-associated solid tumors.

Furthermore, the development of reliable methods
for the delivery of ncRNA-based therapeutics to target
tissues remains a challenge. Various delivery methods,
such as nanoparticles, liposomes, and exosomes, have
been explored for the effective delivery of ncRNA-based
therapeutics. However, further optimization is needed to
improve their specificity, stability, and efficacy.

ncRNAs can also be used as biomarkers for the diag-
nosis and prognosis of solid tumors. Several studies have
shown that the expression levels of certain ncRNAs are
altered in solid tumors compared to normal tissues. For
example, the expression of miR-21 is upregulated in vari-
ous solid tumors and is associated with poor prognosis.
The expression of miR-195 is downregulated in various
solid tumors and is associated with a better prognosis.

Several methods are currently available to experimen-
tally identify ncRNAs from samples, including enzy-
matic/chemical RNA sequencing, use of cDNA libraries,
microarray analysis, and genomic SELEX. The RNA
sequencing methods though not impeded by second-
ary/tertiary RNA structures (in contrast to cDNA-based
methods), have some limitations including the inabil-
ity to discriminate between RNAs with similar size, and
limited size of identified RNAs, and it is limited to highly
abundant RNAs. On the other hand, microarray analy-
sis can simultaneously detect multiple RNAs and have
great potential. Genomic SELEX methods are based on
the generation of RNAs from genomic DNAs in vitro
and can be used to identify RNAs that are not necessarily
expressed [208].

Furthermore, the development of new technologies,
such as single-cell sequencing and CRISPR/Cas9 genome
editing, will allow for a more comprehensive understand-
ing of the role of ncRNAs in the regulation of RTK signal-
ing in solid tumors. Single-cell sequencing will enable the
identification of ncRNAs that are specifically expressed
in tumor cells, which can be targeted for therapy.
CRISPR/Cas9 genome editing will allow for the precise
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manipulation of ncRNA expression levels, which can be
used to study the function of ncRNAs in solid tumors.

Conclusion

Non-coding RNAs have emerged as promising thera-
peutic targets for the treatment of RTK-associated solid
tumors. MicroRNAs, circular RNAs, and long ncRNAs
have been extensively studied in the context of RTK sign-
aling, and their dysregulation has been implicated in the
development and progression of various solid tumors.
Future research aims to develop ncRNA-based thera-
pies, identify novel ncRNAs involved in RTK signaling
pathways, use of ncRNAs as biomarkers for diagnosis
and prognosis, and optimize delivery methods for these
therapeutics. These efforts will hold great potential and
advance our understanding of the role of ncRNAs in solid
tumors, as well as lead to the development of more effec-
tive and personalized treatments for patients with solid
tumors.
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