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Abstract
N6-methyladenosine (m6A) is important in regulating mRNA stability, splicing, and translation, and it also 
contributes to tumor development. However, there is still limited understanding of the comprehensive effects 
of m6A modification patterns on the tumor immune microenvironment, metabolism, and drug resistance in 
hepatocellular carcinoma (HCC). In this study, we utilized unsupervised clustering based on the expression of 23 
m6A regulators to identify m6A clusters. We identified differential m6A modification patterns and characterized 
m6A-gene-cluster A, which exhibited poorer survival rates, a higher abundance of Treg cells, and increased 
expression of TGFβ in the tumor microenvironment (TME). Additionally, m6A-gene-cluster A demonstrated 
higher levels of glycolysis activity, cholesterol metabolism, and fatty acid biosynthesis. We also found that the 
m6A score was associated with prognosis and drug resistance. Patients with a low m6A score experienced worse 
prognoses, which were linked to an abundance of Treg cells, upregulation of TGFβ, and increased metabolic 
activity. HCC patients with a higher m6A score showed improved prognosis following sorafenib treatment and 
immunotherapy. In conclusion, we reveals the association between m6A modification patterns and the tumor 
immune microenvironment, metabolism, and drug resistance in HCC. Furthermore, the m6A score holds potential 
as a predictive factor for the efficacy of targeted therapy and immunotherapy in HCC.
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Introduction
Hepatocellular carcinoma (HCC) ranks as the third lead-
ing cause of cancer-related mortality in the world [1]. 
Most HCC patients are diagnosed at advanced stages, 
resulting in poor prognosis. Interventional therapy, tar-
geted therapy and immunotherapy are main treatments 
options available for those patients [2]. Sorafenib and 
lenvatinib have been approved as first-line targeted treat-
ment of advanced stage HCC [3, 4]. The recent success of 
immune checkpoint inhibitors to treat unresectable HCC 
has raised interest in investigating antitumor immunity 
[5]. Atezolizumab plus Bevacizumab was also approved 
for the first-line targeted treatment of advanced stage 
HCC [6]. However, due to the unsatisfactory response 
rate, it is crucial to understand the mechanisms and pre-
dict resistance to targeted therapy or immunotherapy.

The development and progression of hepatocellu-
lar carcinoma (HCC) involve complex processes with 
genetic, epigenetic, and transcriptomic alterations [7]. 
Epigenetics changes, including DNA methylation, his-
tone modification, and RNA-mediated targeting, have 
the potential to contribute to cancer progression. One 
common post-transcriptional modification found in 
messenger RNA (mRNA) is N6-methyladenosine (m6A) 
modification [8]. A total of 3 functional categories of 
protein participates in the m6A modification: methyl-
transferases (“writers”, METTL3/14, WTAP, RBM15/15B, 
ZC3H13, CBLL1 and KIAA1429), demethylases (“eras-
ers”, FTO, ALKBH3/5) and effector proteins (“readers”, 
YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, HNRNPC, 
ELAVL1, EIF3 and HNRNPA2B1) [9–11]. M6A modi-
fication plays vital roles in biological process across dif-
ferent cancer types. For instance, WTAP suppressed 
ETS1 in a post-transcriptional, promoting HCC progress 
[12]. METTL3 facilitated SOCS2 mRNA degradation 
through a YTHDF2-dependent pathway in HCC [7]. In 
non-small cell lung cancer (NSCLC), METTL3 directly 
promotes YAP translation and increases YAP activity by 
regulating the MALAT1-miR-1914-3p-YAP axis, leading 
to drug resistance and metastasis [13]. M6A-dependent 
glycolysis enhances colorectal cancer progression [14]. 
Furthermore, m6A modification also regulates signaling 
pathways involved in targeted-therapy resistance, such as 
AKT activity [15], EGFR signaling pathway [16], WNT 
signaling and stemness [17]. However, the correlation 
between m6A modification patterns and targeted-ther-
apy resistance in HCC remains poorly understood.

M6A can regulate immune response to viruses and 
exhibit crucial impact on immune microenvironment in 
various cancers by controlling signal transduction [18–
20]. METTL3 and YTHDF1 have been found to enhance 
cross-presentation of tumor antigens and stimulating 
CD8 + T cells through the regulation of dendritic cells 
activation and T cell homeostasis [21–23]. However, 

METTL3 also sustains the function of Treg cells to inhibit 
immune response [24]. The regulation of m6A in immu-
nity appears to be complex. There have been reports 
that FTO, an alpha-ketoglutarate dependent dioxygen-
ase, induced resistance to aiti-PD-1 therapy in mela-
noma [25]. Additionally, m6A modification patterns have 
shown efficacy in predicting the response and outcome 
of anti-PD-1/L1 therapy in gastric cancer [26]. However, 
the effect of m6A regulators and m6A modification on 
immunotherapy in HCC have not been described.

M6A regulators have also been involved in metabolic 
processes. METTL3 and IGF2BP2 promote glycolysis 
and tumorigenesis in colorectal cancer and gastric cancer 
[14, 27, 28]. METTL3 has also been identified as a regu-
lator of fatty acid metabolism [29]. However, a compre-
hensive analysis for the functions of m6A regulators in 
metabolism remains scarce in HCC development.

In this study, we analyzed the landscape of genetic and 
expression variation of m6A regulators in HCC. Through 
unsupervised clustering based on the expression of 23 
m6A regulators, we identified distinct m6A modification 
patterns in HCC. We then compared the characteristics 
of these patterns and discovered correlations between 
m6A regulators, tumor immune microenvironment and 
metabolism. Furthermore, we developed an m6A score 
based on differentially expressed genes (DEGs) to predict 
prognosis of HCC. The m6A score was also found to be 
closely associated with treatment response of sorafenib 
and immunotherapy resistance.

Materials and methods
Sample data collection and processing
TCGA data (TCGA-LIHC, 372 samples), mutations, 
gene expression, clinical annotations were downloaded 
from the TCGA data portal (https://portal.gdc.cancer.
gov/) in April 2020. ICGC data (LIRI-JP), gene expres-
sion and clinical annotations were downloaded from the 
ICGC data portal (https://dcc.icgc.org/) in April 2020. 
GEO data (GSE14520, GSE76427) was available in the 
Gene Expression Omnibus (GEO) database. We com-
bined TCGA-LIHC, GSE76427, ICGC-LIRI-JP data to 
obtain a larger cohort (669 HCCs, 292 normal). Batch 
effects from non-biological technical biases were cor-
rected using the “ComBat” algorithm of sva package. All 
expression data was normalized using R (version 3.6.3). 
The somatic mutation data was acquired from cBioPor-
tal FOR CANCER GENOMICS (https://www.cbioportal.
org/) and Copy Number Variation (CNV) information 
was obtained from TCGA Copy Number Portal (TCGA) 
(http://portals.broadinstitute.org/tcga/home).

Unsupervised clustering for 23 m6A regulators
A total of 23 regulators were extracted for identifying 
different m6A modification patterns mediated by m6A 

https://portal.gdc.cancer.gov/
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regulators. These 23 m6A regulators included 8 writ-
ers (METTL3, METTL14, RBM15, RBM15B, WTAP, 
KIAA1429, CBLL1, ZC3H13), 3 erasers (ALKBH5, 
ALKBH3, FTO) and 12 readers (YTHDC1, YTHDC2, 
YTHDF1, YTHDF2, YTHDF3, IGF2BP1, HNRNPA2B1, 
HNRNPC, IGF2BP2, IGF2BP3, LRPPRC, ELAVL1). 
Unsupervised clustering analysis was applied to identify 
distinct m6A modification patterns based on the expres-
sion of 23 m6A regulators and classify patients for fur-
ther analysis. The number of clusters and their stability 
were determined by the consensus clustering algorithm 
[30]. We used the ConsensusClusterPlus package to per-
form the above steps and 1000 times repetitions were 
conducted for guaranteeing the stability of classification 
[31]. 

Estimation of the abundance of immune cell populations, 
estimate score and cytolytic activity
The relative abundance of 24 immune populations in 
tumors and healthy tissues were computed from the 
RNA-seq of each bulk sample. In detail, we used the 
ImmuCellAI [32] a unique method for comprehensive 
T-cell subsets abundance prediction based on the enrich-
ment score of gene signature, which was calculated using 
the single sample gene set enrichment analysis (ssGSEA) 
algorithm. The estimate score and tumor purity were cal-
culated using “Estimate” [33], a method that uses gene 
expression signatures to infer the fraction of stromal and 
immune cells in tumor samples. Immune cytolytic activ-
ity representing the geometric mean of GZMA and PRF1 
is another in silico measure of immune infiltration, as 
described by Rooney et al. [34].

GSEA (Gene Set Enrichment Analysis), Identification of 
DEGs (Differentially Expressed Genes), GO (Gene Ontology) 
analysis and PPI (protein-protein interaction) network 
construction
GSEA was used to identify the pathways that were sig-
nificantly enriched between m6Aclusters [35]. The GSEA 
analysis was performed using the GSEA software. We 
divided all the HCC patients into m6A cluster A and 
m6A cluster B and performed the GSEA using their gene 
expression matrix. DEGs were identified using “Limma” 
package in R (adjust < 0.05, |LogFC|>1) [36]. Gene Ontol-
ogy (GO) analysis of DEGs was performed in WEB-based 
Gene Set Analysis Toolkit [37]. The STRING database 
was applied to get the Protein–protein interaction infor-
mation [38]. A Protein–protein interaction network (PPI) 
was built via Cytoscape software [39]. The most signifi-
cant clusters of PPI network were identified by “MCODE” 
and hub genes were ranked by degree. The GO analysis of 
hub genes was performed with “ClueGO”.

Identification of m6A-gene-clusters and m6A score 
construction
The patients were classified into several groups for deeper 
analysis by adopting unsupervised clustering method 
based on DEGs. The consensus clustering algorithm 
was utilized for defining the number of gene clusters as 
well as their stability. Then, we performed the prognos-
tic analysis for each gene in the signature using univari-
ate Cox regression model. The genes with the significant 
prognosis were extracted for further analysis. We then 
conducted principal component analysis (PCA) to con-
struct m6Ascore. This method had advantage of focusing 
the score on the set with the.

largest block of well correlated (or anticorrelated) genes 
in the set, while down-weighting contributions from 
genes that do not track with other set members. Firstly, 
we identified prognostic factors to construct the m6A 
score. A total of 50 survival-related genes were identi-
fied by univariate cox analysis by univariate analysis. 
Then, principal component analysis was performed using 
SPSS software (version 25.0) to calculate the variance 
contribution rate for each gene. The m6A score = Gene1.
V1 + Gene2.V2……+Gene50.V50.

Gene sets of several biological processes
Gene sets of biological processes were downloaded from 
MSigDB database; [40] (1) Hypoxia; (2) Glycolysis-gluco-
neogenesis; (3) Tricarboxylic acid cycle enzyme complex; 
(4) Nuclear receptors in lipid metabolism and toxicity; (5) 
cholesterol metabolism; (6) Regulation of fatty acid oxi-
dation; (7) Regulation of fatty acid biosynthetic process; 
(8) EGF Signaling Pathway; (9) Erk1/Erk2 MAPK signal-
ing pathway; (10) PDGF signaling pathway; (11) PI3K 
pathway; (12) RTK signaling; (13) Immune checkpoints; 
(14) Genes related to induction of pluripotent stem cells 
[41]. 

mRNAsi mining
The one-class logistic regression machine learning algo-
rithm (OCLR) was applied to extract gene expression-
based stemness indices [42]. We obtained the data for the 
calculated mRNAsi and EREG-mRNAsi of each TCGA-
LIHC patient from supplementary materials of Tathiane 
M. Malta’s article [42]. 

Statistical analysis
Associations between 23 m6A regulators, DEGs and sur-
vival were tested using univariate cox regression and the 
hazard ratios (HR) were calculated. The median expres-
sion of each gene was used as the cutoff criteria to ana-
lyze the association between m6A regulators’ expression 
and overall survival. Kaplan-Meier survival analysis by 
log-rank [43] test was used to calculate the median sur-
vival time (MST). The cut-off points were determined by 
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Fig. 1 (See legend on next page.)
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the X-Tile software [44] to tested all potential cut points 
in order for finding the maximum rank statistic. Cor-
relations among immune cell subsets, immune check-
points and gene expression data were evaluated using 
the Spearman correlation coefficient. One-way ANOVA 
and Kruskal-Wallis tests were used to conduct difference 
comparisons of three or more groups [45]. Box plots for 
continuous variables were compared by unpaired t-test 
and Mann-Whitney U test. PCA (Principal Components 
Analysis) was performed with SPSS or R (version 3.6.5). 
All statistical P value were two-side, with P < 0.05 as sta-
tistically significance. Statistical analysis was performed 
with GraphPad version 7.0 (GraphPad Software, Inc., La 
Jolla, CA, USA), SPSS software version 25.0 (SPPS, Inc., 
Chicago, IL, USA), R (version 3.6.5; www.r-project.org) 
and OriginPro 2020 (https://www.originlab.com/).

Results
Landscape of genetic and expression variation of m6A 
regulators in hepatocellular carcinoma
We summarized mutations and CNVs (Copy number 
variations) to explore genetic characteristics of m6A reg-
ulators. Among 23 m6A regulators, 19 showed somatic 
mutation in TCGA-LIHC cohort (Fig.  1A). KIAA1429 
had the highest mutation frequency (1.4%), followed by 
ZC3H13(1.1%), YTHDC2(1.1%) and HNRNPC (1.1%). 
METTL3, METTL14, YTHDF2 and ALKBH5 did not 
show any mutation in database. Figure  1B showed a 
prevalent CNV alteration in 23 regulators. In addition, 
KIAA1429, YTHDF3 and IGF2BP2 had the highest fre-
quency of CNV amplification (over 45%). Considering 
that m6A regulators play a vital role in cancer develop-
ment [15, 46, 47], we compared their mRNA expression 
level in tumor and normal tissue. Of the 23 m6A regula-
tors, 20 were significantly upregulated, while only 3 genes 
(ALKBH3, IGF2BP1 and YTHDC1) were downregulated 
in HCC (Fig.  1C). Based on the differential expression 
characteristics, tumor and normal samples were well 
distinguished based on the expression profiles of m6A 
regulators in principal component analysis (Fig. 1D). Fur-
thermore, we investigated the association between the 
expression of m6A regulators and overall survival. Ten 
regulators were associated with worse overall survival, 
while five regulators were associated with better overall 
survival. (Fig. 1E).

Correlation among 23 m6A regulators and identification of 
m6Aclusters
We obtained protein-protein interaction network from 
STRING [38], and found complicated correlation among 
23 m6A regulators (Fig. 2A). Then, we performed spear-
man correlation analysis based on mRNA expression and 
found the majority of m6A regulators significantly corre-
lated with each other (Fig. 2B, Table S1). The GO analysis 
demonstrated that function of m6A regulators enriched 
in DNA and RNA modification (Figure S1A. These pro-
cesses included the regulation of alternative mRNA, 
RNA stabilization, DNA dealkylation, DNA repair, oxida-
tive demethylation. Importantly, the m6A regulators not 
only participated in the same biological process, but also 
regulated each other. KIAA1429 (“writer”), showed the 
strongest correlation with YTHDF3 (“reader”) (Spear-
man r = 0.62, P < 0.0001), indicating important cross-talk 
among different functional categories (“writers”, “read-
ers”, “erasers”).

Using consensus clustering analysis Based on the 
mRNA expression pattern of 23 m6A regulators of 699 
HCC patients, we identified 328 patients in cluster A and 
341 patients in cluster B (Fig. 2C, Figure S1B-S1D). The 
expression patterns of 23 m6A regulators were signifi-
cantly different between clusters (Fig. 2D). The m6Aclus-
ter A was prominent with higher expression of ELAVL1, 
HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, 
KIAA1429, METTL3, RBM15B and YTHDF1 (Figure 
S1E). Patients in m6Acluster B had a better overall sur-
vival compared to those in m6Acluster A (P = 0.016; 
HR = 1.43 (1.07–1.90)) (Fig. 2E).

GSEA analysis shown that differential pathways were 
all enriched in metabolic processes (Figure S1F), includ-
ing glucose metabolism, fatty acid metabolism, retinol 
metabolism and ABC transporters. In addition, pathways 
related to drug metabolism and steroid hormone metab-
olism were significantly upregulated in m6Acluster B.

Pathway enrichment of DEGs and identification of m6A-
gene-clusters
A total of 147 DEGs were identified between m6Aclus-
ter A and B (P < 0.05, FDR < 0.01) (Table S2). We per-
formed GO and KEGG analysis to enrich pathways that 
m6A-related genes involved in. Consistent with results 
of GSEA between m6Acluster A and B, 147 DEGs were 

(See figure on previous page.)
Fig. 1 Landscape of genetic and expression variation of m6A regulators in hepatocellular carcinoma. (A) The mutation frequency of m6A regulators in 
375 patients with hepatocellular carcinoma from TCGA-LIHC cohort. (B) The CNV variation frequency of m6A regulators in TCGA-LIHC cohort. The height 
of the column represented the alteration frequency. The deletion frequency, red dot; The amplification frequency, grey dot. (C) The differential expression 
of 23 m6A regulators between normal tissues and hepatocellular carcinoma tissues. Tumor, Grey; Normal, Red. The upper and lower ends of the boxes 
represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented 
the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). (D) Principal component analysis for the expression profiles of 23 m6A regulators 
to distinguish tumors from normal samples. The tumors and normal samples were well distinguished based on the expression profiles of m6A regula-
tors. Tumors, red and normal, black. (E) HRs (boxes) and 95% confidence intervals (horizontal lines). Box size is inversely proportional to the width of the 
confidence interval

http://www.r-project.org
https://www.originlab.com/
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Fig. 2 Correlation among 23 m6A regulators and identification of m6Aclusters. (A) Protein-protein interaction network of 23 m6A regulators. Network 
nodes represent proteins. Colored nodes:
query proteins and first shell of interactors. White nodes: second shell of interactors. Filled nodes:
some 3D structure is known or predicted. Edges represent protein-protein associations. (B) Correlation heatmap of m6A regulators. Different color repre-
sents spearman correlation r value between m6A regulators. (C) Consensus clustering analysis identification of two clusters (samples, n = 669). The white 
(consensus value = 0, samples never clustered together) and blue (consensus value = 1, samples always clustered together) heatmap display sample 
consensus. (D) heatmap of unsupervised clustering of 23 m6A regulators. Yellow represented high expression of regulators and blue represented low 
expression. (E) Survival plot of m6Aclusters (m6AclusterA:328 HCCs; m6AclusterB: 341 HCCs). The m6Acluster B showed better overall survival than m6A-
cluster A (P = 0.016; HR = 1.43)
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Fig. 3 (See legend on next page.)
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significantly involved in metabolism, including steroid 
metabolism, retinol metabolism, glucose metabolism and 
Tyrosine metabolism (Fig.  3A). Enrichment in growth 
and stem cell differentiation was also showed in Go 
analysis. Then we constructed PPI (protein-protein inter-
action) network (Figure S4A) and identified the most 
significant modules (Fig.  3B). In addition, 12 hub genes 
ranked by degrees were obtained and were shown in Fig-
ure S4B. These hub genes were also involved in metabolic 
pathways (Figure S4C).

Two m6A-gene-clusters were identified based on 
expression of 147 DEGs by Consensus clustering analysis 
(Fig. 3C and D). The prominent differences in the expres-
sion of m6A regulators between m6A-gene-clusters was 
in accordance with the expected results of m6A meth-
ylation modification patterns, indicating that 147 DEGs 
were associated with m6A modification (Fig. 3E). M6A-
gene-clusterB had a better prognosis than m6A-gene-
clusterB (P = 0.0007, HR = 1.49) (Fig. 3F).

Differential metabolic characteristics in distinct m6A 
modification patterns
We demonstrated significantly differential pathways 
involved in metabolism between m6A-gene-clusters 
(Figure S1F). M6A-gene-cluster A exhibited a higher 
activity of hypoxia and glycolysis than m6A-gene-clus-
ter B. The m6A-gene-cluster B was characteristic with 
higher activity of tricarboxylic acid cycle (Fig. 4A and B). 
Expression of FBP1, a key inhibitor of glycolysis [48], was 
significantly lower in m6A-gene-cluster A (Figure S3A). 
The correlation between median glycolytic expression 
and DEGs was showed in Table S3. MAPK13 was most 
strongly positively correlated with glycolysis (Spear-
man r = 0.44, P < 0.0001) and AQP9 was most strongly 
negatively correlated with glycolysis (Spearman r=-0.45, 
P < 0.0001) (Fig. 4C).

Expression of cholesterol metabolism related genes 
was higher in m6A-gene-cluster A (Fig. 4D). In addition, 
SOAT1 and SREBF2, two key regulators of cholesterol 
metabolism, were also significantly upregulated in m6A-
gene-cluster A (Fig. 4E).M6A-gene-cluster A exhibited a 
higher expression of fatty acid biosynthetic process and 
a lower expression of fatty acid oxidation (Fig. 4F and G), 
causing fatty acid accumulation and promoting prolifera-
tion and migration of HCC cell.

In conclusion, m6A-gene-cluster A was characterized 
with higher activity of hypoxia, glycolysis, cholesterol 
metabolism, and fatty acid biosynthesis, while m6A-
gene-cluster B exhibited higher activity of TCA (tricar-
boxylic acid cycle), fatty acid oxidation, steroid hormone 
metabolism (Figure S3B) and retinol metabolism (Figure 
S3C).

Differential immune characteristics in distinct m6A 
modification patterns
The m6A-gene-cluster A were remarkable with abun-
dant B cell, CD8 T, Exhausted T, nTreg, Treg1 and higher 
expression of all immune checkpoints (Fig.  5A and B). 
Expression of most immune related genes was higher in 
m6A-gene-cluster A (Fig.  5C). However, expression of 
TGFβ was also higher in m6A-gene-cluster A (Fig. 5D), 
which was consistent with higher Treg abundance and 
expression immune checkpoints. Furthermore, ESTI-
MATE score and immune score of m6A-gene-cluster 
A were also higher than m6A-gene-cluster B (Fig.  5E, 
5  F). Therefore, m6A-gene-cluster A was character-
ized as immune-activated and immune-suppressive 
simultaneously.

In correlation analysis between immune score and 
DEGs (Table S4), SAA1 (Serum Amyloid A), a protein 
associated with Amyloidosis, was found most posi-
tively correlated with immune score (Spearman r = 0.36, 
P < 0.0001) (Fig. 5G). In addition, HCCs with high expres-
sion of SAA1 exhibited higher immune score, stromal 
score, and Estimate score, indicating abundant immune 
infiltration and lower tumor purity (Fig.  5H and I). A 
better overall survival was showed in SAA1-High group 
(Fig. 5J). Above all, SAA1 might be a potential target for 
immune therapy.

Characteristics of m6A score in prognosis, immune 
microenvironment and metabolism
In univariate analysis, prognostic factors associated with 
m6A related genes from DEGs was showed in Table S4. 
We constructed m6A score using principal component 
analysis in a cohort of 669 HCC patients. Survival analy-
sis demonstrated patients with high-m6A score (Median 
m6A score = 0.11) had a better OS (P = 0.0003, HR = 1.69) 
(Fig.  6A). As expected, m6A score in m6Acluster B 
and m6A-gene-clusterB was significantly higher than 

(See figure on previous page.)
Fig. 3 Pathway enrichment of DEGs and identification of m6A-gene-clusters. (A) Circo-plot of KEGG and GO analysis of 147 DEGs. Left: genes; Right: 
pathways. Different colors represent different pathways. (B) 3 significant clusters in protein-protein interaction network of 147 DEGs. Rectangles repre-
sent protein. Edges represent protein-protein associations. (C) Consensus clustering analysis identification of two clusters (samples, n = 669). The white 
(consensus value = 0, samples never clustered together) and blue (consensus value = 1, samples always clustered together) heatmap display sample con-
sensus. (D) heatmap of unsupervised clustering of 147 DEGs. Yellow represented high expression of regulators and blue represented low expression. (E) 
The differential expression of 23 m6A regulators between m6A-gene-clusters. m6A-gene-clusterA, Grey; m6A-gene-clusterB, Red. The upper and lower 
ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. (F) Survival 
plot of m6A-gene-clusters (m6A-gene-clusterA:337 HCCs; m6A-gene-clusterB: 332 HCCs). The m6A-gene-clusterB showed better overall survival than 
m6A-gene-clusterA (P = 0.007; HR = 1.49). (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)
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Fig. 4 Differential metabolic characteristics in distinct m6A modification patterns. (A, B) Comparison of hypoxia and glucose metabolism related genes 
between clusters (A: heatmap; Yellow represented high expression of regulators and blue represented low expression; B: Median expression of genes). (C) 
Spearman correlation between IGF2BP3 and glycolytic genes expression or FBP1 expression. P < 0.0001. (D, E) Comparison of cholesterol metabolism re-
lated genes between clusters (D: heatmap; Yellow represented high expression of regulators and blue represented low expression; E: Median expression 
of genes). (F, G) Comparison of fatty acid biosynthetic process and fatty acid oxidation related genes between clusters (F: heatmap; Yellow represented 
high expression of regulators and blue represented low expression; G: Median expression of genes)
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Fig. 5 (See legend on next page.)
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m6Acluster A and m6A-gene-clusterA (Fig. 6B, 6 C). The 
m6A score was negatively correlated with TNM stage 
(AJCC, 2010) (Fig.  6D). In addition, HCCs with TP53 
mutation and vascular invasion also had lower m6A 
score (Fig. 6E). In validated group of 225 HCC patients in 
GSE14520 cohort, high-m6A score was associated with 
better recurrence-free survival (RFS) (Fig. 6F) and overall 
survival (Fig. 6G). M6A score was associated with tumor 
stages in various staging systems, including TNM stage 
(AJCC, 2010), BCLC stage and CLIP stage in training 
cohort and validation cohort. HCCs with larger tumor 
size (> 5  cm) and multiple nodules also had lower m6A 
score (Fig. 6H).

In correlation between m6A score and tumor immune 
microenvironment, the low-m6A score group was char-
acteristic with higher abundance of B cell, CD8 + T, NK, 
Th1, Exhausted, Treg1, nTreg, iTreg. However, the abun-
dance of Gamma-delta T, MAIT, Monocyte, Neutrophil, 
Tfh and Th17 were higher in the high-m6A score group 
(Fig.  6I). TGFβ was significantly upregulated, indicating 
immune-inhibition in low-m6A score group (Fig. 6J). we 
also compared CYT between groups and found no dif-
ferences (Fig. 6K). In addition, the m6A score was nega-
tively correlated with expression of PDCD1 (Fig. 6L) and 
CTLA4 (Figure S5A). The stromal score was also lower in 
low-m6A score group (Figure S5B). The m6A score was 
positively correlated with Th17 and Tfh abundance, and 
negatively correlated with nTreg and B cell (Figure S5C).

In addition to the immune cell infiltration, we com-
pared expression of glucose metabolism related genes 
between groups. Consistent with results of GSEA, GO 
and KEGG analysis, low-m6A score was correlated with 
significantly higher activity of glycolysis and lower activ-
ity of TCA (Fig.  6M). These characteristics could pro-
mote proliferation and migration of HCC and contribute 
to worse prognosis.

Characteristics of m6A score in targeted therapy
To examine whether m6A score was associated with tar-
geted therapy and immunotherapy resistance, we com-
pared mRNA expression of several pathways involved in 
drug resistance. Hypoxia [49], EGF-signaling [50], FGF-
signaling [51], PI3K-AKT pathway [52], SCD [53] were 
associated with sorafenib resistance. In addition, TGFβ 
[54], hypoxia [55], stemness [56], WNT pathway [57], 
ENTPD1 and NT5E [58] were associated with immuno-
therapy resistance. In low-m6A score group, pathways 

involved in sorafenib resistance (hypoxia, EGF-signaling, 
FGF-signaling, MEK/ERK pathway, PI3K-AKT pathway, 
RTK signaling, SCD) and immunotherapy resistance 
(TGFβ, hypoxia, stemness, WNT pathway, ENTPD1 
and NT5E) were significantly upregulated (Fig. 7A). We 
found differences in expression of KLF4, OCT4, MYC 
and SOX2 between groups (Fig.  7B). In addition, m6A 
score was negatively correlated with mRNAsi (Fig.  7C). 
Above all, m6A score was negatively correlated with 
stemness.

HCCs with low expression of HNRNPC, IGF2BP1, 
METTL3 and YTHDF1 had significantly higher m6A 
score, and low expression of FTO, METTL14 and 
ZC3H13 was associated with lower m6A score (Fig. 7D). 
In 29 HCC patients treated with Sorafenib from TCGA-
LIHC cohort, patients with low expression of HNRNPC, 
IGF2BP1, METTL3 and YTHDF1, namely high m6A 
score, had a better overall survival (Fig.  7E). So did 
patients with high expression of FTO, METTL14 and 
ZC3H13 and high m6A score also had better overall sur-
vival (Fig. 7F).

Discussion
Increasing evidences supported that m6A methylation 
plays a critical role in cancer. In this study, we uncov-
ered different m6A modification patterns in HCC based 
on 23 m6A regulators. A total of 147 DEGs were identi-
fied between different m6A modification patterns (m6A-
clusters). Notably, these m6A-gene-clusters exhibited 
remarkable differences in the tumor immune microenvi-
ronment and metabolism. Furthermore, we developed an 
m6A score based on the DEGs, which had the potential 
to predict prognosis and treatment response of targeted 
therapy in HCC (Figure S5).

Our findings showed that m6A modification serves 
as a novel regulator of metabolism. The GSEA of m6A 
modification patterns and pathway enrichment of DEGs 
were notably associated with various metabolic processes 
including glycolysis, TCA, cholesterol metabolism, fatty 
acid metabolism, steroid hormone metabolism and reti-
nol metabolism. Accumulating evidence underscored the 
crucial role of metabolism in tumor formation, develop-
ment, and progression, particularly in HCC [59]. Notably, 
cholesterol homeostasis has been implicated in the prog-
nosis of HCC [60]. For instance, the knockdown of sterol 
O-acyltransferase 1 (SOAT1), a gene associated with high 
cholesterol levels, effectively suppressed the proliferation 

(See figure on previous page.)
Fig. 5 Differential immune characteristics in distinct m6A modification patterns. (A-B) The differential immune cell infiltration and the expression of 6 
immune checkpoints between m6A-gene-cluster A and B. m6A-gene-cluster A, Grey; m6A-gene-cluster B, Red. The upper and lower ends of the boxes 
represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the 
statistical p value. (C) Comparison of the mRNA expression of the MHC molecules, co-stimulators and co-inhibitors for m6A-gene-clusters. (D-F) Com-
parison of the mRNA expression of TGFβ, ESTIMATE score and immune-score for m6A-gene-clusters. (G) Spearman correlation between SAA1 expression 
and immune score. (H-I) Comparison of ESTIMATE score, immune-score, stromal score and tumor purity between SAA1-High and SAA1-Low group. (J) 
Kaplan-Meier analysis for SAA1 expression in the TCGA cohort. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)
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and migration of HCC [60]. In present study, we uncov-
ered IGF2BP3, an effector protein of m6A modification, 
had strongest correlation with glycolysis and ENO1. 
Upregulation of IGF2BP3 enhanced activity of glycoly-
sis and was associated with poorly prognosis. Previous 
studies have also confirmed the impact of metabolism-
related pathways and metabolites on drug sensitivity [61, 
62]. IGF2BP3 emerges as a potential target for metabolic 
treatments in HCC.

M6A modification has been proved to be a novel reg-
ulator of the immune system [63]. We found that the 
immune characteristics of m6A modification patterns 
in HCC were complicated. The m6A-gene-cluster A and 
low-m6A score group exhibited higher abundance of 
CD8 + T cells, NK cells, and B cells, which played a cru-
cial role in antitumor immunity. Additionally, immune-
related molecules and immune checkpoints were 
upregulated in this group, indicating potential sensitivity 
to immunotherapy. However, despite these immune fea-
tures, both the m6A-gene-cluster A and low-m6A score 
group exhibited worse prognosis compared to the m6A-
gene-cluster B and high-m6A score group. There are 
several reasons to consider for this observation. Firstly, 
regulatory T cells (nTreg, iTreg and Tr1) were also upreg-
ulated in the m6A-gene-cluster A and low-m6A score 
group. The high abundance of Treg cells in the TME 
has been associated with immune inhibition and worse 
prognosis [64]. Secondly, TGFβ, which was significantly 
upregulated in the m6A-gene-cluster A and low-m6A 
score group, has been linked to poor prognosis by pro-
moting T-cell exclusion, inducing resistance to anti-PD1/
PDL1 therapy, and facilitating immune evasion [54, 65]. 
In fact, the m6A-gene-cluster A and low-m6A score 
group exhibited characteristics of immune suppression, 
with antitumor immune cells such as B cell, CD8_T cell, 
NK cell, Th1 cell showing limited activation. Pathways 
such as PI3K-AKT [66], WNT [57, 67], hypoxia [55, 68], 
glycolysis, NT5E and ENTPD1 [58] have been reported 
to involved in immunotherapy resistance. As expected, 
the high-m6A score group showed sensitivity to anti-PD1 
therapy and exhibited significant therapeutic advantages. 

For the m6Acluster A and low-m6A score group, a com-
bination of TGFβ-blocking and anti-PD1/PDL1/CTLA4 
therapy may facilitate antitumor immunity and enhance 
the sensitivity to immunotherapy. Many factors were 
found to be associated with targeted-therapy resistance, 
such as PI3K-AKT and JAK/STAT pathway [52], epithe-
lial-mesenchymal transition [69], FGF-signaling [51], 
stemness [70], EGFR pathway [50], hypoxia [49] and 
fatty acid metabolism [53]. In our study, the activity of all 
these pathways and mRNAsi, an index represents stem-
ness [42], were higher in low-m6A score group, which 
was consistent with outcome of sorafenib therapy.

Several limitations should be addressed in this study. 
The correlation between each m6A regulators and TME 
or metabolism was not fully explored. Further experi-
ments are needed to explore the underlying regulatory 
mechanisms. Secondly, although we analyzed several 
immune cell types using bioinformatics approaches, our 
evaluation did not encompass all immune cell popula-
tions. Additionally, in this study, we combined TCGA-
LIHC, GSE76427, ICGC-LIRI-JP data to obtain a larger 
cohort (669 HCCs, 292 normal) as the training cohort, 
and using the GSE14520 as the validating cohort. There 
might be the selection biases due to the small sample 
size. To strengthen the robustness of our findings, larger 
cohorts should be included in future. Moreover, there 
was no experimental validation of our findings in this 
study. Further experimental validation, like transcrip-
tomic sequencing of HCC tissues, biological functional 
validation for m6A regulators and the 147 DEGs were 
worth exploring.

Conclusion
We demonstrated the vital effect of m6A modification 
patterns and m6A regulators on TME, cancer metabo-
lism and tumor development in HCC. Furthermore, we 
developed an m6A score that could effectively predict the 
response and outcomes of targeted therapy and immuno-
therapy. M6A regulators might be potential and promis-
ing targets for antitumor therapy of HCC.

(See figure on previous page.)
Fig. 6 Characteristics of m6A score in prognosis, immune microenvironment and metabolism. (A) Survival plot of m6A score (High-m6A score group:335 
HCCs; Low-m6A score group: 334 HCCs). The high-m6A score group showed better overall survival than the low- m6A score group (P = 0.0003; HR = 1.69). 
(B) Differences in m6Ascore between m6A-gene-clusters. The Mann-Whitney U test was used to compare the statistical difference between m6A-gene-
clusters. High-m6A score group, Grey; Low-m6A score group, Red. The upper and lower ends of the boxes represented interquartile range of values. The 
lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p value. (C) Differences in m6Ascore 
between m6A modification patterns (Mann-Whitney U test). (D) Differences in m6Ascore among different tumor stages (Mann-Whitney U test). (E) 
Differences in m6Ascore between TP53-mutation and TP53-wide type, vascular invasion and non-vascular invasion (Mann-Whitney U test). (F) Valida-
tion: Survival plot of m6A score in GSE14520 cohort. The high-m6A score group showed better recurrence-free survival than the low- m6A score group 
(P = 0.011; HR = 1.62). (G) Survival plot of m6A score in GSE14520 cohort. The high-m6A score group showed better overall survival than the low- m6A 
score group (P = 0.035; HR = 1.61). (H) Relationship between m6A score and TNM stage, BCLC stage, CLIP stage, tumor number, tumor size in validation 
cohort (GSE14520). (I) The differential immune cell infiltration between high-m6A score group and low-m6A score group. (J, K) Differences in expression 
of TGFβ and CYT (cytolytic activity) between high-m6A score group and low-m6A score group. (L) Spearman correlation between m6A score and expres-
sion of CTLA4. P < 0.0001. (M) Comparison of glucose metabolism related genes between high-m6A score group and low-m6A score group. (Heatmap; 
Yellow represented high expression of regulators and blue represented low expression). (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)
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