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Abstract 

Background  Disulfidptosis is a recently proposed novel cell death mode in which cells with high SLC7A11 expression 
induce disulfide stress and cell death in response to glucose deficiency. The purpose of the research was to explore 
the function of disufidptosis and disulfide metabolism in the progression of lung adenocarcinoma (LUAD).

Methods  The RNA-seq data from TCGA were divided into high/low expression group on the base of the median 
expression of SLC7A11, and the characteristic of differentially expressed disulfide metabolism-related genes. Least 
absolute shrinkage and selection operator (LASSO) algorithm was conducted the disulfidptosis and disulfide metabo-
lism risk index. The tumor mutation burden (TMB), mechanism, pathways, tumor microenvironment (TME), and immu-
notherapy response were assessed between different risk groups. The role of TXNRD1 in LUAD was investigated 
by cytological experiments.

Results  We established the risk index containing 5 genes. There are significant differences between different risk 
groups in terms of prognosis, TMB and tumor microenvironment. Additionally, the low-risk group demonstrated 
a higher rate of response immunotherapy in the prediction of immunotherapy response. Experimental validation sug-
gested that the knockdown of TXNRD1 suppressed cell proliferation, migration, and invasion of LUAD.

Conclusion  Our research highlights the enormous potential of disulfidptosis and disulfide metabolism risk index 
in predicting the prognosis of LUAD. And TXNRD1 has great clinical translational ability.
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Introduction
Lung cancer is the main reason of death from cancer [1], 
the 5-year survival rate is only 4 to 17 percent [2]. The 
majority, about 40%, of lung cancer, are lung adenocar-
cinoma [3]. In the past few decades, with the continuous 
deepening of knowledge of molecular mechanisms, drugs 
targeting EGFR, ALK, PD-1/PD-L1 have profoundly 
changed the treatment strategy of non-small cell lung 
cancer (NSCLC) [4, 5]. However, given the heterogeneity 
of the tumor in each patient, immunotherapy is ineffec-
tive in around 70% of patients with advanced NSCLC [6]. 
Therefore, identifying accurate and effective biomarkers 
is of great value for the survival of LUAD patients.

Disulfidptosis is a newly cell death discovered by Liu 
et al., which is independent of existing programmed cell 
death such as apoptosis, ferroptosis, cuproptosis, and 
necroptosis. The SLC7A11 transporter, a member of the 
Solute Carriers (SLC) family, performs a critical func-
tion in the maintenance of intracellular glutathione levels 
and the protection of cells from oxidative stress-induced 
cell death [7]. Liu et  al. found that when glucose sup-
ply was restricted, the oxidoreduction force was insuf-
ficient, leading to abnormal accumulation of cystine or 
other disulfide molecules in SLC7A11-high cells, finally 
inducing disulfide stress to trigger cell death [8]. And the 
reducing agent of disulfide stress can completely inhibit 
this death process. In addition, this study found that 
glucose transporter 1 inhibitors can effectively inhibit 
cell glucose uptake, thereby inducing disulfide death in 
SLC7A11 overexpressing cells; the inhibitor also has a 
significant effect on tumor growth with high expression 
of SLC7A11 in mice. The discovery of the mechanism 
of disulfidptosis provides a new framework for targeted 
cancer therapy.

In this study, disulfide metabolism-related genes were 
characterized in SLC7A11 samples with different expres-
sions and a robust risk index was constructed for LUAD 
patients. Cell experiments have confirmed that TXNRD1 
has the potential to become a target for LUAD treatment.

Material and methods
Data collection and processing
The flowchart of this study was shown in Fig.  1. The 
RNA-seq data, clinical information, and somatic muta-
tion data were downloaded from the TCGA database 
(https://​portal.​gdc.​cancer.​gov/). After excluding cases 
with missing survival information or survival time was 
less than 30 days, 485 LUAD cases were included in the 
training cohort. The count format was employed for 
difference analysis, and log2(TPM + 1) conversion was 
used for subsequent analysis. Three LUAD dataset were 
downloaded from GEO (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/), including GSE72094 (n = 398), GSE68465 (n = 418) 
and GSE37745 (n = 226) as validation cohorts, and we 
performed the necessary log2 conversion. We obtained 
genes with correlation scores in the top 200 from Gen-
eCards (https://​www.​genec​ards.​org/) [9].

Identification the characteristics of disulfide 
metabolism‑related genes
According to the median expression of SLC7A11, TCGA 
cohort was divided into SLC7A11-high or low group. 
Then ‘limma’ R package [10] was used for differen-
tial analysis to select differentially expressed disulfide 
metabolism-related genes. The standards of differen-
tially expressed genes (DEGs) were defined as false dis-
covery rate (FDR) < 0.05 and log2 |fold change|≥ 1. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 

Fig. 1  Flowchart in this study

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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Genomes (KEGG) enrichment analysis was performed 
used the ‘clusterProfiler’ R package [11].

Construction of the risk index
Univariate cox regression analysis was used to prelimi-
narily screen survival-related genes (p < 0.05), and then 
LASSO cox regression was used to obtain the final can-
didate genes. The coefficient of each candidate gene mul-
tiplied by the expression yielded a risk index for each 
patient. In accordance with the median risk index, LUAD 
patients were divided into high/low -risk group for sub-
sequent analysis. The difference in survival between the 
two groups was compared by Kaplan–Meier (KM) curve 
and log-rank test. The same method was used to calculate 
the risk index in GSE72094, GSE68465, and GSE37745 to 
verify the accuracy of the risk index.

Development and validation of the nomogram
To find out whether the risk index was independent of 
typical clinical parameters, univariate and multivariate 
cox regression analyses were carried out. The nomogram 
was constructed based on the risk index and risk factors 
(p < 0.05). Calibration curves, decision curve analysis 
(DCA) and time-dependent receiver operating character-
istic (ROC) curves at 1, 3, and 5 years were used to evalu-
ate the prognostic value of the nomogram.

Association with TMB
Somatic mutation data for LUAD patients were down-
loaded from the TCGA database and Based on the total 
number of somatic mutations per MB of exon coding 
region in the human genome, we calculated the TMB 
for each sample as the total number of somatic muta-
tions/35 MB. The ‘maftools’ R package [12] was used to 
visualize the somatic mutation of high and low risk score 
groups, and the correlation between risk score and TMB 
was calculated. The ‘somaticInteractions’ function uti-
lized paired Fisher’s exact test to analyze the co-occur-
rence and exclusiveness among the top 20 with mutation 
incidence.

Gene set enrichment analysis
To explore the differences in biological characteris-
tics and pathways between different subgroups, we 
downloaded ‘c5.go.v7.5.1.symbols’ and ‘c2.cp.kegg.
v7.5.1.symbols’ from the Molecular Signature Database 
for executing GSEA software (version: 4.2.3) [13].

Analysis of tumor microenvironment
The ssGSEA algorithm was used to calculate the pro-
portion of 28 immune cells in the tumor microenvi-
ronment [14]. ESTIMATE algorithm computes tumor 
purity and tumor microenvironment score of each 

patient (including ESTIMATE score, immune score, 
stromal score and tumor purity) [15]. Tumor Immune 
Single-cell Hub (TISCH) database is an online analy-
sis website that integrates various cancer single-cell 
sequencing data (http://​tisch.​comp-​genom​ics.​org/) 
[16]. We used GSE131907 in the database to explore the 
characteristics of the tumor microenvironment of key 
genes at the single-cell level, which contains single cell 
sequencing data of 40 primary or metastatic LUAD.

Prediction of immunotherapy response
An online analytic tool called Tumor Immune Dys-
function and Exclusion (TIDE) model tumor immune 
escape to forecast the effectiveness of cancer immu-
notherapy [17]. We computed the TIDE score of each 
patient based on the expression profile of LUAD, and 
a higher TIDE score means that immune escape is 
more likely to occur during immunotherapy. We also 
downloaded the immunotherapy dataset (Checkmate 
009/010/025) for renal clear cell carcinoma to evalu-
ate the predictive performance of the  riskscore, which 
includes 181 samples of advanced renal clear cell carci-
noma who treated with anti-PD-1 monoclonal antibody 
[18].

Cell culture and siRNA transfection
Two human-derived NSCLC cell lines (A549 and 
HCC44), frozen and stored in liquid nitrogen after pur-
chased from the Xinyuan Biotech Co. Ltd. (Shanghai, 
China), were applied in this research. Authentication of 
cell lines was performed by short tandem repeat (STR) 
analysis. Cells were checked routinely and no bacterial, 
mycoplasma or fungal contamination was confirmed. 
Cells were cultured in RPMI-1640 medium (Gibco, 
Grand Island, NY, USA) containing 10% fetal bovine 
serum (Sinsage, Beijing, China). Cells were maintained 
in a humidified atmosphere of 5% CO2 at 37  °C. si-
TXNRD1s and negative control (siRNA-nc) were com-
mercially synthesized (Suzhou Gene Pharma, China). 
The selected sequences of small interfering RNAs (siR-
NAs) were as follows:

si-TXNRD1-1: 5′-GCC​AUG​GUC​CAA​CCU​UGA​
ATT-3′,

si-TXNRD1-2: 5′-GGA​GCA​UCC​UAU​GUC​GCU​
UTT-3′,

si-TXNRD1-3: 5′-CCA​CUG​UAU​UUA​CUC​CUU​
UTT-3′,

si-NC: 5′-UUC​UCC​GAA​CGU​GUC​ACG​UTT-3′. 
The siRNA oligos were transfected into A549 and 
HCC44 cells with Lipofectamine 3000 (Invitrogen, 
USA) according to the manufacturer’s instructions.

http://tisch.comp-genomics.org/
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Western blotting
Standard procedures were employed to do the Western 
blotting. Briefly, the cell lysates were prepared using RIPA 
lysis buffer supplemented with protease inhibitor cock-
tail, phosphatase inhibitor cocktail, and 1 mM PMSF (all 
from Sigma-Aldrich). Afterwards, samples were quanti-
fied using Bradford method. Same amount of protein was 
separated on 7.5–12% Bis–Tris gels (Epizyme, Shanghai, 
China) using MOPS/MES buffer. The electrophoretically 
isolated proteins were then transferred to polyvinylidene 
fluoride (PVDF) membranes (Invitrogen, California, 
USA). Membranes were blocked for 90 min at 4 °C with 
5% non-fat milk in PBST (0.1% Tween 20) and incubated 
overnight at 4 °C in solution containing relevant primary 
antibodies: mouse anti-GAPDH (Proteintech, Chicago, 
USA) 1:10000 and rabbit anti-TXNRD1 (Proteintech, 
Chicago, USA) 1:3000. Subsequently, horseradish peroxi-
dase (HRP)-conjugated secondary antibody was diluted 
with PBST containing 3% non-fat milk and applied to the 
blots for an hour at room temperature. The ECL Chemi-
luminescence System (Tianneng, Shanghai, China) was 
implemented to examine antibody binding and analyzed 
using Image J software (version 2.0, LOCI, University of 
Wisconsin, Madison, WI, USA).

Viability and proliferation testing
Cell viability was assessed using Cell Counting Kit-8 
(CCK-8) (Beyotime Biotechnology, Shanghai, China). 
Cells were cultured in 96-wells plates (1000 cells per 
well). After incubation, CCK-8 solution was added to 
each well followed by a further 2 h incubation under 5% 
CO2 at 37  °C. Absorbance was automatically measured 
at 450 nm using a microplate reader (Infinite F50, Tecan 
Group Ltd., Mannedorf, Switzerland) in day 1 to day 6. 
Cell proliferation was assessed using plate clone forma-
tion and 5-ethynyl-2′-deoxyuridine (EdU) assays. Cells 
were cultured in 12-wells plates (1000 cells per well) 
after the transfection of siRNA oligos, and the culture 
medium was refreshed every 3  days. Cell colonies were 
fixed and then stained with gentian violet (Shanghai 
yuanye Bio-Technology Co., Ltd, China) after 7 days. The 
EdU assay was managed according to product instruc-
tions (Epizyme, Shanghai, China). The Edu-positive rate 
was computed as EdU-positive cells/Hoechst-stained 
cells × 100%.

Migration and invasion testing
Transwell (Corning, NY, USA) assays for cell migration 
and invasion were used to measure these processes. For 
48  h, cells were precultured in media devoid of serum. 
RPMI-1640 with 10% FBS was placed in the lower cham-
ber, and 3 104 cells were put to serum-free media in 
the top chamber for the migration test. After 36  h, the 

non-migrating cells on the upper chambers were care-
fully cleaned using a cotton swab, and the migrating cells 
on the bottom of the filter were stained and counted.

Cell migration and invasion were measured by Tran-
swell (Corning, NY, USA) migration and invasion assays. 
Cells were precultured in serum-free medium for 48  h. 
For migration assay, 3 × 104 cells were added to serum-
free medium in the upper chamber, and the lower cham-
ber was filled with RPMI-1640 containing 10% FBS. The 
non-migrating cells on the upper chambers were gently 
removed with a cotton swab after 36 h, and the migrated 
cells on the filter’s underside were stained and counted. 
Transwell inserts (Corning, NY, USA) coated with 
Matrigel/fibronectin (BD Biosciences, NY, USA) were 
used to conduct Matrigel invasion experiments. For each 
plate, five distinct fields were recorded. Each experimen-
tal process was carried out in triplicate.

Statistical analysis
Data analysis and image production were conducted 
using R software (version 4.1.3) and Graphpad Prism 
9. Cell counting of Edu assay, migration and invasion 
assays were performed using Image J software (version 
2.0, LOCI, University of Wisconsin, Madison, WI, USA). 
For the bioinformatics analysis section, for comparisons 
between continuous variables, the Wilcoxon test was 
employed, while the chi-square test was utilized for com-
parisons between categorical variables. Survival analysis 
was performed by log-rank test. The ‘regplot’ R package 
is used to plot nomogram. Spearman rank correlation 
was used for correlation analysis. For the in vitro experi-
ments analysis part, data were expressed as mean ± stand-
ard deviations (SD). The statistical significance between 
groups was assessed by analysis of variance (ANOVA) 
with Sidak’s multiple comparisons test. Differences were 
considered to be statistically significant when the P value 
was 0.05 or less.

Results
Identification of disulfide metabolism‑related genes
After difference analysis of different SLC7A11 expres-
sion groups, 2004 genes were obtained (Fig. 2A), and 22 
candidate genes were obtained after intersection with 
disulfide metabolism-related genes (Fig.  2B). By analyz-
ing CNV of 22 candidate genes, we found that except 
for G6PD, the other 22 genes had a higher percentage of 
CNV gain (Fig. 2C). The positions of 22 genes on chro-
mosomes are shown in Fig.  2D. GO and KEGG enrich-
ment analysis results indicated that the function of the 
above genes was mainly concentrated in the coagulation 
process, wound healing, and glutathione metabolism 
(Fig.  2E, F). Disulfide bonds are covalent bonds formed 
through redox reactions, and their presence can increase 
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the stability and structural strength of proteins. Many 
drugs that promote wound healing are linked by disulfide 
bonds, and when they enter the corresponding wound 
site, they are cleaved by glutathione, releasing drugs that 
promote wound healing [19, 20]. This is consistent with 
the results of enrichment analysis.

Construction and validation of a disulfptosis and disulfide 
metabolism risk index
Univariate cox regression analysis found that 5 of the 
22 genes were significantly associated with prognosis 
(Fig.  3A). These five genes were then incorporated into 
the lasso regression model. When lambda value was opti-
mal, we found that all the 5 genes were included in lasso 
model (Fig. 3B, C), then we got risk index of each patient: 
FGAexp*0.03223269−GSTA1exp*0.07487323 + PI3e
xp*0.03419497−RNASE1exp*0.04274036 + TXNRD-
1exp*0.11154829. Patients with TCGA-LUAD were 
divided into two groups based on the median risk score. 
Survival analysis results showed significant differences in 

OS between the two groups (Fig. 3D). Risk factor distri-
bution and heatmap reflect the rationality of risk index 
(Fig. 3E, F). Risk indexes were calculated in the same way 
for each sample in the independent dataset GSE72094, 
and survival analysis showed that the low-risk group had 
a worse prognosis (Fig. 3G). Similar results were obtained 
from risk factor distribution and heatmaps (Fig.  3H, I). 
In addition, the other two GEO datasets (GSE68465 and 
GSE37745) also obtained similar KM curves and risk fac-
tor graphs (Additional file 1: Fig. S1A–F).

Development of the nomogram
In order to determine if the risk index represented a 
separate risk factor for the prognosis of LUAD, uni-
variate and multivariate cox regression analyses were 
used (Fig.  4A, B). The results showed that risk index 
was a negative risk factor for OS (HR = 2.795, 95%CI 
1.819–4.293, p < 0.0001). Next, a column chart was 
constructed based on the risk index, T staging and 
N staging to predict OS in years 1, 3 and 5 (Fig.  4C). 

Fig. 2  Genomic characteristic and enrichment analysis of disulfidptosis and disulfide metabolism-related genes. A Volcano plot exhibiting 
down or low- regulated genes. B Venn diagram showed 22 differentially expressed disulfide metabolism-related genes. C The CNV mutation 
frequency of 22 key genes. D Chromosome position of disulfide metabolism-related genes. E GO enrichment analysis. F KEGG enrichment analysis

Fig. 3  Construction and validation of disulfidptosis and disulfide metabolism-related risk index. A Univariate cox analysis of 22 key genes. B 
Adjustment of parameters (lambda) in the LASSO Cox regression model using tenfold cross-validation. C 5 key disulfide metabolism-related genes 
and their coefficients. D KM survival analysis in TCGA dataset. E Changes in the number of deaths as the risk score increases in TCGA dataset. F 
Heatmap showing the expression in TCGA dataset. G KM survival analysis in GSE72094 dataset. H Changes in the number of deaths as the risk score 
increases in GSE72094 dataset. I Heatmap showing the expression in GSE72094 dataset

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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The actual results and the projected outcomes are 
essentially consistent, according to calibration curves 
(Fig. 4D). The time-dependent ROC curve also showed 
better predictive power of the nomogram (Fig. 4E). The 
DCA curve indicated that nomogram had higher ben-
efits compared to other single factors (Fig. 4F).

Analysis of tumor mutation burden
We calculated the TMB for each LUAD patient and 
showed the difference in TMB between the high-risk 
group (Fig. 5A) and the low-risk group (Fig. 5B) using 
the waterfall plot. Figure 5C, D displays comprehensive 
mutation statistic. 9 of the top 10 genes in the two sub-
groups overlapped, but the high-risk group experienced 

Fig. 4  Development of the nomogram to predict the prognosis of LUAD. Univariate (A) and multivariate (B) Cox regression analysis of risk score. 
C Nomogram for the prediction of 1-, 3- and 5-year survival probability. D Time-dependent ROC analysis of the nomogram. E Calibration curves 
for evaluating the accuracy. F DCA demonstrated the degree of benefit of different factors. ***p < 0.001
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more mutations than the low-risk group did. On the 
whole, TMB in high-risk group was higher than that in 
low-risk group (Fig. 5E), and TMB was positively corre-
lated with risk index (Fig. 5F). According to the analysis 
of the top 20 genes with mutation incidence, co-occur-
rence was found among most of the gene mutations 
(Fig. 5G).

Gene set enrichment analysis
In order to get better understand of the potential dif-
ferences in biological function and pathway between 
the two risk groups, GSEA was conducted. GO analy-
sis results showed that the regulation of cell cycle 
and disulfide oxidoreductase activity were enriched 
in the high-risk group (Fig.  6A). Multiple branched 
chain amino acid metabolism and negative regulatory 

Fig. 5  Analysis of TMB in LUAD. Genes with the top 15 mutation frequencies in high-risk group (A) and low-risk group (B). Detailed mutation type 
statistics in high-risk group (C) and low-risk group (D). E Statistical analysis of TMB between two risk groups. F Correlation analysis between risk 
score and TMB. G Fisher’s Exact test to detect mutually exclusive or co-occuring events
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pathways of vascular endothelial growth factor were 
considerably enriched in the low-risk group (Fig.  6B). 
KEGG results showed that cysteine and methionine 
metabolic pathways and cell cycle were activated in 
the high-risk group (Fig.  6C), while nitrogen metabo-
lism and branched chain amino acid metabolism were 
activated in the low-risk group (Fig.  6D). Overall, in 
the high-risk group, the pathways that promote tumor 
growth were mainly activated. The intake of cysteine 
and methionine can activate the ferroptosis pathway in 
glioma mouse models, thereby inhibiting tumor growth 
[21]. The metabolism of branched chain amino acids 
was an important nitrogen source for tumor cells. Sup-
plementing with branched chain amino acids in the diet 
can inhibit tumor growth and postoperative recurrence. 
But controlling the intake of amino acids through diet 
still requires comprehensive investigation [22].

Characteristics of tumor microenvironment
First, we implemented the ssGSEA algorithm to check 
out the relative proportions of 28 different types of 
immune cells in TME (Fig.  7A), and found there were 
notable changes in components in TME components 
between different risk groups. In the low-risk group, 
the infiltration of B cells, eosinophils, mast cell, den-
dritic cells and NK cells was higher. While in the high-
risk group, the proportion of CD4 T cells, neutrophils, 
and Th2 cells is higher. According to the results of 
ESTIMATE, the high-risk group had higher tumor 
purity whereas the low-risk group had higher ESTI-
MATE score and immunological score. No discernible 
difference existed between the two categories in terms 
of stromal score. (Fig.  7B). This provides additional 
confirmation that greater immune cell infiltration in 
the TME is one factor contributing to the better out-
come in the low-risk group. Subsequently, we analyzed 

Fig. 6  Potential pathway analysis through gene set enrichment analysis. GO enrichment in high-risk group (A) and low-risk group (B). KEGG 
enrichment in high-risk group (C) and low-risk group (D)
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the expression of five key genes in LUAD at the single-
cell level by using the TISCH database (Fig. 7C). FGA, 
GSTA1, and PI3 were chiefly distributed in epithelial 
cells, RNASE1 was chiefly distributed in endothelial 

cells, monocytes/macrophage, dendritic cells, TXNRD1 
was chiefly distributed in epidermal cells, and DC, 
monocyte/macrophage, and fibroblasts (Fig. 7D).

Fig. 7  Tumor microenvironment assessment and prediction of immunotherapy response. A Comparison of 28 types of immune cell infiltration 
levels. B ESTIMATE algorithm for evaluating tumor microenvironment, including ESTIMATE score, immune score, stromal score, and tumor purity. 
C Display the distribution of different types cells in scRNA level using dimensionality reduction clustering. D The distribution of 5 key genes 
in scRNA level. E The difference of TIDE score. F Prediction of response to immunotherapy through TIDE algorithm. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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Prediction of immunotherapy response
We examined the variations in immunotherapy response 
between two risk groups using the TIDE algorithm. The 
findings revealed that the high-risk group had higher 
TIDE and exclusion scores whereas the low-risk group 
had higher dysfunction scores (Fig. 7E). This means that 
high-risk groups were more likely to experience immune 
escape when receiving immunotherapy. In addition, we 
predicted the proportion of people who responded to 
immunotherapy and we discovered that the low-risk 
group would see a greater rate of response (chi-square 
test, p = 0.0036, Fig.  7F). The dataset treated with anti-
PD-1 immunotherapy indicated that the high-risk group 
had a worse prognosis than the low-risk group (Addi-
tional file 2: Fig. S2A), which indicated that the riskscore 
could effectively predict the prognosis of patients receiv-
ing PD-1 treatment.

Silencing TXNRD1 inhibited LUAD proliferation, migration, 
and invasion in cell lines
Western blotting confirmed that TXNRD1 was suc-
cessfully knocked down in A549 and HCC44 (Fig.  8A). 
Then, we demonstrated through various methods that 
TXNRD1 affects the proliferation of LUAD cells. In 
CCK8, plate clone formation and Edu assays, the inter-
ference of TXNRD1 resulted in significant inhibition of 
A549 and HCC44 cell viability and proliferation (Fig. 8B–
E). Moreover, the suppression of TXNRD1 resulted in a 
significant reduction in the migration and invasion abili-
ties of LUAD cells (Fig.  9A, B). These findings strongly 
indicate that TXNRD1 may give advantage to LUAD pro-
liferation, migration, and invasion.

Discussion
As the lung cancer with the highest incidence rate and 
mortality in the world, most patients have no obvious 
symptoms of discomfort in the early stage. And by the 
time the symptoms of discomfort appear, it is often ter-
minal. Traditional chemotherapy can only improve the 
prognosis of NSCLC by 5%, and the emergence of tar-
geted therapy and immunotherapy has greatly improved 
the survival status of patients. Especially with the emer-
gence of immunotherapy, it has revolutionized the treat-
ment mode of NSCLC.

In recent years, a variety of cell death modes have been 
confirmed to widely affect the progression of tumors [23, 
24]. Liu et al. found that cancer cells with high SLC7A11 
expression promote NADPH depletion and thus trigger 
disulfide stress [8]. The proteins related to the formation 
of disulfide bonds are mainly involved in the formation 
of actin cytoskeleton. The formation of excessive disulfide 
bonds leads to the abnormal cross-linking of disulfide 
bonds, which ultimately leads to the destruction of cell 

structure and death. Inhibiting the continuous accu-
mulation of disulfide bonds, that is, targeting disulfide 
metabolism, may be a novel approach to cancer therapy. 
Although research into disulfide death has only just 
begun, there is reason to believe that it could be one of 
the key tools to overcome cancer in the future.

With the continuous progress of sequencing meth-
ods, the construction of tumor related prognostic mod-
els using transcriptomic data has been recognized by 
researchers [25–27]. In this study, we analyzed the char-
acteristics of disulfide metabolism related genes in LUAD 
patients with different expression levels of SLC711A 
and constructed a corresponding risk index, which can 
effectively identify the prognosis of LUAD patients. In 
addition, cox regression analysis has shown that it is 
an independent risk factor for the prognosis of LUAD 
patients. By combining clinical features to construct 
nomogram, its practicality had been increased. The 
GSEA analysis results indicate that the high-risk group 
was mainly related to the cell proliferation process and 
the metabolism of sulfur-containing amino acids, while 
the low-risk group was mainly related to the branched 
chain amino acids metabolism. Yue et al. found through 
in vitro and in vivo experiments that limiting the intake 
of sulfur-containing amino acids significantly inhibited 
the growth of colon cancer cells in vivo, and had a good 
synergistic effect with PD-L1 inhibitors [28]. This may be 
one of the reasons that affects the prognosis of high-risk 
group patients.

Our study identified five key genes involved in disulfide 
metabolism. Fibrinogen α (FGA), which is involved in the 
formation of extracellular matrix proteins, promotes cell 
proliferation, migration and invasion through CRISPR/
Cas9 knockdown of FGA in LUAD, and might turn into 
a new therapeutic target [29]. GSTA1 plays an important 
role in regulating glutathione metabolism. In lung cancer, 
overexpression of GSTA1 plays a role in tumor promo-
tion [30]. PI3 (Peptidase Inhibitor 3) is a serine protease 
inhibitor which is involved in breast cancer. High expres-
sion of PI3 is significantly associated with poor progno-
sis of high-grade serous ovarian and breast cancer, and 
in vitro and in vivo studies have demonstrated that over-
expression of PI3 promotes the proliferation of breast 
cancer [31, 32]. RNASE1 encodes endonuclease, which 
regulates extracellular RNA clearance and immune func-
tion. Li et  al. found that RNASE1 promotes breast can-
cer by binding to and activating tyrosine kinase receptors 
[33]. TXNRD1 comes from the TXNRD family of 
enzymes, which together with glutathione maintain cell 
REDOX balance [34]. It is used as a prognostic marker 
in many cancers [35]. In addition, TXNRD1 is involved 
in iron death resistance of cancer cells [36]. Targeting 
TXNRD1 to promote cancer cell death due to oxidative 
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Fig. 8  Knocking down TXNRD1 inhibits the proliferation of LUAD in vitro experiments. A Western blotting confirms that TXNRD1 expression 
decreases after knockdown. B The CCK8 proliferation experiment showed that inhibiting the expression of TXNRD1 would inhibit the proliferation 
of LUAD. C Plate cloning indicates significant inhibition of clone formation ability after knocking down TXNRD1. D EDU experiments showed 
a significant decrease in the proportion of LUAD cells in proliferative state after TXNRD1 knockdown
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stress disorder has the potential to be a new target for 
cancer therapy. The results of our external experiments 
have also indicated the multiple malignant oncological 
behaviors of LUAD affected by TXNRD1. Xiong et  al. 
synthesized a new nano-modulator using key genes that 
can activate oxidative stress-induced cell death, effec-
tively inhibiting tumor growth and eradicating cancer 
stem cells to suppress lung metastasis [37]. This provides 
us with new insights. Given the involvement of TXNRD1 
in maintaining redox stability, constructing new nano 
antibodies to regulate oxidative stress processes in 
tumors may become a new clinical translational pathway.

The tumor microenvironment’s makeup largely influ-
ences how well immunotherapy works. [38]. Our 
research results show that the TME of the two subgroups 
has different immune landscapes. The low-risk group 
has a higher level of immune cell infiltration and a sig-
nificantly better prognosis than the high-risk group. In 
addition, in the prediction of immune therapy response, 
the low-risk group had a better proportion of responses, 
and the difference was statistically significant. Usually, we 
believe that higher levels of immune cell infiltration lead 

to better immune therapy responses, which is consistent 
with our results.

Our study has the following shortcomings. First, our 
risk index requires large and multicenter clinical trials to 
be validated. Secondly, the mechanism of how TXNRD1 
regulates ferroptosis needs further study. Finally, the 
clinical transformation of TXNRD1 still needs to be con-
firmed in vivo.

Conclusion
In summary, we analyzed the characteristics of disulfide 
metabolism-related genes and constructed a characteris-
tic risk index, which can effectively predict the prognosis 
of LUAD patients. The in vitro experiments indicate that 
TXNRD1 is a potential therapeutic target for LUAD.
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Fig. 9  Knocking down TXNRD1 inhibits the migration and invasion ability of LUAD cells. The migration (A) and invasion (B) ability of LUAD cells 
decreased significantly after TXNRD1 knockdown
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C Heatmap showing the expression in GSE68465. D KM survival analysis in 
GSE37745. E Changes in the number of deaths as the risk score increases 
in GSE37745. F Heatmap showing the expression in GSE37745. 

Additional file 2: Figure S2. A KM survival analysis based on the riskscore 
in anti-PD-1 immunotherapy cohort.
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