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Abstract
Background  Cuproptosis-related genes (CRGs) are associated with lung adenocarcinoma. However, the 
links between CRGs and non-small-cell lung cancer (NSCLC) are not clear. In this study, we aimed to develop 
two cuproptosis models and investigate their correlation with NSCLC in terms of clinical features and tumor 
microenvironment.

Methods  CRG expression profiles and clinical data from NSCLC and normal tissues was obtained from GEO 
(GSE42127) and TCGA datasets. Molecular clusters were classified into three patterns based on CRGs and cuproptosis 
cluster-related specific differentially expressed genes (CRDEGs). Then, two clinical models were established. First, a 
prognostic score model based on CRDEGs was established using univariate/multivariate Cox analysis. Then, through 
principal component analysis, a cuproptosis score model was established based on prognosis-related genes acquired 
via univariate analysis of CRDEGs. NSCLC patients were divided into high/low risk groups.

Results  Eighteen CRGs were acquired, all upregulated in tumor tissues, 15 of which significantly (P < 0.05). Among 
the three CRG clusters, cluster B had the best prognosis. In the CRDEG clusters, cluster C had the best survival. In the 
prognostic score model, the high-risk group had worse prognosis, higher tumor mutation load, and lower immune 
infiltration while in the cuproptosis score model, a high score represented better survival, lower tumor mutation load, 
and high-level immune infiltration.

Conclusions  The cuproptosis score model and prognostic score model may be associated with NSCLC prognosis 
and immune microenvironment. These novel findings on the progression and immune landscape of NSCLC may 
facilitate the provision of more personalized immunotherapy interventions for NSCLC patients.
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Introduction
Lung cancer, which has the highest morbidity and mor-
tality in the world [1], can be pathologically classified 
into non-small-cell lung cancer (NSCLC) and small-cell 
lung cancer (SCLC). NSCLC accounts for almost 85% of 
all lung cancer cases according to the global tumor sta-
tistics [2] and leads to nearly 1.35 million deaths world-
wide each year [3]. The treatment of NSCLC involves 
surgery, radiation therapy, chemotherapy, and targeted 
drug therapy [4]. Immunotherapy, which involves the 
use of inhibitors such as nivolumab and gefitinib, has 
recently replaced traditional platinum-based chemo-
therapy [4]. These inhibitors are antibodies that target 
check-points such as programmed cell death-1 (PD-1) to 
prevent immune suppression [5] and epidermal growth 
factor receptor (EGFR) to regulate cell growth, prolifera-
tion, and differentiation [6]. However, the relative sur-
vival rate in advanced NSCLC is still approximately 15% 
[7]. Despite computed tomography (CT) has reduced the 
mortality rate of early NSCLC by 20% [8], and the appli-
cation of PET-CT has greatly improved the precision of 
NSCLC grading, merely depending on imaging methods 
alone are still unable to more accurately assess the devel-
opment or prognosis of NSCLC patients and choice of 
treatment strategy [9, 10]. Hence, establishing a viable 
biomarkers and prognostic models, thereby revealing the 
prognostic genetic features of NSCLC in clinical practice 
is of considerable significance.

Cell death pathways, such as apoptosis, pyroptosis, 
and necrosis, are critically important in all living tis-
sues and are essential in cancer prevention [11, 12]. Cell 
death pathway inhibition seems to be involved in cancer 
development and progression [13]. Ferroptosis, an iron-
dependent cell death pathway is a of interest [14]. Ferrop-
tosis promotes cell death by glutathione level depletion, 
glutathione peroxidase (GPX4) activity decrease, sup-
pression of the metabolism of lipid oxides, and reac-
tive oxygen species production [15]. Understanding the 
importance of ferroptosis in cancer has prompted inves-
tigation of other cell death pathways. Similar to iron, cop-
per is also an indispensable element in the human body, 
albeit in minor quantities. Recently, the term “cupropto-
sis” was suggested to describe copper ion-dependent cell 
death, when Cu2 + accumulates excessively in mitochon-
drial respiration-dependent cells [16]. The mechanism 
is thought to involve an increase in insoluble dihydroli-
poamide acetyltransferase (DLAT), which is part of the 
pyruvate dehydrogenase complex, leading to cytotoxic-
ity and cell death [16]. Copper ion metabolism disorder 
has been associated with tumor growth and metastasis, 
collagen remodeling, and immune response in various 
cancers [17–19]. Correlations have been found between 
cuproptosis-related genes (CRGs) or long non-coding 
RNAs (lncRNAs) and the development of a number of 

cancer types, including breast cancer [20], melanoma 
[21], lung adenocarcinoma [22], and bladder cancer [23]. 
Previous studies revealed that long non-coding RNA sig-
nature may be related to cuproptosis and may predict 
clinical outcomes of LUAD [24–26] and recent stud-
ies also have presented the similar cuproptosis-related 
signature to predict prognosis and immune infiltration 
in lung adenocarcinoma [27, 28], however, our research 
established two signatures including cuproptosis score 
model and prognostic score model to evaluate the devel-
opment and prognosis not only in lung adenocarcinoma 
but also in lung squamous carcinoma, meanwhile, we 
have also analyzed the correlation of clinical features, 
tumor microenvironment and potential therapy based 
on the two models: cuproptosis score model and prog-
nostic score model, which previous research has never 
been conducted before, we hope our study will provide 
another approach to percept into clinical features and the 
mechanism of cancer progression in NSCLC.

Therefore, the aim of this study was to investigate 
CRDEGs in NSCLC. Based on the Gene Expression 
Omnibus (GEO) and the Cancer Genome Atlas (TCGA) 
datasets we first investigated the expression of CRGs 
in 1282 NSCLC samples. Then, using 1829 intersec-
tion genes from CRG subtype patterns we constructed 
CRDEG prognostic score models through a series of bio-
informatics methods, including prognosis analysis and 
tumor microenvironment (TME) feature analysis. Prog-
nosis-related genes were acquired by univariate analysis, 
and a cuproptosis score model was established and cou-
pled with clinicopathological and immune-related analy-
sis similar to the one performed in the previous model. In 
this way we aimed to explore the differences between the 
clinical and immune characteristics of the two models, 
the cuproptosis and the prognostic score models.

Methods
Cell culture and tissue acquisition
The human lung adenocarcinoma (LUAD) cell lines 
A549, HCC827, and H23 were purchased from Shanghai 
Cell Bank of the Chinese Academy of Medical Sciences. 
The normal human pulmonary epithelial cell line BEAS-
2B, and the LUAD cell lines H1975, H1650, and PC9 were 
purchased from The American Type Culture Collection 
(ATCC, Rockville, MD, USA). All cells were cultured in 
RPMI-1640 (11,875,093, Gibco, USA), 10% fetal bovine 
serum (10,099,141  C, Gibco, USA), 0.1  mg/mL strepto-
mycin (10,378,016, Gibco, USA), and 100 U/mL penicil-
lin (10,378,016, Gibco, USA) and maintained at 37 ℃ 
in a 5% CO2 atmosphere. 50 pairs of clinically NSCLC 
samples were obtained in accordance with the Declara-
tion of Helsinki (2000) of the World Medical Associa-
tion and study was approved by the Ethics Committee of 
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the Affiliated Hospital of Nantong University (Nantong, 
Jiangsu, China) under no. 2022-L165.

RNA extraction and quantitative real-time PCR (qRT-PCR)
Total RNA was harvested from both cells and tissues 
with Trizol reagent (10,296,028, Thermo, USA). cDNA 
was then produced using the RT Reagent kit (18,091,200, 
Thermo, USA) according to the manufacturer’s protocol. 
The mRNA expression level was estimated by a ChamQ 
Universal SYBR qPCR Master Mix (Vazyme Biotech 
Co., Ltd). Glyceraldehyde-3-phosphate dehydrogenase 
(GADPH) was taken as internal reference. The sequences 
of the primers we utilized were as follows, presented also 
in Supplementary Table 1 (18 CRGs):

GAPDH forward: 5’-​G​T​C​T​C​C​T​C​T​G​A​C​T​T​C​A​A​C​A​G​
C​G-3’.

GAPDH reverse: 5’-​A​C​C​A​C​C​C​T​G​T​T​G​C​T​G​T​A​G​C​C​A​
A-3’.

The following qRT-PCR conditions were implemented: 
95 ℃ for 5 min and then 40 cycles of 95 ℃ for 15 s, 60 ℃ 
for 30 s, and 72 ℃ for 30 s. The assay was performed in 
triplicate and the comparative quantification cycle (Cq) 
method (2 − ΔΔCq) was employed to estimate the relative 
expression level of the 18 CRGs.

Acquisition of data source and preconditioning
The gene expression quantification profile, somatic 
mutant profile, copy number variation (CNV) files, and 
clinical files of NSCLC cases were obtained from GEO 
(GSE42127, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE42127) and TCGA (https://portal.gdc.
cancer.gov/) datasets. Using TCGA, we selected gene 
expression qualifications in transcriptome profiling data 
of lung adenocarcinoma and lung squamous cell carci-
noma, excluding miRNA expression data. Then, in GEO, 
the original NSCLC expression data were downloaded 
from the platform as a GPL file. The TCGA and GEO 
data were integrated during data correction processing. 
Data of 1106 samples acquired from TCGA was post-
processed, normalized, and transformed from FPKM for-
mat to TPM format by ‘limma’ package and R (4.2.1) to 
combine data. After removing samples which lacked clin-
ical data or had survival data that with values less than or 
equal to zero, 1282 samples were obtained and subjected 
to analysis: 1106 from TCGA dataset (103 normal tissues 
and 1003 tumor tissues) and 176 tumor tissues from the 
GEO database. All 18 cuproptosis-relatled genes were 
acquired via past research and documents, which have 
been studied and verified to be highly correlative with 
mechanism or pathway of cuproptosis.

Variance analysis between normal/tumor tissues
The differences in the expression of CRGs between 
normal/tumor tissues from the TCGA dataset were 

estimated by ‘limma’ package and R software. The CRG 
expression quantification profile was converted into 
ggplot2 input file and the Wilcoxon signed-rank test was 
applied to compare the expression levels in tumor and 
normal tissues. Five levels of significance were used with 
P-values of 0, 0.001, 0.01, 0.05, 1.

CNV frequency and mutation type analysis of CRGs
Somatic CNV and mutation data was acquired from the 
TCGA and GEO datasets. CRGs and cuproptosis high/
low risk CNV matrix and gene mutant matrix were 
sorted by perl software, ‘Rcircos’, and ‘Maftools’ pack-
ages in R software to calculate variants difference, tumor 
mutation load (TMB) and non-synonymous somatic 
mutations. Packages ‘igraph’ was adopted to realize the 
CNV and mutant frequency picture.

Consensus Cluster analysis of CRGs and CRDEGs
The ‘Consensus Cluster Plus 1.60.0’ package was 
employed in R software to classify the CRDEGs. This 
is an algorithm that can be used to identify the mem-
bers and number of clusters in a data set. Consistent 
clustering can determine the optimal number of clus-
ters K. Consistent clustering verifies clustering rational-
ity through a resampling-based method, that evaluates 
the stability of clustering. Considering the outcomes of 
the uniform clustering cumulative distribution func-
tion (CDF), delta area plot, and comprehensively, in this 
consensus cluster analysis on the expression profile of 18 
CRGs, three clusters were classified, and all the NSCLC 
samples can be classified into three clusters according to 
the outcome of CRGs clusters. Then, differential expres-
sion analysis was performed between any two samples 
on the level of full genomics among the three samples to 
obtain significant differentially expressed genes. After-
wards, we got three outcomes of differentially expressed 
genes through sample-to-sample comparison and we 
intersected the outcomes of differentially expressed 
genes through Venn diagram, what we obtained is the 
CRDEGs. During the process, the ‘limma’ package in R 
software was used to screen the CRDEGs from each sub-
type for P-value = 0.001 and |log2FC| > 2. Then, perform-
ing another consensus-cluster analysis on CRDEGs, we 
got the consensus CRDEGs subtypes.

Construction of a prognostic score model of CRDEGs and a 
cuproptosis score model
Using the three CRG subtype clusters, differentially 
expressed genes of each cluster were taken and inter-
sected using a Wayne diagram. Then, an inter cluster 
overlap was performed to obtain the expression level of 
CRDEGs.

The prognostic score model was established on 
the basis of CRDEGs and filtered by univariate cox 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42127
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42127
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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analysis through R package. CRDEGs of 1282 samples 
were treated with multivariate (LASSO)–Cox regression 
analysis to filter the optimal prognosis-related CRDEGs 
and acquire the correlation coefficient, HR value, fluc-
tuation range of the HR value of each prognosis-related 
CRDEGs, on the premise of which, risk score of each 
patient can be acquired through formula Risk score 
=
∑n

1 coefi ∗ xi , where xi  and coefi  represent the expres-
sion of each prognosis-related CRDEGs and its corre-
sponding correlation coefficient, respectively. According 
to the median value of the risk score, the patients were 
divided into a low-risk and a high-risk group, 53 progno-
sis-related CRDEGs were filtered to construct the model.

Further, to quantify the cuproptosis patterns of each 
NSCLC sample, we developed a scoring system to eval-
uate the cuproptosis pattern of every NSCLC patient: 
the cuproptosis signature, and we termed this model 
the cuproptosis score model. The CRDEGs were sub-
jected to univariate Cox regression analysis, and the 
genes that were statistically significant (P-value < 0.05) 
in terms of prognosis were extracted for further analy-
sis. Principal component analysis (PCA) was utilized to 
evaluate the cuproptosis score. The score of each sample 
was calculated through the formula cuproptosis score 
=
∑

(PC1i + PC2i), where i represents the expression of 
cuproptosis-related genes. The advantage of this method 
lies in concentrating the score in an integrated series of 
well correlated (positively or negatively) genes in the set 
while downregulating the weight contributions from 
genes which do not comply with another gene set.

CRG- and CRDEG-related enrichment analysis
Functional enrichment analysis represents a bioinfor-
matic approach applied for the exploration of the dis-
tribution of genes in specific pathways. This analysis 
was performed using the BiocManager packages ‘org.
Hs.eg.db’, ‘DOSE’, ‘clusterProfiler’ and ‘enrichplot’, gene 
ontology (GO), and Kyoto Encyclopedia of Genes and 
Genomes (KEGG), followed by visualization though the 
‘colorspace’, ‘stringi’, and ‘ggplot2’ packages in R soft-
ware. Immune-related single sample gene set enrichment 
analysis (ssGSEA) and gene set variation analysis (GSVA) 
were carried out with BiocManager packages ‘limma’, 
‘GSEABase’, and ‘GSVA’. The data were converted into 
images with the ‘ggpubr’ and ‘pheatmap’ packages in R 
software.

Survival analysis in CRGs, CRDEGs subpatterns, cuproptosis 
prognostic model and cuproptosis score model
To assess the clinical significance of CRGs, CRDEGs sub-
patterns, cuproptosis prognostic model and cupropto-
sis score model, coupled with the correlation between 
cuproptosis based patterns and clinical-pathology char-
acteristics and survival outcomes, we collected the 

NSCLC patients’ clinical information like gender, age, 
T-stage, grade, and survival time from the online data-
base. Additionally, the differences in the overall survival 
(OS) among cluster patterns, cuproptosis score high/low 
groups, and CRDEGs prognostic score high/low risk pat-
terns were evaluated using Kaplan-Meier analysis with 
the “survival” and “survminer” packages in R software.

Construction of a nomograph system
Individual patient’s risk assessment of NSCLC was per-
formed with the ‘rms’ and ‘survival’ packages. The per-
sonalized scoring was used to generate a nomogram that 
predicted the 1-, 3-, and 5-years probabilities of progres-
sion-free survival in patients using four parameters. A 
calibration graph was developed that showed the degree 
of consistency of our model with an ideal model.

Receiver operating characteristic (ROC) curve, concordance 
index (C-index) curve, and decision curve analysis (DCA)
The ROC curve is a comprehensive index reflecting the 
continuous variables of sensitivity and specificity, a larger 
area under the curve indicates better diagnostic accu-
racy. The R software packages ‘survival’, ‘survminer’ and 
‘timeROC’ were utilized to develop the ROC image. The 
C-index curve and DCA were also used to assess the 
accuracy of the prognostic score model of CRDEGs. The 
packages ‘ggDCA’, ‘rms’, ‘pec’, and ‘survival’ were used for 
the analysis.

Infiltrating immune cells and immune microenvironment 
features analysis
Immune function and immune infiltration files were 
downloaded from MSigdb database and Tumor Immune 
Estimation Resource database (TIMER), BiocManager 
packages ‘limma’, ‘GSEABase’, ‘GSVA’, and the R packages 
‘reshape2’, ‘ggplot2’, ‘ggpubr’, and ‘pheatmap’ were adopted 
to draft immune-related images. The ESTIMATE (Esti-
mation of Stromal and Immune cells in Malignant Tumor 
tissues using Expression data) algorithm score was used 
for calculating the properties of the tumor microenviron-
ment (TME) of the high/low groups of the prognostic 
score model employed to assess the distinction between 
these two groups.

Assessment of immunotherapy sensitivity in prognostic 
model and recommended therapy in cuproptosis score 
model
Packages ‘limma’, ‘ggpubr’, ‘pRRophetic’, and ‘ggplot2’ 
were utilized to carry out drug sensitivity analysis to 
estimate the level of the half-maximal inhibitory concen-
trations (IC50) of the low/high risk groups of the prog-
nostic score model. As for the cuproptosis scorer model, 
immune therapy analysis was implemented on the basis 
of data acquired from The Cancer Immunity Database 
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(TCIA). The correlation of immune checkpoints CTLA4 
and PD-1 in the cuproptosis score high/low groups with 
immunotherapy sensitivity was exhibited through violin 
chart drafted by ‘ggpubr’ package in R software.

Statistical analysis
All statistical analyses were performed with R software, 
version 4.2.1, and software perl. The Wilcoxon signed-
rank test was conducted to determine the expression 
distinction of CRGs among normal and tumor tissues. 
The Kaplan-Meier method was utilized to perform sur-
vival analysis. The correlation of expression of CRGs with 
immune cells and immune checkpoints were calculated 
by Spearman analysis. The PCA method and lasso cox 
regression analysis were used to build the two models.

Results
Clinical features and mutations at the genetic transcription 
level of CRGs
The expression levels of 18 CRGs were acquired from the 
TCGA dataset and the GEO (GSE42127) dataset, which 
was used to identify the differential expression of the 
CRGs between normal and tumor tissues (Fig. 1). All the 
CRGs were more highly expressed in tumor tissues than 
in normal tissues; the differences in 15 of these CRGs 
were statistically significant (P < 0.05, Fig.  1B). Experi-
mental validation of the expression in tumor and normal 
tissues and cell lines was carried out by qRT-PCR (Fig. 1E 
and Figure S1A). A prognostic correlation network was 
developed through correlation analysis, which suggested 
that LIPT1 (P < 0.01) and GLS (P < 0.05) were prob-
ably prognosis-related CRGs (Fig.  1C). Additionally, the 
CRGs’ CNV and TMB were also estimated (Fig. 1A and 
D). CDKN2A had the highest CNV frequency and the 
second highest mutation burden; NLRP3 was associated 
with the highest TMB.

The clinical survival data and CRG expression from 
the TCGA and GEO datasets were analyzed to evalu-
ate the correlation of the overall survival rate with 
the CRGs expression level. The differences in ATP7A, 
CDKN2A, DLAT, DLST, GLS, LIPT1, and SLC31A 
CRGs were statistically significant (Figure S2B). Mean-
while, high expression levels of CDKN2A, DLAT, DLST, 
and SCL31A1 were linked with worse overall survival 
(OS) rates, whereas the high expression levels of LIPT1, 
ATP7A, and GLS showed the opposite trend. Functional 
enrichment revealed that CRGs were primarily enriched 
in the tricarboxylic acid cycle (TCA) pathway, carbon 
metabolism (Fig. 1F, G), and the acetyl-CoA biosynthetic 
process of the pyruvate pathway (Fig. 1H, I), which corre-
sponds to the findings of previous research [29].

Identification of CRGs and CRDEGs subtypes
To further explore the relationship of CRGs and CRDEGs 
subtype patterns, the expression level data of the 18 
CRGs in 1282 samples were collected from the TCGA 
and GEO databases. Consensus clustering analysis was 
then performed, and the optimal k-value was obtained 
based on the consistent cumulative distribution func-
tion and the delta area plots. The k-value was set to range 
from 1 to 9; and k = 3 generated the best subtype patterns 
for clustering (Fig. 2A). CRGs expression and other clini-
cal features like stage or survival status are displayed in 
the heatmap (Fig.  2B). Samples of each cluster that ful-
filled the criteria of the adjusted P-value = 0.001 and 
|log2FC| > 2 genes were found to intersect the three sub-
types, which were used to determine the CRDEGs, visu-
alized by the Venn diagram displayed in Fig.  2C. Based 
on the result of these CRDEGs, consensus cluster analy-
sis was again implemented and the an optimal k-value = 3 
was also obtained (Fig. 2D). The CRDEG expression and 
other clinical features such as the stage or survival status 
are displayed in the heatmap (Fig. 2E), in which suggested 
that cluster C had lower expression in stage II-IV NSCLC 
than clusters A and B, which was also lower in all NSCLC 
samples regardless of the gender. Moreover, the differ-
ences in the expression of CRGs among the three clusters 
were statistically significant (P < 0.05) except for that of 
the MTF1 gene (Fig. 2F).

Prognostic value, functional enrichment, and immune 
infiltration analysis of CRGs and CRDEGs subtypes
In the first consensus cluster pattern based on CRGs, 
the prognosis analysis showed that the OS of cluster 
B was apparently higher than those of clusters A and C 
(Fig. 2H). However, the distinction between cluster A and 
cluster C was not significant, which was reflected in the 
PCA. The boundary between cluster B and cluster A was 
clear, whereas those between cluster C and both clusters 
A and B were not that clear (Fig.  2I). Immune infiltra-
tion was performed through ssGSEA (Fig. 2G), in which 
cluster B had the highest infiltration level among all the 
clusters, primarily of CD4 + and CD8 + T cells. The rep-
resentative clinicopathology images, obtained from the 
TCGA data, shown for each of the three cluster subtypes 
in Figure S3B, revealed that immune cell infiltration was 
higher in the tumor nests of cluster B patients than in 
the other two clusters. Increased CD4 + and CD8 + T cell 
infiltration has previously been reported to be correlated 
with better prognosis [30, 31], which may explain why 
cluster B had the longest OS among the three clusters. 
GSVA exhibited inter-cluster distinction in the functional 
enrichment pathways (Figure S3A).

For the second cluster pattern involving genetic mod-
elling, 1829 CRDEGs were selected, which were pre-
dominantly correlated with Parkinson’s, Huntington’s, 
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Fig. 1  Transcriptional variance and expression of CRGs, and experimental validation and functional enrichment of CRGs in NSCLC. (A) Frequency and lo-
cation of the copy number variation (CNV); (B) Variance of the expression of 18 CRGs from TCGA database in the normal and tumor tissues; (C) Prognosis-
related network of expression of18 CRGs from TCGA database; (D) Tumor mutation burden (TMB) of 18 CRGs from TCGA database; (E) PCR validation of 
the CRGs expression level of the tumor and normal tissues; (F, G) KEGG functional enrichment of CRGs; (H, I) GO functional enrichment of CRGs (*P < 0.05; 
** P < 0.01; and *** P < 0.001; Ns, not significant). CRGs, cuproptosis-related genes; NSCLC, non-small-cell lung cancer; CNV, copy number variation; TMB, 
tumor mutation burden; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology
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Fig. 2  Consensus cluster analyses based on CRGs and CRDEGs. (A) Three clusters were divided by consensus cluster analysis coupled with cumulative 
distribution function plot and delta area plot; (B) Heatmap of CRGs expression allied with clinical characteristic of three clusters; (C) Venn diagram of 
CRDEGs; (D) Based on CRDEGs, three clusters were divided by consensus cluster analysis coupled with cumulative distribution function and delta area 
plots; (E) Heatmap of CRDEGs expression combined with other clinical features in three subtype clusters; (F) Variances in CRGs expression level among 
three gene clusters; (G) Immune infiltration through ssGSEA among the three clusters; (H) OS among three clusters. (I) Principal component analysis (PCA) 
of the three clusters. (*P < 0.05; ** P < 0.01; and *** P < 0.001; Ns, not significant) OS, overall survival; PCA, principal component analysis; ssGSEA, single 
sample gene set enrichment analysis. CRGs, cuproptosis-related genes. CRDEGs, cuproptosis-related differentially expressed genes; OS, overall survival
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and Alzheimer’s diseases, as well as with a number of 
other neural degeneration diseases (Figure S4B). These 
CRDEGs were enriched in the ribonucleoprotein com-
plex biogenesis and mRNA processing pathways (Figure 
S4A). For this model, the survival analysis indicated that 
cluster C had higher survival probability than clusters A 
and B, whereas the difference between cluster A and clus-
ter B was not obvious (Figure S4C).

Clinical characteristic-related analysis combined with 
assessment of the tumor mutation burden (TMB) of the 
prognostic score model and cuproptosis score models in 
NSCLC
A prognostic score model was constructed based on 53 
prognosis-related CRDEGs filtered by univariate and 
multivariate analysis. The prognostic analysis showed 
that the higher risk score usually indicated a worse OS 
rate (P < 0.001, Fig.  3A) and progression-free survival 
(PFS) (P < 0.001, Fig.  3B). The expression level of the 
prognosis-related CRDEGs is displayed in the heatmap 
along with the prognostic high/low-risk score and sur-
vival status between the two score groups (Fig. 3C). The 
status “dead” significantly increased in the high score risk 
group. Both univariate and multivariate Cox analyses 
indicated that the prognostic risk score was an indepen-
dent prognostic factor in NSCLC (Fig. 3D, E). Applying 
the prognostic model and clinical score parameters, we 
established a nomogram to estimate the 1-, 3-, and 5-year 
OSs of NSCLC patients (Fig.  3F). The consistency of 
the calibration curves of this nomogram determines the 
accuracy of the predicted values. This nomograph may be 
advantageous in predicting the clinical prognosis and can 
be used as a clinical decision-making tool in the future. 
The C-index curve revealed that our prognostic model 
had a higher concordance index than the other clini-
cal factors (Fig. 3G). Similarly, the DCA and ROC curve 
also confirmed this outcome. Therefore, our CRDEGs 
prognostic model was the most precise method of pre-
dicting the NSCLC prognosis (Fig. 3H and I). The higher 
risk score group had higher mutation frequency than 
the lower risk group (Fig. 3J), but the difference between 
the two groups was not statistically significant (P = 0.81, 
Figure S2A). However, the OSs of the TMB groups were 
significantly different. Surprisingly, better OS was found 
in the high-TMB group (Fig.  3K). Nevertheless, when 
the risk score was considered, a higher risk was always 
associated with worse OS as compared with the low-risk 
group regardless of whether the TMB was high or low 
(Fig. 3L).

А cuproptosis score model was established through 
univariate Cox analysis of CRDEGs processed by PCA. 
The cuproptosis score was statistically significant among 
both CRGs subtype clusters and CRDEGs subtype clus-
ters (Fig. 4A). The survival probability of the cuproptosis 

score model indicated that the high score group cor-
related with better OS (P < 0.001, Fig.  4B and C). The 
same tendency was found in patients with different can-
cer stages (Fig.  4D). There was a statistically significant 
distinction between the high-cuproptosis-score group 
(87.93%) the low-cuproptosis-score group (98.87%) 
(Fig.  4F). The low-cuproptosis-score group showed an 
apparent TMB upregulation. Ranked from high to low, 
the TMB in the gene clusters was as follows: cluster B, 
cluster A, and cluster C (Fig.  4E). The OS of the high-
TMB group was longer than that of the low-TMB group, 
when the cuproptosis score was taken into consideration. 
The high-TMB group plus the high-cuproptosis group 
was correlated with better OS than the high-TMB group 
plus low-cuproptosis group (P = 0.032, Fig. 4G; P = 0.007, 
Fig.  4H). Therefore, it is reasonable to speculate that a 
high cuproptosis score is linked with a better probabil-
ity of survival. The difference in the cuproptosis score is 
related to different clinical features. The survival prob-
ability in the high-score cuproptosis group was higher 
than that in the low-score cuproptosis group (Fig.  4C). 
EGFR is one of the most essential receptors in the prog-
ress of NSCLC tumorigenesis and tumor development 
[32]. A low cuproptosis score was related with a higher 
level of EGFR expression, which may result in worse OS 
in NSCLC (Fig. 4C). The Sankey diagram of CRGs sub-
type clusters, CRDEGs subtype clusters, cuproptosis 
score group, and survival status is presented in Fig. 4I.

TME and immune treatment sensitivity of the prognostic 
score model and the cuproptosis score model in NSCLC
Based on the prognostic model, the immune function 
analysis (Fig.  5A) showed that compared with the high-
risk score group, the low-risk group is enriched mainly 
in the cytolytic, T-cell stimulation, and inflammation-
promoting pathways. A high level of T-cell immune 
infiltration may be correlated with the better progno-
sis in the low-risk NSCLC group. Immune checkpoint 
analysis (Fig.  5B) revealed that basically all the check-
points were upregulated in the low-risk group except for 
CD44, TNFSF4/9, and CD276 (marker of cancer stem 
cell) [33]. Based on the TME score, we conclude that a 
distinction existed between the high/low risk groups in 
terms of immune and estimate scores (Fig. 5C). Immune 
cell infiltration analysis showed that CD4+T and CD8+T 
cells were enriched mainly in the low-risk score group, 
whereas macrophage M0- and cancer-associated fibro-
blast cells were highly infiltrated in the high-risk model 
group (Fig.  5D), which corresponds to the outcomes of 
the survival and PFS analysis. Representative clinico-
pathology images from the TCGA data showed that the 
low-risk score group had higher immune cell infiltration 
(Fig. 5E). Through drug sensitivity tests we selected four 
potential reagents which might be correlated with the 
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Fig. 3  Analysis of a prognostic score model based on CRDEGs. (A, B) Overall survival (OS) rate and progression free survival (PFS) of the high/low risk 
groups; (C) Heatmap regarding expression of CRDEGs and survival status of the risk high/low groups; (D, E) Univariate and multivariate cox analysis, green 
for univariate, and red for multivariate; (F) Nomograph and nomograph prediction diagram for the 1-, 3-, and 5-year OS of NSCLC patients; (G) C-index 
curve of risk score and other tumor related clinical characteristics; (H) DCA of risk score and other tumor related clinical characteristics; (I) ROC and multi-
ROC curve of risk score and other tumor related clinical characteristics; (J) TMB situation of the prognostic score model risk high/low group; (K, L) Survival 
probability of TMB high/low group and TMB high/low group plus high/low-risk score. (*P < 0.05; ** P < 0.01; and *** P < 0.001; Ns, not significant). CRDEGs, 
cuproptosis-related differentially expressed genes; OS, overall survival; PFS, progression free survival; C-index, concordance index; DCA, decision curve 
analysis; TMB, tumor mutation burden; ROC, receiver operating characteristic curve
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better efficacy in the high-risk group of prognostic score 
model while another four reagents may be correlated 
with the same effect in the low-risk group of prognostic 
score model. (Figure S5A).

The correlation diagram (Fig.  6A) of the cuproptosis 
group revealed that a higher cuproptosis score was posi-
tively associated with the activation of B cells, dendritic 
cells, eosinophilia, immature B cells, MDSC, macro-
phages, mast cells, monocytes, natural killer cells, plas-
macytoid dendritic cells, regulatory T cells, T follicular 
helper cells, type 1 T-helper cells, and type 17 T-helper 
cells. Representative clinicopathology images were 
acquired from the TCGA data which showed that the 
high-cuproptosis-score group had greater immune cell 
infiltration (Fig. 6B). Regardless of whether the immune 
target was CTLA4- and PD1-positive or -negative, bet-
ter immune effect was observed in the high-cuproptosis 
group than in the low-cuproptosis group (Fig. 6C). These 

results supported our hypothesis and provide solid evi-
dence for the rationality of constructing prognostic and 
cuproptosis score models (Fig. 7).

Discussion
Copper ions have recently been shown to be involved 
in a cell death pathway [34, 35], a process that is linked 
with tumorigenesis, metastasis, and immune function in 
cancer [17, 19]. It is possible that the knockdown of cop-
per chaperone antioxidant-1 inhibits copper-stimulated 
proliferation of NSCLC [36] and that the copper trans-
porter ATP7A is correlated with platinum chemotherapy 
resistance in NSCLC [37]. Moreover, autophagy suppres-
sion contributes to disulfiram/copper-induced apoptosis 
in NSCLC cells [38]. Key targets of copper homeostasis 
in humans and mammals include ceruloplasmin, CTR1 
(known as SLC31A1) as the major protein carrier of 
exchangeable copper in plasma, and ion transporters 

Fig. 4  Analysis of the CRG and CRDEG clusters. (A) Cuproptosis score among three CRGs clusters and CREDGs clusters; (B) Survival probability of high/low 
group in cuproptosis score model NSCLC patients; (C) Correlation of survival period, survival status, and NSCLC major mutant gene EGFR with two groups 
in cuproptosis score model; (D) Survival curve of NSCLC patients from different stages; (E) TMB among the two groups of cuproptosis score models and 
the three gene clusters; (F) TMB in the cuproptosis score model high/low groups; (G, H) Survival probability in the high-/low-TMB group and the high/
low-TMB group plus the high/low cuproptosis score; (I) Sankey diagram of the CRGs and CRDEGs subtype clusters, the cuproptosis score group, and the 
survival status. (*P < 0.05; ** P < 0.01; and *** P < 0.001; Ns, not significant). TMB, tumor mutation burden. EGFR, epidermal growth factor receptor; NSCLC, 
non-small-cell lung cancer
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Fig. 5  Immune-related analysis of the prognostic score model high/low risk groups. (A) Immune function pathway analysis of prognostic score model; 
(B) Immune checkpoint analysis of the prognostic score model; (C) TME score of high/low risk group; (D) Heatmap of immune cell infiltration of the two 
groups; (E) Representative image of HE staining from the TCGA database showing the degree of immune cell infiltration of the two groups. (*P < 0.05; 
** P < 0.01; and *** P < 0.001; Ns, not significant). TME, tumor microenvironment. TCGA, The Cancer Genome Atlas; HE, hematoxylin and eosin staining
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associated with cellular copper uptake, cytosolic metal 
chaperones and cytosolic mitochondrial metal chaper-
ones target copper insertion into metalloenzymes and 
copper-dependent ATP enzymes like ATP7A and ATP7B 
[16], which have copper export and metal chaperone 
functions. Metallothionein 1 (MT1) and MT2 are two of 
three thiol-rich proteins that bind with high affinity to a 
variety of copper ions. At the same time, copper is also 
a dynamic signaling metal and metal allosteric regula-
tor, such as copper-dependent phosphodiesterase 3B 
(PDE3B) in lipolysis, mitogen-activated protein kinase 
kinase 1 (MEK1) in cell growth and proliferation and 
MEK2, the kinases ULK1 and ULK2 in autophagy [39, 
40]. Cell proliferation that relies on copper is called cop-
per hyperplasia, which corresponds to this article about 
copper death. These enzymes may have some interac-
tions with FDX1 signaling, which may be a focus of 
future research. Therefore, it is reasonable to speculate 
that there is a link between cuproptosis and NSCLC. We 
undertook an analysis of a cuproptosis scoring model 
based on different cuproptosis subtypes and a prognos-
tic score model of CRDEGs to further explore the clinical 

significance of cuproptosis and the mechanisms of its 
interactions with the immune microenvironment. These 
two models improve the existing understanding of cupro-
ptosis in NSCLC and may provide an innovative guid-
ance for clinical practice.

Eighteen CRGs were classified into three subtypes by 
consensus clustering. Survival analysis results suggested 
that subtype B had a better prognosis than subtypes 
A and C, and that the different subtypes had obvious 
enrichment differences in certain pathways. Immune 
infiltration pathways with distinct enrichment discrep-
ancy were also evident among the three subtypes. The 
greatest differences among the three subtype clusters 
were observed in the T cell-related pathways. Enrich-
ment analysis of the CRGs showed that they were 
enriched mainly in the TCA pathway, which is in agree-
ment with the latest research evidence [41, 42]. Three 
gene clusters were developed after consensus clustering 
was performed on CRDEGs. Cluster C had a better prog-
nosis than clusters A and B, implying that the subtypes of 
CRGs and CRDEGs may be associated with the clinical 
characteristics of NSCLC patients.

Fig. 6  Clinical characteristics and immune correlation analysis of the cuproptosis score model. (A) Immune infiltration correlation analysis network; (B) 
Representative image of HE staining from the TCGA database showing the immune cell infiltration in the two high-score cuproptosis groups from TCGA; 
(C) Immunotherapy efficacy score in the two groups. (*P < 0.05; ** P < 0.01; and *** P < 0.001; Ns, not significant). TCGA, The Cancer Genome Atlas; HE, 
hematoxylin and eosin
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Fig. 7  Overall graphical summary and brief flow chart of the study
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The cuproptosis score model was established based on 
the prognosis-related genes acquired by univariate Cox 
analysis of CRDEGs to determine the cuproptosis value 
of each sample. Higher cuproptosis score indicated a 
better OS rate, even within patients at different cancer 
stages. The low-cuproptosis-score group had a higher 
TMB than the high-cuproptosis group. This is an inter-
esting point because in our earlier analysis, the OSs of 
different TMB groups were significantly different. Sur-
prisingly, a better OS was found in the high-TMB group. 
It is possible that high TMB may improve the recogni-
tion of tumor cells by the immune system, facilitating the 
attack and elimination of tumor cells by immune cells. 
High mutational burden may also lead to more adap-
tive variants in tumor cells and the production of more 
aggressive, drug-resistant subclones. The intersection of 
high-/low-cuproptosis-score and mutation samples was 
obtained in this cuproptosis score model the mutation 
burden survival curve analysis, requires the intersec-
tion of high/low cuproptosis score samples and muta-
tion samples,. The number of intersection samples in 
the high-cuproptosis score group was significantly lower 
than that in the low-cuproptosis-score group, which 
might have caused bias in analysis. However, when sur-
vival was analyzed with the cuproptosis score combined 
with the mutation rate, the prognosis of the high-cupro-
ptosis-score group was better than that of the low-cupro-
ptosis-score group, regardless of the combination of 
high/low TMB. The results of the ssGSEA and immune 
correlation analyses indicated that the cuproptosis score 
was highly positively correlated with the levels of mast 
cells, monocytes, and follicular T-helper cells, a special-
ized CD4+ T cell type primarily found in the tonsils [43]. 
Meanwhile, the NSCLC-related molecule EGFR [44] was 
upregulated in the low-cuproptosis group.

Immunotherapy is essential for limiting tumorigenesis 
and progression [45], and thus, regardless of the immune 
molecules status, the high-cuproptosis-score group 
showed better efficacy than the lower group. This result 
indicates that cuproptosis is likely to be involved in the 
changes of tumor development progress and TME.

Previous research on CRDEGs enrichment analysis has 
been concentrated on neurodegeneration diseases such 
as Alzheimer’s disease [46]. The filtering of CRDEGS in 
our univariate and multivariate Cox analyses yielded 53 
prognosis-related CRDEGs, which were then screened 
for the development of this novel model. The low-risk 
group had better prognosis regardless of OS or PFS, 
which is directly opposite to the results obtained in the 
cuproptosis score model. Both univariate and multivari-
ate Cox analyses showed that the risk score of the prog-
nostic model was an independent prognostic factor. 
Contrary to the cuproptosis score system, in the prog-
nostic score model, the high-risk score group had higher 

TMB than the low-risk group. Immune cell infiltration 
analysis revealed that CD4+T and CD8+T cells were 
enriched mainly in the low-risk score group, whereas 
macrophage M0 and cancer-associated fibroblast cells 
were highly infiltrated the high-risk model group. The 
distinction in TME may lead to the difference in the 
prognosis between the two groups. This provides evi-
dence that CD4+T cells and CD8+T cells are correlated 
with better prognosis in NSCLC [47, 48]. Drug sensitiv-
ity testing results has demonstrated merely correlation 
relationships between eight agents and high-/low-risk 
groups, four of which might be related with higher sen-
sitivities in the high-risk group and the other four agents 
might be related with better efficacy in low-risk group.

Considering that the two models were established 
from different aspects and through different meth-
ods, differences in the results were expected. However, 
the subsequent clinicopathological analysis, prognos-
tic analysis, and immune microenvironment analysis 
of NSCLC through both models supports diverse ideas 
and approaches to guide the clinical screening, diag-
nosis and treatment of NSCLC. There are limitations 
in this research that have to be considered. First, all the 
data were obtained from public data sources, and such 
retrospective data are vulnerable to selection bias, which 
might have interfered with the accuracy of our analysis. 
Additionally, for further explorations of cuproptosis in 
NSCLC, more clinical features and data should be taken 
into consideration, which were lacking in the publicly 
accessible databases. Finally, more experimental assays 
are required to validate more comprehensively the bioin-
formatics analysis results.

Conclusions
In this study, we systematically constructed two mod-
els and performed clinicopathological, prognostic, and 
immunological analyses to explore the involvement of 
cuproptosis in tumorigenesis and tumor development 
in NSCLC. These CRGs and CRDEGs may have the 
potential to serve as effective immunotherapy and che-
motherapy sensitivity biomarkers. Therefore, both the 
cuproptosis score model and the prognostic model can 
be clinically significant and may provide novel targets for 
individualized immunotherapy in the future.
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