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Abstract 

Lung cancer is the leading cause of cancer-related death. Lysosomes are key degradative compartments that main-
tain protein homeostasis. In current study, we aimed to construct a lysosomes-related genes signature to predict 
the overall survival (OS) of patients with Lung Adenocarcinoma (LUAD). Differentially expressed lysosomes-related 
genes (DELYs) were analyzed using The Cancer Genome Atlas (TCGA-LUAD cohort) database. The prognostic risk 
signature was identified by Least Absolute Shrinkage and Selection Operator (LASSO)-penalized Cox proportional haz-
ards regression and multivariate Cox analysis. The predictive performance of the signature was assessed by Kaplan–
Meier curves and Time-dependent receiver operating characteristic (ROC) curves. Gene set variant analysis (GSVA) 
was performed to explore the potential molecular biological function and signaling pathways. ESTIMATE and single 
sample gene set enrichment analysis (ssGSEA) were applied to estimate the difference of tumor microenvironment 
(TME) between the different risk subtypes. An eight prognostic genes (ACAP3, ATP8B3, BTK, CAV2, CDK5R1, GRIA1, 
PCSK9, and PLA2G3) signature was identified and divided patients into high-risk and low-risk groups. The prognostic 
signature was an independent prognostic factor for OS (HR > 1, p < 0.001). The molecular function analysis suggested 
that the signature was significantly correlated with cancer-associated pathways, including angiogenesis, epithelial 
mesenchymal transition, mTOR signaling, myc-targets. The low-risk patients had higher immune cell infiltration levels 
than high-risk group. We also evaluated the response to chemotherapeutic, targeted therapy and immunotherapy 
in high- and low-risk patients with LUAD. Furthermore, we validated the expression of the eight gene expression 
in LUAD tissues and cell lines by qRT-PCR. LYSscore signature provide a new modality for the accurate diagnosis 
and targeted treatment of LUAD and will help expand researchers’ understanding of new prognostic models.
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Introduction
Among all cancers, lung cancer is the leading cause of 
cancer-related death [1]. TNM staging has long been 
used to predict the prognosis of lung cancer patients. 
However, tumor heterogeneity can lead to a difference 
in survival rates in patients of the same stage [2]. There-
fore, the development of a biomarker for lung cancer is 
urgently needed. Moreover, although significant advances 
have been made in immunotherapy for advanced lung 
cancer, clinical biomarkers are still needed to identify 
which patient populations are likely to benefit from the 
treatment [3, 4].

Lysosomes are key degradative compartments that 
maintain protein homeostasis. Over 70 rare genetic 
disorders are caused by their dysfunction, collectively 
known as lysosomal storage disorders [5, 6]. Previous 
studies considered lysosomes as a static organelle spe-
cialized in processing and recycling cellular waste, but in 
recent years several studies have shown that lysosomes 
can change morphology and function in the cytoplasm 
and ultimately participate in the development of dis-
eases, including metabolic disorders, neurodegenerative 
diseases, and cancer [6–8]. Several studies have shown 
that certain types of cancer, including pancreatic, lung, 
breast, and prostate cancers, as well as glioblastoma 
and melanoma, rely on lysosomal–autophagic degra-
dation and recycling to scavenge nutrients [9–11]. For 
instance, AP1S and HSP70 mediated lysosomal deg-
radation of EGFR inhibits tumor reprogression and 
increases the sensitivity to chemo- and target sensitivity 
in lung adenocarcinoma [12, 13]. The loss of MTSS1 in 
lung adenocarcinoma can promote immune escape by 
reducing AIP4-mediated PD-L1 monoubiquitination and 
lysosomal degradation [14]. Moreover, the alteration of 
lysosomal function is also closely related to the tumor 
microenvironment and immunotherapy of tumors [15, 
16]. However, no synergistic effects of multiple lysosome-
related genes on lung cancer have been reported. There-
fore, it is important to build lysosome-related signature 
to evaluate lysosome function in lung adenocarcinoma.

In this work, by using the nonnegative matrix factori-
zation (NMF) algorithm, lysosomes-related molecular 
subtypes were identified based on the TCGA-LUAD 
cohort. We compared the differences between two clus-
ters in enriched function and TME. Then we explored the 
significant prognostic values of differentially expressed 
genes for LUAD patients. Based on these genes, we con-
structed an eight-prognostic signature using LASSO Cox 
regression and multiple Cox regression models from the 
TCGA. The ability of prediction for survival probability 
were assessed in different GEO datasets. Finally, a nomo-
gram score system combined with risk score and clinical 
characteristics were built to quantify survival probability.

Methods and materials
Data sources and preprocessing
The bulk RNA-sequencing profiles (FPKM normalized), 
corresponding clinical information, mutations and copy 
number alterations of lung adenocarcinoma patients 
were downloaded from TCGA database (https://​portal.​
gdc.​cancer.​gov/​cart) as a training cohort, which con-
tains 59 normal tissues and 535 LUAD tumorous tis-
sues. External validation datasets were obtained from 
GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), 
including GSE50081 (n = 127), GSE72094 (n = 398) and 
GSE41271 (n = 184). The immune inhibitor treatment 
cohort IMvigor210, which investigated atezolizumab in 
metastatic urothelial carcinoma was downloaded from 
http://​resea​rch-​pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies 
through the R package IMvigor210CoreBiologies. Sin-
gle-cell RNA sequence data from the GSE149655 (n = 2) 
was employed to reveal cell category and the correlation 
between single cell and the risk model in LUAD. The lys-
osomes-related genes were downloaded from MSigDB 
database (https://​www.​gsea-​msigdb.​org), including 1340 
genes (Additional file 1: Table S1). To annotate lncRNAs 
and mRNAs with Perl scripts, we downloaded Genome 
Reference Consortium Human Build 38 (GRCh38). We 
excluded patients without complete clinical information 
and the survival time of 0.

Screened differentially expressed lysosomes‑related genes
First, we screened the differentially expressed genes 
(DEGs) between tumor and normal samples by “limma” 
R package according to the filtered criteria (|log2FC|> 1 
and FDR < 0.05) in mRNA expression matrix. Then we 
identified differentially expressed lysosomes-related 
genes (DELYs) using DEGs list and lysosomes-related 
genes list through online tool Jvenn (jvenn: an interac-
tive Venn diagram viewer (inra.fr)). By using the “cluster-
Profiler” and “org.Hs.eg.db” R packages, we investigated 
the potential biological functions and pathways based on 
those genes.

Non‑negative matrix factorization clustering analysis 
for DELYSs
The Non-negative Matrix Factorization (NMF) method 
based on the standard “brunet” was applied to iden-
tify the distinct molecular subtypes of LUAD based on 
DELYs expression [17]. The R package “NMF” executed 
this procedure and the samples were iterated thirty times 
in the TCGA-LUAD cohort. The number of clusters was 
set as k = 2–10, according to the cophenetic coefficient, 
contour, and sample size algorithm, and the optimal clus-
tering number was selected as two categories. For evalu-
ating the clinical value of the lysosomes related subtypes 
with prognosis, Kaplan–Meier survival plot was utilized 
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to compare the OS and PFS of different clusters in TCGA 
cohort. The relationships of the lysosomes related sub-
types with other clinical variables, including immune 
subtype, survival status, stage and status of lymph node 
metastasis were visualized by the Sankey diagram drawn 
using “ggalluvial” R package. The immune subtypes, 
including C1 (wound healing), C2 (IFN‐γ dominant), C3 
(inflammatory), C4 (lymphocyte depleted), C5 (immu-
nologically quiet), and C6 (TGF‐β dominant) (Additional 
file  1: Table  S2) were identified according to Thorsson 
and colleagues [18].

The TME evaluation and immune infiltration landscape 
analysis
“ESTIMATE” algorithm was applied to assess the TME 
scores, including immune infiltration, stromal score and 
estimate score of each patient using “limma” and “esti-
mate” R packages. In addition, to explore the immune 
characteristics of patients with LUAD, we performed sin-
gle sample gene set enrichment analysis (ssGSEA) based 
on 23 types of immune cell biomarkers (Additional file 1: 
Table S3) to quantify the abundance of the immune cell 
infiltration of each patient. We draw the heatmap to pre-
sent the differences of immune cell infiltration landscape 
between clusters and other clinicopathological features 
such as age, gender, stage, tumor size, status of lymph 
node and distant metastasis. The “GSVA” and “GSEA-
Base” R packages were utilized to evaluate the potential 
immune function between two clusters based on the 
13 types immune function gene sets (Additional file  1: 
Table S4). Furthermore, we explored the prognostic val-
ues of the immune function for LUAD patients.

Functional enrichment and TMB assessment
To explore the potential molecular function and 
pathways, we performed gene set various analysis 
(GSVA) and GSEA based on defined gene sets, “h.all.
v7.4.symbols.gmt”, “c5.go.v7.4.symbols.gmt”, and “c2.
cp.kegg.v7.2.symbols.gmt”, which were downloaded from 
MSigDB database. p < 0.05 was considered to indicate 
significant differences. The tumor mutation landscape of 
patients with LUAD was depicted by using “matfool” R 
package.

Drug sensitivity prediction
As part of the TCGA cohort, the oncoPredict R package 
was used to determine the half-maximum inhibitory con-
centration (IC50) commonly used in chemotherapeutic 
and targeted drugs for each LUAD patient. There were 
198 drugs from Genomics of Drug Sensitivity in Cancer 
(GDSC; https://​www.​cance​rrxge​ne.​org/) that were com-
pared for sensitivity in the different lysosome clusters. 
p < 0.05 was set as the threshold for significance.

Identification of prognostic genes and somatic mutation 
and copy number alterations analysis in LUAD
To further explore whether these DELYs were associated 
with LUAD progression, the DEGs were implemented 
univariate Cox analysis to filter DELYs markedly asso-
ciated with overall survival (OS) (p < 0.05) using “sur-
vminer” package. Thereafter, we depicted the somatic 
mutation landscape and copy number of the prognostic 
genes using “matfool” and Perl script. Furthermore, we 
investigated the proportion of genes alteration types, 
including mutation, structural variant, CNV altera-
tions. We also investigated the interaction network 
among these prognostic genes using “igraph” and “psych” 
package.

Construction and validation of lysosomes‑related 
signature and nomogram
To better understand the association between lysosomes 
related clusters and the prognosis of LUAD patients, we 
constructed a lysosomes-related prognostic model for 
prognosis prediction. First, as part of the model selection 
process, we used the least absolute shrinkage and selec-
tion operator (LASSO) of Cox regression. Subsequently, 
the selected genes were performed multivariate Cox 
regression analysis by “glmnet” and “survival” package. 
The lysosomes-related risk model was calculated using 
following formula: LYSscore = Σ (Expi * coefi), where 
Coefi represented the risk coefficients, and Expi meant 
expression value of each gene, respectively. According 
to the median value of LYSscore, patients were classi-
fied as high-risk and low-risk group. The time-depend-
ent receiver operating characteristic (ROC) curves and 
the area under curve (AUC) were utilized to measure 
the reliability and stability of the risk model by package 
“survivalROC”. A similar method was used to validate 
the model’s predictive accuracy on the GEO cohorts. At 
the same time, we described the changes of survival sta-
tus and number of patients between different risk groups 
with the increasing risk score. We compared the differ-
ences and the percentages of patients between high-risk 
and low-risk in multiple factors, including age, gender, 
clinical stage. What’s more, using univariate and multi-
variate Cox regression analysis, we examined whether 
the risk score was an independent indicator of prognosis 
in patients with LUAD. In addition, we drew the Sankey 
diagram to find the relationships between risk groups and 
lysosomes-related cluster, immune subtype, and survival 
status of patients. To improve the accurate predictive 
power for LUAD patients, we combined clinicopatho-
logical features with risk score to construct a nomogram 
score system. Nomogram was constructed using the 
"rms" package to predict 1-, 3-, and 5-year survival. The 
accuracy of the nomogram was validated by calibration, 
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ROC, and decision curves (DCA) using “ggDCA” and 
“survival” package, respectively. Furthermore, to test the 
superiority of the risk model, we compared our risk score 
with other signature, including Wang et  al. [19], Jiang 
et al. [20], Deng et al. [21], Huang et al. [22], and Li et al. 
[23]. The “survcomp” package was used to assess index of 
concordance (C-index) and RMS.

Comprehensive analysis of ICI therapy in different risk 
group
Tracking the Tumor Immune Dysfunction and Exclusion 
(TIDE) (http://​tide.​dfci.​harva​rd.​edu/), a comprehensive 
analysis platform based on the tumor expression matrix 
was used to find biomarkers to predict the effect of 
immune checkpoint inhibition therapy. The associations 
of common immune checkpoint expression between dif-
ferent risk groups were explored. To precise describe the 
immunotherapeutic response to patients in different risk 
groups, we downloaded the immunophenoscore (IPS) 
from The Cancer Immunome Atlas (TCIA) (https://​tcia.​
at/​home) to predict responses to immune checkpoint 
blocked. In order to calculate the IPS, MHC molecules, 
immunomodulators, effector cells (ECs) and suppres-
sor cells (SCs) were considered. It included four types of 
scores, ips_ctla4_pos_pd1_pos, ips_ctla4_pos_pd1_neg, 
ips_ctla4_neg_pd1_pos, and ips_ctla4_neg_pd1_neg, to 
better predict the efficacy of anti-CTLA-4 and anti-PD-1 
antibodies. We also validated the predictive value of risk 
scores for immunotherapy using the IMvigor210 cohort.

Identification of risk genes by scRNA‑seq analysis
The GSE149655 dataset including two purification LUAD 
tissues (GSM4506699 and GSM4506701) with log nor-
malized RNA expression matrix were converted scRNA-
seq data into Seurat objects using the “seurat” R package. 
Then we performed quality control the scRNA-seq data 
to exclude low-quality or biased cells according to the 
criteria: the threshold at cell counts > 3%, cells with the 
number of genes mapped > 50%, < 5% mitochondrial 
genes and > 50% at featured RNAs. After this, 1546 cells 
were for subsequent analysis. Based on the top 1500 
highly variable genes, the principal component analysis 
(PCA) was used to performed for dimensionality reduc-
tion, and the top 15 principal components were selected 
for cell clustering analysis. After this, T-distributed sto-
chastic neighbor embedding (t-SNE) was employed to 
visualize cell subpopulations in a two-dimensional space 
using tSNER package, and “SingleR” package was applied 
to annotate each subpopulation by corresponding fea-
tured genes [24].

Tissue samples collection, cell culture and real‑time PCR
Nine pairs of tumor and adjacent non-tumor tissues 
were collected from LUAD patients who underwent tho-
racic surgery in the first affiliated hospital of Xi’an Jiao-
tong University between September 2022 and October 
2022 and stored them in liquid nitrogen. Informed con-
sent was obtained from each patient, and the study was 
approved by the Ethics Committee of the first affiliated 
hospital of Xi’an Jiaotong University. Normal pulmonary 
epithelial cells BEAS-2B and LUAD cell lines (A549 and 
PC9) were purchased from the American Type Culture 
Collection (Manassas, USA). BEAS-2B and A549 cell 
lines were cultured in DMEM medium (Gibco, Rock-
ville, USA), and PC9 cell line was incubated RPMI 1640 
medium supplemented with 10% fetal bovine serum 
(Gibco) and 100 U/mL penicillin under a suitable condi-
tion (5% CO2, 37  °C).The total RNA was extracted from 
the tissues and cells using an RNA extraction kit (RNA-
fast200, fastagen, China) according to the manufacturer’s 
protocol and performed reverse transcription to cDNA 
using Prime Script RTase (Takara, China) following the 
protocol. Based on the manufacturer’s instructions, real-
time PCR was used to measure mRNA expression levels 
using SYBR green (Takara, China). The list of the eight 
genes’ primers used for real-time PCR was provided in 
Additional file 1: Table S5.

Results
The baseline characteristics of patients with LUAD 
from TCGA and GEO databases
The TCGA-LUAD cohort (including 490 patients) was 
considered as training cohort in this study. Furthermore, 
three independent GEO-LUAD cohorts (including 709 
patients) were defined as the testing cohorts. The base-
line clinical features of the LUAD patients in training 
and testing cohorts were provided in Additional file  1: 
Table  S6. Overall, in the training cohort, most patients 
were over aged 60  years old (67.96%), female (54.29%), 
diagnosed at early stage I–II (53.27%), stage T1–2 
(86.53%), stage N0 (64.69%), and stage M0 (65.71%), 
while the patients from GEO haven’t sufficient clinical 
information as training cohort.

Screening and identification of DELYs
A total of 4093 DEGS between tumor and normal 
tissues were identified through differentially expression 
analysis, including 2738 highly expressed genes and 
1355 low expressed genes in LUAD patients according 
to the screened criteria: |log FC|> 1 and FDR < 0.05 
(Fig. 1A). Then we screened 214 differentially expressed 
lysosomes-related genes (DELYs) through the DEGs list 
and lysosomes-related genes list (Fig.  1B). The heatmap 
showed the expression landscape of DELYs (Fig. 1C). The 
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function enrichment analysis indicated that 214 DEGs 
were significantly correlated with 1439 GO items and 12 
KEGG pathways (Additional file 1: Table S7), and top 30 
GO items and top 10 KEGG pathways were presented 
in Fig.  1D, E. “amide binding”, “vacuolar membrane”, 
and “macroautophagy” were the most enriched GO 
keywords. KEGG analysis indicated that “Endocytosis” 
and “Lysosome” were significant pathways.

Identification of lysosomes‑related subtypes based 
on DELYs
To further appraise the mechanism of these 214 DELYs 
in LUAD, we implemented NMF cluster analysis. 
According to the cophenetic, dispersion, and profile, the 
K = 2 was considered as the optimal clusters (Fig.  2A, 
Additional file  2: Figure S1A, B). Patients in cluster2 
had poorer overall survival rate and progression-free 
survival outcomes than patients in cluster1 (Fig. 2B, C). 
The Sankey plot showed the patients in cluster1 was 
mainly contributed to immune subtype C3 and had 
better prognosis (Fig.  2D). To investigate the immune 
characteristics of patients with LUAD, we drew an 
immune cell infiltration landscape by comparing the 
differences of 23 types of immune cell between two 
cluster and different clinical features. Then we found 
that cluster1 presented “hot” immune cell infiltration 
(Fig.  2E). The cluster1 was significantly enriched in 
activated B cells, activated dendritic cells, eosinophils, 
immature B cells, immature dendritic cells, MDSC, 
macrophages, mast cells, monocytes, natural killer 
cells, plasmacytoid dendritic cells, regulatory T cells, T 
follicular helper cells, and type 1/17 helper T cells, and 
cluster2 was significantly enriched in CD56dim natural 
killer cells (Additional file 2: Figure S2A). The “estimate” 
algorithm verified cluster1 had higher TME scores, 
including immune score and stromal score (Additional 
file  2: Figure S2B). The immune function heatmap 
suggested that cluster1 had higher levels of Type II IFN 
response, HLA (human leukocyte antigen), and CCR 
(chemokine and chemokine receptor) (Additional file  2: 
Figure S3C), and patients in the high activity of these 
function had better prognosis than low activity, while 
patients with high activity of Type I IFN response and 

para-inflammation had poor survival (Additional file  2: 
Figure S2D-H).

Function enrichment analysis and drug sensitivity 
in subtypes
To elucidate the underlying biological pathways, we 
performed GSVA analysis of different subtype samples 
using the defined gene sets and found the correlation 
with various cancer-related pathways including 
glycolysis, mTOR targets, DNA repair, myc-targets in 
cluster2 (Fig.  3A, Additional file  2: Figure S3A, B). The 
drug sensitivity analysis suggested that cluster2 had lower 
IC50 in response to chemotherapeutic and targeted 
drugs including cisplatin, erlotinib, gefitinib and nilotinib 
(Fig. 3B–G).

Screened prognostic genes and explicated the landscape 
of somatic mutation and copy number variation 
of prognostic genes in LUAD
In this study, we identified 54 prognostic DELYs in 
LUAD patients (Fig.  4A). Among 54 survival genes, 39 
survival genes were protective genes (HR < 1), and 15 
genes were related to poor survival (HR > 1). We explored 
the somatic copy number variation of 54 genes, and we 
discovered that most of DELYs had CNVs amplification. 
Of them, MNDA, PRELP, ANGPT1, CCT2, ARRB1, 
LAMP3, MAP6 showed widespread CNVs amplification, 
while some of the prognostic genes had CNVs depletion, 
including DNASE2B and KNL1 (Fig.  4B). We further 
investigated the mutation landscape of the 54 genes, 
and of the 480 LUAD patients, genetic mutations of 
prognostic genes were found in 171 samples (35.62%) 
of 480 patients (Fig. 4C, D). Among these genes, MDA, 
LRRK2 and SERPINA5 were the genes which had the 
highest mutation frequency (3%). We also found that 
missense mutation was the most common variation type, 
and C > A and C > T ranked the top single nucleotide 
variation (SNV) class.

Construction and validation of lysosomes‑related genes 
risk model in LUAD patients
To find the associations among these genes, we built 
a protein–protein interaction network. The network 
showed a strong interaction activity among these 
molecules at protein level (Fig.  5A). To more directly 

Fig. 1  The differentially expressed genes in tumor and normal tissues of patients with LUAD. A Volcano plot of differentially expressed genes 
identified from tumor and normal tissues of LUAD patients. B Venn plot of differentially expressed lysosomes-related genes from differentially 
expressed genes list and lysosomes-related genes. C Heatmap of differentially expressed lysosomes-related genes between tumor and normal 
tissues. D, E The top significant GO and KEGG terms enriched by the differentially expressed lysosomes-related genes. P-values were adjusted 
by false discovery rate

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Non-negative matrix factorization clustering analysis for DELYSs. A Heatmap of sample cluster when k = 2. B, C K-M survival analysis of overall 
survival and progression-free survival for Cluster1 and Cluster2 in TCGA-LUAD dataset, respectively. D Sankey plot for patients in different cluster, 
immune subtype, survival status, clinical stage, and lymph node metastasis status. E Heatmap for patients in different cluster with 23 types immune 
infiltration cells
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Fig. 3  Function enrichment analysis and drug sensitivity in subtypes. A The heatmap of GSVA analysis based on Hallmark gene set 
between cluster1 and cluster2. B–G The estimation of IC50 indicated the efficiency of chemotherapy and targeted therapy to two subtypes
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Fig. 4  Screened prognostic genes and explicated the landscape of somatic mutation and copy number variation of prognostic genes in LUAD. A 
The forest plot of 54 prognostic DELYs in LUAD patients. B The gain or loss status of copy number variation of 54 prognostic genes in LUAD patients. 
C The somatic mutation landscape of 54 prognostic genes in LUAD patients. D The proportion of patients with different gene alterations
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Fig. 5  Construction and validation of lysosomes-related genes risk model in LUAD patients. A The protein–protein interaction network of 54 
prognostic DELYs. B LASSO coefficient profiles of the 54 prognostic DELYs. C LASSO regression with tenfold cross-validation obtained 17 prognostic 
genes. D–F The distribution of risk scores (D), survival status (E) and genes expression levels of LUAD patients (F) in the TCGA cohort. G–I The 
distribution of risk scores (G), survival status (H) and genes expression levels of LUAD patients (I) in the GSE72094 cohort
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perceive the prognosis of LUAD patients, we built 
a predictive prognostic model using LASSO and 
multivariate Cox regression. After 1000 iterations, we 
successfully established an eight LYSs signature in TCGA 
cohort (Fig.  5B, C) (Additional file  1: Table  S8). The 
coefficients of the eight genes (ACAP3, ATP8B3, BTK, 
CAV2, CDK5R1, GRIA1, PCSK9, and PLA2G3) were 
presented in Additional file 1: Table S9.The risk score was 
calculated as following formula: LYSscore = (− 0.3041 
* expression of ACAP3) + (0.1975 * expression of 
ATP8B3) + (− 0.3257 * expression of BTK) + (0.1671 
* expression of CAV2) + (0.4774 * expression of 
CDK5R1) + (− 0.8825 * expression of GRIA1) + (− 0.2217 
* expression of PCSK9) + (− 0.1657 * expression of 
PLA2G3). Based on the median of risk score, the patients 
were divided into high risk (n = 245) and low-risk group 
(n = 245), and the clinical characteristics of patients in 
high or low risk group were presented in Tables S10. 
What’s more, we investigated the scatters of risk score, 
survival status, and risk gene expression in both TCGA 
(Fig.  5D–F) and GSE72094 (Fig.  5G–I). These results 
indicated that the high-risk group had an increasing 
number of dead patients compared with the low-risk 
group in both the TCGA and GEO databases. What’s 
more, the LYSscore prognostic signature revealed that 
high sensitivity and specificity for predicting the OS with 
AUC values of 0.716, 0.711 and 0.649 at 1-year, 3-year, 
and 5-year, respectively (Fig. 6A). We also compared the 
AUC value of single gene with signature, and we found 
the AUC value of the signature better than single gene 
(Additional file 2: Figure S4). The survival curve showed 
high-risk group had worse survival rate than low-risk 
group (Fig.  5B). The stability and reliability of the risk 
model was validated in GSE72094 (Fig. 6C, D), GSE50081 
(Additional file  2: Figure S5A, B) and GSE41271 
(Additional file  2: Figure S5C, D) datasets using the 
same method, and the signature had good predicting 
performance. Combining with clinical pathological 
features, we identified the risk score was an independent 
indicator through univariate and multivariate Cox 
regression in TCGA-cohort (Fig. 6E). The HR of the risk 
model was 1.51 (95% CI: 1.38–1.65; p < 0.0001), 1.46 (95% 
CI: 1.32–1.61; p < 0.0001) in univariate Cox method and 
multivariate Cox regression, respectively. The Sankey 
program showed the patients in cluster2 had high risk 

score (Fig. 6F). In addition, the comparison of risk score 
in groups with different age, gender and stage subgroups 
in Additional file 2: Figure S6A–C. Percentage of patients 
in different risk group were presented in Additional file 2: 
Figure S6D–F. The male and advanced stage patients 
had higher risk score, and patients whoever age, gender 
and stage had poor survival rate. However, there was no 
significant difference between different age subgroups 
(Additional file  2: Figure S6G–I). Furthermore, we 
characterized the genetic variations and expression 
landscape of eight risk genes based on all the patients 
from TCGA cohort to understand the CNV status, 
mutation frequencies and the link to clinical features. 
The circos plot showed low gain or loss status of CNV 
variations of eight risk genes (Additional file  2: Figure 
S7A). Additional file  2: Figure S7B presented that the 
correlation strength among these genes in LYSscore. The 
waterfall plot showed few alterations happened in eight 
genes (Additional file 2: Figure S7C, D). Heatmap showed 
the relevance between eight risk genes expression 
and clinical pathologic parameters (Additional file  2: 
Figure S7E). The detail numbers of patients in different 
clinical subgroups were displayed in Additional file  2: 
Figure S8A–D. The performance of the risk model was 
compared with other signatures, and we found our risk 
model had better predicting ability and the highest 
C-index (Additional file 2: Figure S9).

Clinical value of the prognostic signature
To improve the clinical application of prediction model, 
we constructed a clinically adaptable nomogram score 
system with the LYSscore and other clinicopathological 
features to predict the 1-, 3-, and 5-year survival of LUAD 
patients (Fig.  7A). The nomogram suggested a better 
accuracy in predicting short survival time. The calibration 
plot of the nomogram revealed better consistency 
between the prediction by the nomogram and the actual 
observation (Fig.  7B). The AUCs of the nomogram 
at 1-, 3-, and 5-year OS were 0.735, 0.744 and 0.737, 
respectively, which were better than the risk models and 
single clinical factors (Fig. 7C–E). Additionally, the DCA 
curves of the nomogram predicted OS in LUAD patients 
indicated that this nomogram added more benefit 
compared with risk model and other clinicopathological 
characteristics (Fig. 7F–H).

(See figure on next page.)
Fig. 6  The predictive performance of the prognostic signature in LUAD patients. A ROC curve of 1-, 3- and 5-year survival predictions 
of lysosomes-related signature in the training cohort. B Kaplan–Meier survival curves of OS in the training cohort. C ROC curve of 1-, 3- and 5-year 
survival predictions of lysosomes-related signature in the validation cohort. D Kaplan–Meier survival curves of OS in the validation cohort. E Forest 
plot of univariate and multivariate Cox regression analyses for the prognosis of LUAD patients in the training cohort. F The Sankey plot for two 
clusters, immune subtypes, two risk groups and different survival status
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Fig. 6  (See legend on previous page.)
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Fig. 7  Construction and assessment of the signature-based nomogram. A A nomogram constructed based on the TCGA cohort for predicting 
the 1-, 3-, and 5-year OS of LUAD patients. B Calibration curves evaluating the consistency of the actual survival time and nomogram-predicted 
probability of 1-, 3- and 5-year OS in TCGA. C–E ROC analyses of the nomogram’s predictive efficacy for 1-, 3- and 5-year OS of patients in TCGA. F–H 
Decision curve analysis of the net clinical benefit of the nomogram, the risk score, age, gender and TNM stage for predicting 1-, 3- and 5-year OS 
of patients in TCGA​
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Characterization of the TME, immunotherapeutic 
and chemotherapeutic response and in different risk group
As lysosomes played an important role in anti-tumor 
immunity, we explored the association of LYSscore 
with immune cell infiltration in LUAD patients. By 
analyzing the TME scores, we found that low-risk 
patients had higher immune score, stromal score 
and ESTIMATE score (Fig.  8A). The TME score was 
negatively correlated with the risk score (Fig.  8B). The 
immune cells infiltration landscape showed the NK cells, 
macrophages, MDSC, dendritic cells, monocytes, and 
eosinophils were markedly enriched in low-risk group 
(Fig.  8C). The different expression levels of common 
immune checkpoint (LAG3, PDCD1, CTLA4, CD274 
and HAVCR2) between high and low risk group were 
showed in Fig.  8D, while only CTLA4 and HAVCR2 
were significantly marked higher expression levels in 
low-risk patients compared with the high-risk group. 
Furthermore, the IPS subtypes (IPS and IPS-CTLA4 
score) were higher in low-risk group (Fig.  8E). We also 
calculated the TIDE, exclusion, and dysfunction score 
to assess the immune response of LUAD patients. 
There were significant differences between high- and 
low-risk groups, and the low-risk patients had lower 
TIDE and exclusion score, while lower dysfunction 
score was in high-risk group (Fig.  9A–C). These results 
indicated that low-risk patients may obtain benefit from 
immunotherapy. Monoclonal antibodies targeting T-cell 
suppressor molecules PD-L1 and PD-1 to inhibit immune 
checkpoints have become an anti-cancer therapy with 
super survival benefits [24]. Besides, the imvigor210 
immune therapy cohort including 298 individuals who 
accepted anti-PD-L1 treatment was applied to as an 
external to explore the possibility predictive usefulness of 
LYSscore. These results revealed that patients with high 
risk score had a significant poor survival over those with 
low risk scores (Fig.  9D), while the performance of the 
cohort was not superior in predicting survival (Fig. 9E). 
As mentioned in Fig. 9F, 81% patients who had a stable 
disease/progressive disease (SD/PD) had higher risk 
score than patients who had complete response/partial 
response (CR/PR). Finally, in the GDSC database, we 
looked at the link between chemotherapeutic, targeted 
therapeutic response and risk scores, and we discovered 
that patients in the high-risk group were sensitivity 
to most of drugs, such as cisplatin, ERK240, erlotinib, 
gefitinib and gemcitabine, while patients with high risk 
scores were resistant to ribocicib (Fig. 9G).

Features of the molecular pathways and tumor mutation 
landscape in distinct risk groups
As presented from the GSVA enrichment analysis, the 
enrichment of high risk was found in cancer-associated 

pathways, cell cycle and metabolism, including 
angiogenesis, epithelial mesenchymal transition, mTOR 
signaling, myc-targets pathway, G2/M checkpoint, 
hypoxia, glycolysis, and reactive oxygen species 
pathway (Fig.  10A, Additional file  2: Figure S10A, B). 
Subsequently, given the genetic mutations played key 
role on the tumorigenesis, we used the somatic mutation 
data to study the situation of mutation between two risk 
groups. The outcomes displayed that high-risk group had 
higher TMB than low-risk (Fig. 10B), and the TMB was 
positive correlation with risk scores (R = 0.25, p < 0.0001) 
(Fig.  10C). The high-risk group had higher mutation 
frequency than low-risk group (92.62% (226/244 
samples) vs 84.32% (199/236 samples) (Fig.  10D, E). Of 
these, the missense mutation was the main mutation 
type, and TP53 was the highest frequency of mutations 
(52%) in the high-risk group. The primary mutation type 
in the low-risk group was also missense mutation, while 
the MUC16 was the highest frequency of mutations 
(35%). It has been suggested that TMB can be used as a 
marker to distinguish patients with cancer who might 
benefit from immunotherapy, and predict the effect 
of immune checkpoint inhibitors. These results that 
patients with higher risk scores may were more suitable 
for immunotherapy.

The correlation of LYSscores with the single‑cell 
characteristics
Based on the scRNA-seq data of GSE149655, we 
obtained gene expression profiles of 1546 cells from 
two carcinoma samples after initial control (Additional 
file 2: Figure S11A–S11C). We identified 13 cell clusters 
by performed PCA using top 1500 variable genes, 
which reduced the dimensionality (Fig.  11A, Additional 
file  2: Figure S11D, S11E). The typical genes of each 
cluster were presented in Fig.  11B. By cross-referencing 
differentially expressed genes and typical marker 
genes in each cluster, the annotation of cell identity 
on each cluster were defined, and cells were mainly 
annotated six types, including epithelial cells, tissue 
stem cells, endothelial cells, fibroblasts, macrophages, 
and T cells (Fig.  11C) (Additional file  1: Tables S11). In 
order to explore the correlation between risk score and 
single cells, we depicted the expression density of eight 
prognostic genes in single cells, and we found just CAV2 
presented apparent expression level (Additional file  2: 
Figure S12A). The expression enrichment of the eight 
prognostic genes compared to the cell states was shown 
in Fig.  11D. Furthermore, we analyzed the pseudo-time 
trajectories of tumor and immune cells in LUAD, and 
identified three LUAD cell states (Additional file  2: Fig. 
S12B–S12E).
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Fig. 8  Tumor microenvironment in the high and low risk groups. A Comparison of the stromal score, immune score, and ESTIMATE score 
between high-risk and low-risk groups. B The correlation between TME score and risk score. C The landscape of immune cell infiltration 
between high-risk and low-risk groups. D The difference of common checkpoint between high and low risk groups. E The difference of IPS score, 
IPS-PD1 score, IPS-CTLA4 score, and IPS-PD1-CTLA4 score between high and low risk groups
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Validation of the expression levels of eight 
lysosomes‑related genes in LUAD
To further verify the expression of these identified 
prognostic eight genes in LUAD, nine pairs tumor 
and adjacent nontumor tissues of LUAD patients, 
and BEAS-2B, A549 and PC9 were used to detect the 
mRNA expression level of eight genes in this risk score 
by qRT-PCR. As showed in Fig.  12A, ACAP3, ATP8B3, 
and CDK5R1 were significantly upregulated in lung 
adenocarcinoma cells (A549/PC9), while the those 
of BTK, CAV2, GRIA1, PCSK9 and PLA2G3 were 
downregulated in A549/PC9 compared to the levels 
in BEAS-2B. What’s more, we obtained consistent 
results with previous results our observations in tissues 
(Fig. 12B).

Discussion
There has been a long-standing fascination with the lyso-
some as a potential target for cancer therapy [25, 26]. 
This was mainly linked to evidence that the lysosome 
plays a significant role in cell death, as well as its ability 
to fuel cancer cells’ energy needs [6, 27, 28]. Therefore, 
understanding the role of lysosomes in LUAD will allow 
for better diagnosis and the development of innovative 
treatment methods. In our study, based on the expres-
sion of 214 DELYs, we divided LUAD into two molecu-
lar subtypes, Cluster 1 is more likely to have a favorable 
outcome. Moreover, cluster1 was significantly enriched 
in activated B cells, activated dendritic cells, eosinophils, 
immature B cells, immature dendritic cells, MDSC, mac-
rophages, mast cells, monocytes, and natural killer cells. 
Previous studies have shown that activated B cells release 
antibodies and label tumor cells to be recognized and 
attacked by other cells in the immune system [29], which 
may suggest a more anti-tumor relationship between lys-
osomes and the presence of Immune cells. Furthermore, 
our study found that cluster 1 had higher levels of Type 
II IFN response, HLA (human leukocyte antigen), and 
CCR. HLA is a major histocompatibility complex (MHC) 
product in humans that modulates the immune response 
to lung cancer by presenting antigens [30, 31]. It has been 
shown that Type II IFN can directly trigger apoptosis and 
cell cycle arrest by impairing autophagosome-lysosomal 
fusion in lung cancer cells [32]. Therefore, this all sug-
gests that DELYs may have an important role in tumor 

development, which may be related to immune cells and 
cytokines.

To better understand the mechanisms by which 
lysosomes affect cancer development, A GSVA analysis 
was performed using the defined gene sets (KEGG and 
Hallmark), and glycolysis, mTOR targets, DNA repair, 
and myc-targets were identified as lysosome-related 
pathways in cluster 2. Previous studies showed that 
lysosomal activity may play a role in preserving the 
quiescence of hematopoietic stem cells by modifying 
glycolysis-mitochondrial biogenesis [33]. In addition, 
the mTOR targets, DNA repair, and myc-targets are all 
involved in the autophagic process and are essential for 
lysosome formation and transformation [34–36]. This 
may all suggest that DELYs are closely related to the 
development of autophagy, which in turn affects tumor 
development.

Moreover, Mutations in genes are closely related to 
tumor development, and some mutations have even been 
used as therapeutic targets [37–39]. However, there is no 
definitive connection between tumor development and 
lysosome-related mutations. Our results identified many 
mutations both in DELYs and related oncogenes, which 
may be involved in lysosome formation and transforma-
tion and could be used as targets for tumor therapy in 
the future. To better assess the prognosis of lung cancer 
patients, we also applied lasso regression to analyze lys-
osome-related genes and found that the model we con-
structed was superior to previous studies, and superior 
to tumor markers, such as CEA, CA199, and CA125. To 
enhance the reliability of this model, we selected GEO 
dataset as external validation cohort. When selecting 
datasets for validation, several key factors should be con-
sidered: data quality, sample size, diversity, data balanc-
ing, availability.

In this study, eight lysosome-related genes (ACAP3, 
ATP8B3, BTK, CAV2, CDK5R1, GRIA1, PCSK9, 
PLA2G3) were identified. Some previous studies 
had illustrated the molecular functions and cellular 
processes of them. For instance, ACAP3, one of 
members of the ACAP family of GTPase-activating 
proteins for the small GTPase ADP-ribosylation factor 
[40], which are expressed in brain and associated with 
the endolysosomal pathway [41]. ATP8B3 (belongs to 
P4-ATPases) is a subfamily member of P-type ATPases 

Fig. 9  The Characterization of the TME, immunotherapeutic and chemotherapeutic response and in different risk group. A–C The difference 
of TIDE score, exclusion score and dysfunction score between different risk group. D The ROC curves evaluating the predictive accuracy of the risk 
score in the IMvigor210 cohort. E The high-risk group had poorer prognosis than low risk group in the imvigor210 cohort. F The percentage rates 
of clinical response (complete response [CR]/partial response [PR] and stable disease [SD]/progressive disease [PD]) to anti–PD-L1 immunotherapy 
in high or low LYSscore groups in the IMvigor210

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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that flip phospholipids across membranes to generate 
lipid asymmetry, which participate in cell component 
composition [42]. BTK encodes Bruton’s Tyrosine Kinase 
and plays an oncogenic role on head and neck squamous 
cell carcinoma, promoting epithelial–mesenchymal 
transition processes and cancer stem cell enrichment 

[43]. Research have indicated that Inhibitors targeted 
to BTK have been developed for hematological tumors 
[44]. CAV2 is a member of caveolin protein family, which 
plays a vital role in intracellular cell transport and signal 
transduction [45]. CAV2 overexpression involves in 
promoting tumor growth, metastasis and angiogenesis 

Fig. 10  Features of the molecular pathways and tumor mutation landscape in distinct risk groups. A The GSVA heatmap showed the differences 
in pathways in the high and low-risk groups based on the Hallmark gene set. B The differences of TMB between high and low-risk groups. C The 
correlation of TMB and risk score. D, E The tumor mutation landscape showing the mutation status of LYSscore genes was constructed by those 
with high LYSscore on the left and those with high LYSscore on the right
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Fig. 11  Single-cell RNA-sequencing analysis identified cell types. A t-SNE plot of 1546 cells from 2 primary LUAD samples and colored by various 
cell clusters. B The cell types identified by marker genes. C Heatmap showing the marker genes in each cell cluster. D t-SNE plot of the expression 
levels of eight prognostic genes
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in lung cancer and pancreatic cancer [45, 46]. CDK5R1 is 
one of the activators of CDK5, which binds and activates 
CDK5 to drive G1-S transition and RB phosphorylation 
in medullary thyroid carcinoma models [47]. At present, 
researchers found that GRIA1 encodes AMPA receptors 

mediated a fast component of the synaptic current. 
The variants of GRIA1will contribute to neurological 
conditions disorder [48]. PCSK9 is a member of the pro-
protein convertase family, and plays important roles in 
proteolytic activation, modification, and degradation 

Fig. 12  Validation of the expression levels of eight lysosomes-related genes in LUAD. A The mRNA expression of eight prognostic genes in BEAS-2B, 
A549 and PC9 cell lines. B The mRNA expression of eight prognostic genes in normal and tumor tissues of LUAD patients
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of secreted proteins [49]. PCSK9 could clear LDL-
cholesterol from the circulation by inducing lysosomal 
degradation of the low-density lipoprotein receptor 
in the liver [50]. PLA2G3 is a group of enzymes that 
hydrolyze phospholipids to release fatty acids (FA) 
and lysophospholipids regulating lipid metabolism of 
transformed cells, and the downregulation of PLA2G3 
inhibits the tumor growth and promotes chemo-
sensitization in ovarian cancer [51]. Furthermore, mast 
cells could self-secret PLA2G3 to facilitate mast-cell 
maturation [52]. These eight genes play various function 
in biological process and cellular functions.

LUAD treatment is being revolutionized by immu-
notherapy, especially ICI [53, 54]. Nevertheless, due to 
the heterogeneity of the inter-and intra-tumor tumors, 
identifying a subpopulation that will benefit from immu-
notherapy remains challenging [55, 56]. As a result, pre-
dictive biomarkers on immunotherapy response and 
prognosis are crucial to determining LUAD subtypes 
and improving personalized immunotherapy. Addition-
ally, we have also previously identified a definitive role 
for lysosomes with immune infiltration. Therefore, we 
further explored the relationship between LYS score and 
immune infiltration. Our results indicated that com-
pared to high-risk patients, low-risk patients had higher 
immune scores, stromal scores, and ESTIMATE scores. 
Additionally, low-risk patients had enriched NK cells, 
macrophages, MDSCs, dendritic cells, monocytes, and 
eosinophils. Our single-cell sequencing validation results 
were similar and most of these cells are associated with 
immunotherapy-related processes such as tumor killing 
and antigen presentation [57–59]. Therefore, this further 
suggests that lysosomes are closely related to immune 
infiltration and may serve as an important indicator for 
assessing the prognosis of immunotherapy. Moreover, 
our study found that the low-risk group was sensitive to 
immunotherapy, while the high-risk group was sensitive 
to drugs like erlotinib and gefitinib, which is consistent 
with the current findings that people sensitive to EGFR-
TKI may not be sensitive to immunotherapy, which sug-
gests that our LYSscore may also be able to further assess 
patient medication regimens, with important implica-
tions for clinical treatments.

Currently, there is no definitive conclusion about 
how lysosomes modulate immune infiltration and 
immunomodulators and affect ICI therapeutic response. 
Our study found that some important pathways that 
affect tumor development, such as mTOR, angiogenesis, 
and epithelial-mesenchymal transition, predicted poor 
tumor immunotherapy outcomes [60–62]. This may 
suggest a new therapeutic modality that could link mTOR 
inhibitors, angiogenesis inhibitors, and other related 

drugs with ICI to produce better therapeutic outcomes in 
the immunotherapy of LUAD [63].

As compared with existing studies of prognostic 
signatures for LUAD, this study has several notable 
advantages as well as limitations. Firstly, our study 
identified the relationship between lysosome-related 
genes and lung cancer prognosis and compared it with 
traditional indicators, establishing a new indicator for 
lung cancer prognosis assessment that has not been 
done before and giving some insight into future studies 
of lysosomes and lung cancer treatment. Secondly, as the 
first study to analyze the combination of lysosomes and 
immunotherapy in lung cancer, we developed the LYS 
score to assess immunotherapy prognosis and proposed 
new treatment options. At last, we combined single cell 
sequencing dataset to accurately analyze lysosome-
related genes expression at the single-cell level, and we 
evaluated the performance of this model in predicting 
immunotherapy response to improve its clinical utility 
based on the immunotherapy cohort. However, our study 
still has some shortcomings. Firstly, our studies were 
mainly analyzed by databases, and although we applied 
PCR to validate clinical specimens and cell lines, we 
cannot conduct a more in-depth study due to financial 
reasons. In addition, the results might be affected by a 
lack of complete information on surgery and treatment in 
the database. LYSscore, as a new type of biomarker, faces 
some challenges in clinical applications. Firstly, the gene 
expression profile analysis involved in the model may 
require high experimental conditions and equipment, 
which may require certain technology and resource 
investment. Secondly, although LYSscore shows good 
performance in predicting the response of tumor cells 
to immunotherapy, whether it is suitable for all types 
of cancers and patients still needs further research and 
validation.

In conclusion, we developed a LYS model based on a 
lysosome gene-guided strategy for predicting LUAD 
prognosis and immunotherapy efficacy, which has been 
validated by external transcriptome data and single-cell 
sequencing data. In addition, by identifying the com-
plex relationship between LYS and oncogenic pathways, 
such as mTOR, we provided insight into LYS’s role in 
tumorigenesis and TME reshaping. In combination with 
immune infiltration, immune checkpoint factors, and 
other biomarkers, we demonstrated that LYS effectively 
distinguishes responders and non-responders, enabling 
ICI therapy to be more precisely stratified by benefit. 
Therefore, this work might facilitate the identification of 
prognostic biomarkers and provide guidance for develop-
ing personalized immunotherapy.
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