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Comprehensive analyses of the cancer-
associated fibroblast subtypes and their
score system for prediction of outcomes
and immunosuppressive microenvironment
in prostate cancer
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Abstract

Background Cancer-associated fibroblasts (CAFs) drive cancer progression and treatment failure on one hand,
while their tumor-restraining functions are also observed on the other. Recent single cell RNA sequencing (scRNA-
seq) analyses demonstrates heterogeneity of CAFs and defines molecular subtypes of CAFs, which help explain their
different functions. However, it remains unclear whether these CAF subtypes have the same or different biological/
clinical implications in prostate cancer (PCa) or other malignancies.

Methods PCa cells were incubated with supernatant from normal fibroblasts and CAFs to assess their effects on cell
behaviors. Sequencing, genomic, and clinical data were collected from TCGA, MSKCC, CPGEA and GEO databases.
CAF molecular subtypes and total CAF scores were constructed and grouped into low and high groups based on
CAF-specific gene expression. Progression free interval (PFI), clinicopathological features, telomere length, immune
cell infiltration, drug treatment and somatic mutations were compared among CAF molecular subtypes and low/high
score groups.

Results The PCa CAF-derived supernatant promoted PCa cell proliferation and invasion. Based on differentially
expressed genes identified by scRNA-seq analyses, we classified CAFs into 6 molecular subtypes in PCa tumors,

and each subtype was then categorized into score-high and low groups according to the subtype-specific gene
expression level. Such score models in 6 CAF subtypes all predicted PFl. Telomeres were significantly shorter in
high-score tumors. The total CAF score from 6 CAF subtypes was also associated with PFlin PCa patients inversely,
which was consistent with results from cellular experiments. Immunosuppressive microenvironment occurred more
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frequently in tumors with a high CAF score, which was characterized by increased CTLA4 expression and indicated
better responses to CTLA4 inhibitors. Moreover, this model can also serve as a useful PFl predictor in pan-cancers.

Conclusion By combining scRNA-seq and bulk RNA-seq data analyses, we develop a CAF subtype score system
as a prognostic factor for PCa and other cancer types. This model system also helps distinguish different immune-
suppressive mechanisms in PCa, suggesting its implications in predicting response to immunotherapy. Thus, the
present findings should contribute to personalized PCa intervention.

Keywords Caner associated fibroblasts, Immunotherapy, Prostate cancer, Tumor microenvironment, Tumor

Introduction

Prostate cancer (PCa) is the second most common malig-
nancy worldwide, causing about 375,000 deaths in 2020
[1], and the incidence has arose rapidly over the past
decades [2]. Most PCa patients have no obvious symp-
toms in the early stages and are usually diagnosed when
an advanced disease has developed [3]. The 5-year sur-
vival rate for men with a localized tumor is as high as
99%, while only 28% for those with metastasis [4]. Andro-
gen deprivation therapy (ADT) is the first-line treatment
option for advanced PCa, but castration-resistant pros-
tate cancer (CRPC) occurs eventually, which leads to
treatment failure and disease progression [5].

PCa progression and CRPC are driven by genetic/epi-
genetic factors that maintain active androgen-androgen
receptor (AR) signaling [6]. The direct AR gene altera-
tions, including amplification, mutation, and alternative
splicing, have been well characterized to lead to CRPC
or advanced PCa, while AR-associated factor dysregula-
tions act as important contributors, too [6]. In addition,
aberrant epigenetics interact with genetic alterations or
directly regulate AR signaling to promote CRPC develop-
ment [7]. For instance, histone H2A Lys130-acetylation
stimulates androgen production, thereby resulting in
CRPC [8].

In addition to intrinsic mechanisms, evidence has
accumulated that tumor microenvironment (TME) plays
a pivotal role in cancer progression, such as angiogen-
esis induction, invasion or metastasis and therapeutic
resistance [9-13]. The components of TME include can-
cer-associated fibroblasts (CAFs), endothelial cells and
pericytes, various immune and inflammatory cells, bone
marrow derived cells, and extracellular matrix (ECM)
[14]. CAFs are the predominant stromal cell type in the
TME and secrete growth factors, inflammatory ligands
and extracellular matrix (ECM) proteins, thereby pro-
moting carcinogenesis [10, 11, 15-17]. On the other
hand, CAFs may also exert tumor-restraining effects
[17-19]. The development of single-cell RNA sequenc-
ing (scRNA-seq) technology has revealed the heteroge-
neity of not only tumor cells, but also cells in the TME
[20]. CAFs have been classified into several subtypes
in previous studies [11, 15, 21], and more recently, Luo

et al. further showed CAF heterogeneity and diversity
across human solid tumors based on scRNA-seq analy-
ses and they molecularly stratified CAFs into the fol-
lowing 6 subtypes: cancer-associated myofibroblasts
(CAFmyo), inflammatory CAFs (CAFinfla), adipogenic
CAFs (CAFadi), endothelial-to-mesenchymal transition
CAF (CAFendMT), peripheralnerve-like CAF (CAFpn),
and antigen-presenting CAF (CAFap) [22]. Moreover,
these 6 subtypes of CAFs shared similar transcriptomic
profiles in all analyzed 10 different solid tumors includ-
ing PCa. These findings provide insights into the diverse
roles of CAFs in cancer biology. However, several issues
remain unsolved in PCa. First, whether these CAF sub-
types are involved in the PCa pathogenesis differently?
Second, whether these CAF subtypes are associated
with PCa outcomes differently? Finally, the requirement
of fresh samples, time-consuming handling procedure
and unfriendly cost significantly limit scRNA-seq appli-
cation, whereas bulk transcriptome sequencing remains
the most frequent approach for RNA expression profil-
ing, especially for analyses of large numbers of tumors or
tissues. Thus, it raises an important question of whether
scRNA-seq data can be translated into bulk RNA analy-
ses, and if so, it will be easier to make them suitable for
future clinical application. The present study is designed
to address this issue. We first demonstrated that superna-
tant derived from primary PCa CAFs strongly promoted
PCa cell proliferation and migration. Based on specific
biomarkers identified using scRNA-seq analyses, we then
applied them to the tumor bulk RNA seq data in public
databases to classify molecular subtypes of CAFs and
then establish the CAF score in PCa. Our results show
that the CAF (subtype and total) score model is a robust
predictor for PCa outcomes and immunosuppressive
microenvironment. Moreover, we further verified the
usefulness of this model system in other solid tumors.

Patients and methods

PCa patients, specimens, and isolation of normal
fibroblasts (NFs) and CAFs

Three patients were included in the present study, which
was approved by the Shandong University Qilu Hospi-
tal Ethics Committee (#KYLL-202208-044). The clinical
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information for 3 patients is listed in Table 1. Tumors
and matched non-tumorous prostate tissues (N'Ts) were
obtained from these patients undergoing radical prosta-
tectomy without other therapies. Both tumors and NTs
were minced and washed followed by the addition of 2 ml
of digestion solution (A430371, Asegene, China) and
incubation for 2 h at 37 °C. The tissues were blown vigor-
ously 20 times with a pasteur pipet, then allowed to stand
and filtered through a 100 pm strainer (R20B01060005,
Biosharp, China). The filtered solutions were incubated
with 20% fetal bovine serum (FBS) (ExCell Bio, China)
containing RPMI-1640 medium (C11875500BT, Gibco,
USA) in 6-well plates for 4 days, and adherent NFs and
CAFs were then digested and harvested.

Cell culture, supernatant harvest, and supernatant
treatment of PCa-derived cell lines

One million NFs and CAFs were seeded into 10 cm cul-
ture dishes and cultured in 10 ml of serum-free medium
for 2 days. Supernatant was then collected. PCa cell lines
PC-3 and DU145 were purchased from the National Col-
lection of Authenticated Cell Cultures (Shanghai, China).
PC-3 cells were cultured in RPMI-1640 medium (Gibco,
USA) and DU145 in DMEM medium (C11995500BT,
Gibco). Cell culture medium was supplemented with 10%
FBS (ExCell Bio, China) and 1% penicillin/streptomycin
(C100C5, NCM Biotech, China). All cells were myco-
plasma free and cultured at 37 °C in a humidified 5% CO,
atmosphere. Supernatant from NF and CAF medium was
added into plates where PC-3 and DU145 cells were incu-
bated, and a final supernatant concentration was 50%.

Western blotting

Cellular proteins were extracted from PC-3 and DU145
cells with NF and CAF supernatant, and protein concen-
trations were determined using the BCA kit (P0011, Bey-
otime, China). Western blot was performed as described
[23]. The antibodies used in this study include FAP
(66,562 S, CST, USA), PDGFRa/p (ab5443, Abcam, UK),
a-SMA (A17910, ABclonal, USA) and GAPDH (10494-1-
AP, Proteintech, USA).

Cell viability and proliferation assay

Cell viability and proliferation was measured using a
CCK-8 kit (K1018, APExBIO, USA). PC-3 and DU145
cells were seeded in 96-well plates at a density of 1000

Table 1 The clinical information of 3 patients with prostate
cancer in the present study
Pa- Age (Years) PSA

Gleason score Survival state

tient

#1 68 4830 ng/ml  4+43=7 Alive
#2 64 100.00 ng/ml  5+4=9 Alive
#3 56 6590 ng/ml 4+5=9 Alive
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cells/well. CCK-8 solution (10 uL) was added, and the cell
proliferation curve was plotted based on the assay val-
ues within 7 consecutive days. Living cell numbers in the
control and experimental groups were detected color-
metrically according to the manufacture’s protocol.

Transwell assay

PC-3 and DU145 cells were diluted with serum-free
medium at a density of 50 000/ well and added to Tran-
swell chambers (353,097, Falcon, USA). The medium
mixed with NF and CAF supernatants (50% superna-
tant plus 50% complete medium) were added to 24-well
plates, respectively. The plates containing PC-3 and
DU145 were then placed in an incubator at 37 °C for 24 h
and 12 h, respectively. The chambers were fixed with 4%
paraformaldehyde for 15 min, stained with 0.2% crystal
violet for 15 min, and allowed to dry before filming.

Data acquisition and processing

The RNA sequencing data (standardized), somatic muta-
tion data and clinical data of PCa and other solid tumor
were obtained from the Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). RNA abun-
dance was expressed as transcripts per million (TPM). In
further analyses, bulk RNA-seq data were log2 (TPM+1)
transformed. Differential gene analysis was analyzed by
Wilcox T test using limma package.

The scRNA-seq data of CAFs in PCa tissues were
obtained from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). Two PCa cohorts
(GSE85606 and GSE68164) with scRNA-seq analyses
were obtained to evaluate NF and CAF associated gene
expression levels in PCa tissues. The external validation
datasets were downloaded from the Memorial Sloan-Ket-
tering Cancer Center (MSKCC) (http://cbio.mskcc.org/
cancergenomics/prostate/data), Chinese Prostate Cancer
Genome and Epigenome Atlas (CPGEA) (http://www.
cpgea.com/) and GSE70770 (https://www.ncbi.nlm.nih.
gov/geo/). The RNA-seq and somatic mutation data pro-
cessing were performed using the R software packages
limma and maftools.

Construction of the CAF score

CAFs in PCa tumors were divided into six categories
or subtypes according to Luo et al [22]. We performed
univariate Cox regression analysis of the top 30 genes
expressed in each category and used the coefficient val-
ues to establish CAFs models for different subtypes. The
total CAF score was calculated based on all CAF-asso-
ciated genes. The CAF score formula was established as
follows:

CAF score = Z Coef ficientof (i) x Expressionofgene (i)
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Gene set enrichment

The single-sample gene set enrichment analysis (ssGSEA)
was used to quantify the enrichment level of immune
characteristics in each sample, including immune cell
types, functions and pathways in R language. To iden-
tify the regulatory pathways that differed between the
two groups, gene set enrichment analysis (GSEA) was
performed using the Pi package in R language. In addi-
tion, gene set variation analysis (GSVA) was performed
using the GSVA package in R for CAF score low and high
groups.

Immune microenvironment analysis

We downloaded the immunophenoscore (IPS) of each
PCa patient from the cancer immune group atlas (TCIA)
(https://tcia.at/home). Tracking tumor immunotype
(TIP) was used to evaluate the anti-tumor immunity of
the seven-step immune cycle in PCa tissues (http://biocc.
hrbmu.edu.cn/TIP/). TCGA solid tumors were classi-
fied as previously described by Thorsson et al. [24]. For
PCa tumors, 4 categories were stratified, which include
wound healing (C1), IFN-g dominant (C2), inflammatory
(C3) and lymphocyte depleted (C4). Immune checkpoint
and cytolytic activity (CYT) scores were used to predict
the response to immune checkpoint inhibitors (ICIs),
through which a potential association between CAF
scores and immunotherapy efficacy was assessed.

Telomere length analysis

Telomere length data in PCa tumors in the TCGA data-
base were obtained from the previous analyses by Barthel
et al. [25].

Statistical analysis

All statistical analyses were performed using R software
(version 4.2.1) and Graphpad prism. The Kaplan-Meier
analysis of progression free interval (PFI) was performed
with use of the survival and survminer package by R lan-
guage. Wilcox t test was used for comparison between
groups including DEGs analyses. P<0.05 was considered
statistically significant if not specified.

Results

CAF-mediated proliferation and migration of PCa cells
Primary NFs and CAFs derived from 3 PCa patients
were isolated, and their identity was verified by western
blot using their specific biomarkers (a-SMA, PDGFRa/p
and FAP) (Fig. 1A). The culture supernatant of CAFs and
NFs were collected for cellular experiments. As shown in
Fig. 1B and C, the CAF-derived supernatant significantly
facilitated PC-3 and DU145 cell migration (Fig. 1B) and
proliferation (Fig. 1C).

Page 4 of 15

CAF heterogeneity in PCa tumors

Given the findings above, we sought to probe potential
mechanisms underlying CAF-driven PCa cell migra-
tion/proliferation. Towards this end, we first analyzed
transcriptomic profiles of NFs and CAFs in GSE85606
and GSE68164 PCa cohorts to identify differentially
expressed genes (DEGs) between them. A total of 43
and 63 DEGs (|LogFC| > 1 and P<0.05) were found in
GSE85606 and GSE68164 cohorts, respectively (Fig. 1D,
and Tables S1 and S2). There were only 4 overlapping
DEGs (KRT7, IGFBP2, CPXM2 and TINAGLI1) in both
cohorts, among which KRT7 expression showed oppo-
site trends. We further analyzed scRNA-seq data of CAFs
and observed that CAFs could be divided into 11 clus-
ters (Fig. 1E). Each of these 11 clusters contained unique
top DEGs (Fig. 1F and Table S3). The differences in the
DEGs among each cluster demonstrate the heterogeneity
and plasticity of CAFs (Figure S1). Likely, those identified
DEGs render CAFs stimulatory effects on PCa cell pro-
lifreation and migration. Alternatively, the DEGs mark
oncogenic CAF subpopulations.

Establishment of the CAF subtype score to predict patient
PFI

To gain insights into CAF-driven PCa aggressiveness in
more depth and more broadly, we further focused on
the molecularly classified CAF subtypes. Based on the
molecular heterogeneity of CAF populations obtained
from scRNA-seq in solid tumors, CAFs have recently
been stratified into the following 6 categories [22]: CAF-
myo, CAFinfla, CAFadi, CAFendMT, CAFpn, and CAFap
(Fig. 2A). To determine the effect of each CAF subtype
on PCa progression and outcomes, we applied this CAF
classification system to the bulk RNA-seq profiled PCa
tumors (TCGA cohort) by using the top 30 expressed
genes in each CAF subtype (Table S4), and CAFs in these
PCa tumors were successfully categorized into the iden-
tical 6 subtypes, too. Univariate Cox regression analy-
sis was first used to examine the association between
patient PFI and the expression levels of top 30 genes
in each CAF subtype (Figure S2A), but not all those 30
genes could predict PFI, indicating the role of the sub-
type rather than gene expression as per. Nevertheless, the
CAEF scores of each category were constructed according
to the expression level of those 30 top genes. Using the
median score as the cutoff, the CAF score was associ-
ated with PFI in all subtypes (Fig. 2B and C). Among the
6 different CFA categories, the area under the ROC curve
(AUC) of the scores in all 6 categories was the largest
in 7 years (Figure S2B). We further identified the top 10
DEGs in each subtype (Fig. 2D), and subsequent GSEA
analyses showed both different and overlapping pathway
enrichments among 6 subtypes with high CAF scores
(Fig. 2E). The enriched pathways in the high-score groups
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Fig. 1 CAF heterogeneity and function in prostate cancer (PCa). (A) Western blot analysis for FAP, PDGFRa/B, a-SMA and GAPDH in the NFs (Normal fi-
broblasts) and CAFs (cancer-associated fibroblasts). (B) Transwell assay of PC-3 and DU 145 cell migration mediated by CAF culture supernatant. (C) CCK-8
assessment of PC-3 and DU145 cell proliferation mediated by CAF culture supernatant. (D) Heatmap of differentially expressed genes (DEGs) in paired NFs
and CAFs. (E) T-SNE plot of single cells from CAFs in PCa tissues. (F) Heatmap shows the marker genes of s distributed in the 12 clusters.

mainly include cell proliferation, ECM, EMT, angio-
genesis, inflammation and immune responses, which
are intimately associated with tumor progression. The
co-expression network between CAF typing and CAF-
related genes was analyzed by Sankey plot (Figure S3A).
The regulatory network of CAF-related genes in different
subtypes represents the study of expression correlation
and tumor progression in PCa patients (Figure S3B).

We further analyzed PCa cohorts from the MSKCC,
CPGEA and GEO datasets to validate the CAF score
model as a prognostic factor observed in the TCGA
PCa patients. For the MSKCC cohort, similar results
were obtained. In the six subtypes of CAF score models,
patients in the high score group had more rapid disease
progression than those in the low score one (Fig. 2F). In
the CPGEA cohort, patients in the high score group had
shorter PFI, but statistical significances were reached
only for CAFmyo, CAFendMT and CAFap subtypes,

while at a board-line for CAFpn (Fig. 2G). The GSE70770
cohort analysis showed that the scores for CAFmyo,
CAFendMT and CAFap subtypes were significantly asso-
ciated with patient PFI (Figure S6A), as observed in the
CPGEA cohort.

The total CAF score model as a predictor for PCa patient
PFl and treatment response

To simplify the CAF subtype score system above for
potential clinical application, we integrated six subtype
scores and all CAF associated genes to construct a total
CAF (tCAF) score model. Taking the median tCAF score
as the cutoff, the analysis of TCGA, MSKCC, CPGEA and
GSE70770 PCa cohorts showed that tCAF score had high
accuracy in predicting PFIL. The patient PFI in the tCAF
high group was significantly worse than that in the low
one (Figs. 3A and S6B). The ROC curves for each group,
when the third, fifth, and seventh years were evaluated
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as the end time points, demonstrated the robust predic-
tive power of the tCAF score model (Figs. 3B and S6C).
GSVA pathway analysis unraveled that proliferation-
related pathways were highly enriched in the tCAF score
high group (Fig. 3C). Further assessments of the TCGA
PCa cohort showed that there were significant differ-
ences between the tCAF score and age, Gleason score,
T and N stages (Fig. 3D and E). The Gleason score, an
important indicator in PCa, was significantly higher in
the tCAF score high group. Next, we explored whether
the tCAF score could be used in the selection of drug
therapy (excluding ADT) in PCa patients. The IC50 value
of each drug for each patient in the tCAF score low and

res on response to commonly used drugs. (G) The 3D structure tomographs

high groups was calculated using the oncoppredict pack-
age. We computationally identified 14 drugs that were
more effective in the tCAF score low group and 46 drugs
that were more effective in the tCAF score high group
(Fig. 3F and Figure S4). The 3D structural tomography
of talazoparib, zoledronate, cediranib, gemcitabine, and
savolitinib that could potentially be used to treat patients
in the tCAF high group was searched in PubChem data-
base (Fig. 3G).
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Correlation of tCAF scores with genomic alterations in PCa
tumors

We calculated the tumor mutation burden (TMB) for
each patient in the TCGA PCa cohort. The TMB in
the tCAF high score group was significantly higher
(p<0.001) (Fig. 4A). There was a highly positive correla-
tion between TMB and tCAF score (Fig. 4B). The over-
all TMB was 53.19% and 69.42% in the tCAF score low
and high groups, respectively (Fig. 4D). The prognosis of
patients with both tCAF score and TMB low was much
better (Fig. 4C). Figure 4E showed the mutual exclu-
sivity and co-occurrence of mutations in tCAF score
groups. We further examined the mutation frequencies
of nine major oncogenic pathways in the tCAF score low
and high groups. Nine major oncogenic pathways were
detected in the tCAF score low group, while 10 major
oncogenic pathways were detected in the tCAF score
high group, mainly including RTK-RAS, WNT, NOTCH
and Hippo pathway (Fig. 4F). Cancers differ from each
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other in their mutational patterns. We examined these
differentially mutated genes by comparing the two
cohorts of CAF score. The results showed that besides
FLG2, TP53, NALCN, SACS, PTEN, OBSCN, RYRI
and FOXA1 were highly mutated in the CAF score high
group (Fig. 4G). CNV alterations (mainly copy number
deletions) occurred more frequently in all the CAF score
subtype high groups (Figure S5).

Effect of the tCAF score on immune status in PCa tumors

The PCa tumors in the TCGA cohort were scored using
ssGSEA to quantify the activity, enrichment level and
function of immune cells in each sample, and then
grouped according to their tCAF scores (Fig. 5A). The
immune status was more active in the tCAF high score
group. Based on the expression profile, the ESTIMATE
algorithm was used to calculate the stromal, immune
and ESTIMATE scores of PCa. The results showed that
the ESTIMATE, immune and stromal scores in the
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tCAF score high group were all higher than those in the
low one (Fig. 5B). The cytolytic activity (CYT) score, an
immunotherapy biomarker characterizing the antitumor
immune activity of CD8" cytotoxic T cells and macro-
phages, was significantly higher in the tCFA score high
group (Fig. 5D). These results indicate the active immune
status in the high tCAF score tumors. IPS is a quantita-
tive index to evaluate the cancer-immunity cycle (CIC)
efficacy. In the case of CTLA4 expression, the tCAF score
low group had a better response to immunotherapy, while
there was no difference between the two groups in the
case of PD-L1 expression (Fig. 5C). Consistently, CTLA4
was significantly expressed in the tCAF score high group,
while NECTIN2 was significantly expressed in the low
group. The expression of PD-L1, PD-L2 and CCA did not
differ significantly between the two groups (Fig. 5E). We
further examined the relationship between tCAF scores
and major histocompatibility complex (MHC). Except for
TNFRSF14 and CD28, the expression level of MHC gene
sets tended to be higher in the tCAF high score group
(Fig. 5F).

Association between the tCAF score and immune cell
infiltration

Antitumor immunity in tumor tissue can be interpreted
as seven sequential processes, including release of can-
cer antigens (step 1), cancer antigen presentation (step

2), priming and activation (step 3), Tracking of immune
cells to tumors (step 4), infiltration of immune cell into
tumors (step 5), recognition of cancer cells by T cells
(step 6), and killing of cancer cells (step 7). Although only
stepl and step5 showed active status in the tCAF score
high group, step2, step3, step4, step6 and step7 showed
similar active status in both groups (Fig. 6A and B). Fur-
ther analysis of infiltrated immune cells in tumor tissues
showed that CD4 memory, CD8 effector, CD8 naive, B
cells, NK cells and DC cells were more abundant in the
tCAF score high group than the tCAF score low group
(Fig. 6C and D). However, the degree of infiltration of Th
cells, CD8 memory, Monocytes CD16, and pDC cells was
reversed (Fig. 6D). Based on the immunological classifi-
cation of solid tumors by Thorsson et al. [24], we further
examined distributions of immune subtypes in two tCAF
score groups. In the tCAF score low group, C1 (wound
healing), C2 (IFN-gamma dominant), C3 (inflammatory),
and C4 (lymphocyte depleted) accounted for 5%, 2%,
83%, and 10%, respectively. However, in the tCAF score
high group, C1, C2, C3 and C4 accounted for 13%, 7%,
69% and 11%, respectively (Fig. 6E). The proportion of C1
and C2 was significantly higher, while the proportion of
C3 was lower in the tCAF score high group.
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with tCAF score

Shorter telomeres in the tCAF score high PCa tumors and
association with unfavorable PFI

Telomere shortening or dysfunction occurs with aging,
which drives inflammation [26]. We thus sought to
determine whether increased immune activity observed
in the tCAF score high tumors above was associated
with altered telomere length. To this end, the TCGA

PCa cohort was analyzed [25]. As shown in Fig. 7A and
G, PCa tumors with high tCAF score had dramatically
shorter telomeres compared to low score tumors. More-
over, the worst PFI was observed in patients with shortest
telomere-bearing tumors (Fig. 7H).
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The tCAF score system as a prognostic factor in pan-cancer
Because Luo et al. showed similarity in CAF heteroge-
neity and transcriptomic profile across cancer types, we
determined whether our tCAF score system could pre-
dict PFI and immune status in other solid tumors by ana-
lyzing the TCGA pan-cancer. We established separate
tCAF scoring models for all solid tumors to improve the
accuracy of CAF scoring model adaptation. Individual
tCAF scores were established by performing univariate
Cox regression analyses in each solid tumor (Fig. 8A and
B). tCAF scores predicted PFI in pan-cancer (p<0.05)
(Fig. 8B). MK plots further showed significantly shorter
PFI in those tumors with high tCAF score (Fig. 8D).
TMB score and CYT score were analyzed simutaneously.
According to the tCAF scores, TMB showed significant
differences in BRCA, CESC, HNSC, KIRC, KIRP, LGG,
LIHC, LUAD, PAAD, STAD and THCA (Fig. 8C). CYT
score was more active in BLCA, COAD, GBM, KIRP,
LGG, LIHC, LUSC, OV and STAD with tCAF score
high tumors, while in BRCA, HNSC, PAAD, SKCM and
UCEC with tCAF score low tumors (Fig. 8E).

Discussion

The application of the scRNA-seq technology has sub-
stantially contributed to the reliable identification of
CAF subtypes. CAFs are heterogeneous cell populations
in the tumor TME and have been molecularly classified
into 6 subtypes including CAFmyo, CAFinfla, CAFadi,
CAFendMT, CAFpn and CAFap across solid tumors

by Luo et al. [22]. In the present study, we explored the
possibility of constructing a CAF-related score model
to predict tumor progression and immunosuppressive
microenvironment in high-throughput bulk sequencing
of tumor tissues mixed with CAFs based on the scRNA-
seq analysis of PCa tumors. Our results demonstrated
that the scores for each of 6 CAF subtypes and the over-
all tCAF score were useful for prediction of patient out-
comes. This score model can be further extended to other
solid tumors, suggesting its broad implications in cancer
clinics.

In cancer immunity, activation signals stimulate func-
tional phenotypic transformation and accelerate prolif-
eration of cytotoxic immune cells, thereby enhancing
their ability to kill cancer cells. CAFs are the main cel-
lular component of TME [27], however, CAFs in differ-
ent tumor tissues have different molecular and functional
characteristics, and even CAFs isolated from the same
tissue may have different biological properties. CAFs
interact directly or indirectly with the immune cells in
the TME and can affect the active state of the immune
cells [10, 16]. For example, CAFs are involved in regulat-
ing myeloid-derived suppressor cell (MDSC) infiltration
and activation by secreting CXCL12, IL-6, VEGE, and
CCL2 [28, 29]. CAFs can induce the polarization of mac-
rophages to M2 type by secreting M-CSF [30]. In addi-
tion, CAF can affect T cell differentiation, function, or
infiltration through a variety of pathways [10, 16, 31-33].
Thus, it is of great significance to explore the immune
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Fig. 8 The tCAF score model in pan-cancer. (A) The CAF score in solid tumor. (B) Univariate Cox regression analysis of CAF score in pan-cancer. (C) The
TMB of CAF score low and high groups in pan-cancer. (D) Kaplan-Meier analysis of the CAF score low and high groups in pan-cancer. (E) The CYT score of
CAF score low and high groups in pan-cancer

status and immune cell infiltration in PCa based on CAF
score for screening patients suitable for immunotherapy.
Our results showed that the patients with high CAF score
had a more active immune state. However, tumor cells
also achieve immune escape by expressing inhibitory
ligands. In addition, the predicted CYT score was sig-
nificantly higher in the CAF score high group. This also

provides a basis for the effectiveness of immunotherapy.
Taken together, patients with high tCAF score-bearing
tumors would benefit from anti-CTLA4 immunotherapy.

Interestingly, in a colon cancer mouse model, the
immune-suppressive effect of TGF-f1 has been shown
to be involved in repression of CXCL9 and CXCL10
expression in CAFs, which subsequently inhibited the
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recruitment of effector T cell infiltration into tumors
[34]. Mechanistically, TGF-B1 induces histone H3 lysine
27 trimethylation (H3K27me3) by recruiting histone
demethylase EZH2 to the CXCL9 and 10 promoters,
inhibiting their transcription. More recently, Sridaran
et al. observed that oncogenic tyrosine kinase Activated
CDC42 kinase 1 (ACK1) inhibited CXCL10 expres-
sion via the EZH2/H3K27 methylation-dependent man-
ner and consequently reduced CD8 T cell infiltration
in PCa tumors [7, 35]. ACK1 also directly constrains T
cell activation [7, 35]. These findings raise the question
of whether ACK1, like TGF-B1, exerts the same effect in
CAFs. If so, ACK1 induces immune suppression via mul-
tiple pathways, including tumor-intrinsic and extrinsic
mechanisms, and targeting ACK1 is expected to boost
anti-tumor immunity.

In recent years, TMB has been considered as a poten-
tial indicator for tumor immunotherapy [36, 37]. The
detection and recognition of neoantigens by T cells is
an important link in predicting the efficacy of immuno-
therapy [38]. When the number of somatic mutations
increases, more neoantigens are produced and more
likely to be recognized by T cells [39]. It has been con-
firmed that high TMB is significantly associated with
improved prognosis in cancer patients treated with ICIs
[40]. In a pooled analysis of 27 tumors, TMB was asso-
ciated with response to anti-PD-1 therapy [41]. In PCa,
we found a positive correlation between TMB and tCAF,
which further indicates that immunotherapy may benefit
the tCAF score high PCa. However, the present findings
should not be over-interpreted before they are confirmed
experimentally and clinically.

It is well established that telomeres become progres-
sively short with cellular proliferation or increased age,
and shortened telomeres trigger aging at both cellular
and organ levels, inducing chronic inflammation [26,
42, 43]. Interestingly, we observed significantly shorter
telomeres in PCa tumors with a high tCAF score. It is
currently unclear whether there is a causal relationship
between shorter telomeres and CAF property, or whether
shorter telomeres promote oncogenic function of CAFs.
These issues call for further studies. Nevertheless, the
presence of shortest telomeres in PCa tumors predicts
the worst PFI, which is consistent with the tCAF high
score tumors and has clinical implications.

Our study has limitations. First, we are unable to ascer-
tain whether the relationship of CAF subtypes with
aggressive phenotypes or outcomes are causal in PCa.
Second, the association between the CAF score and sen-
sitivity to ICIs are only based on the evaluation of tran-
scriptomic data from tumors in PCa patients without
receiving ICI therapy. Much more experimental and clin-
ical investigations are required to solve these issues.

Page 13 of 15

In conclusion, we have developed a novel PCa CAF
score system based on CAF associated genes. This score
model exhibits its value in assessing patient disease pro-
gression and tumor immune microenvironment.
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