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Abstract 

Background GBM, also known as glioblastoma multiforme, is the most prevalent and lethal type of brain cancer. 
The cell proliferation, invasion, angiogenesis, and treatment of gliomas are significantly influenced by oxidative stress. 
Nevertheless, the connection between ORGs and GBM remains poorly comprehended. The objective of this research 
is to investigate the predictive significance of ORGs in GBM and their potential as targets for therapy.

Methods We identified differentially expressed genes in glioma and ORGs from public databases. A risk model 
was established using LASSO regression and Cox analysis, and its performance was evaluated with ROC curves. We 
then performed consistent cluster analysis on the model, examining its correlation with immunity and drug response. 
Additionally, PCR, WB and IHC were employed to validate key genes within the prognostic model.

Results 9 ORGs (H6PD, BMP2, SPP1, HADHA, SLC25A20, TXNIP, ACTA1, CCND1, EEF1A1) were selected via differen-
tial expression analysis, LASSO and Cox analysis, and incorporated into the risk model with high predictive accuracy. 
Enrichment analyses using GSVA and GSEA focused predominantly on malignancy-associated pathways. Subtype 
C of GBM had the best prognosis with the lowest risk score. Furthermore, the model exhibited a strong correlation 
with the infiltration of immune cells and had the capability to pinpoint potential targeted therapeutic medications 
for GBM. Ultimately, we selected HADHA for in vitro validation. The findings indicated that GBM exhibits a significant 
upregulation of HADHA. Knockdown of HADHA inhibited glioma cell proliferation and diminished their migration 
and invasion capacities and influenced the tumor growth in vivo.

Conclusion The risk model, built upon 9 ORGs and the identification of GBM subtypes, suggests that ORGs have 
a broad application prospect in the clinical immunotherapy and targeted drug treatment of GBM. HADHA signifi-
cantly influences the development of gliomas, both in vivo and in vitro.
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Background
Glioblastoma, also termed glioblastoma multiforme, is 
a grade IV glioma, distinguished as the most prevalent 
and malignant intracranial tumor, primarily composed 
of astrocytes. This formidable malignancy can appear in 
individuals of any age, with a prevalence of approximately 
3–4 fresh instances per 100,000 people each year in, 
accounting for roughly 12 to 15% of all tumors affecting 
the brain [1]. Regrettably, the prognosis for glioblastoma 
patients is bleak, with a high recurrence rate. According 
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to the latest clinical data, individuals with untreated glio-
blastoma typically survive for approximately six months, 
whereas patients who undergo a comprehensive treat-
ment approach consisting of surgery, radiotherapy, 
temozolomide chemotherapy, and electric field therapy 
experience a median survival period of 20.9 months [2]. 
Advances in molecular oncology have yielded molecu-
lar markers that can more precisely predict glioblastoma 
outcomes and aid in clinical management.

Oxidative stress signifies a condition where oxidative 
and antioxidative activities are imbalanced in the body, 
favoring oxidation. The disparity causes an inflamma-
tory invasion by neutrophils, heightened release of pro-
tease, and a buildup of oxidative byproducts, specifically 
reactive oxygen species (ROS), resulting in both normal 
and abnormal cellular and tissue reactions. In the cancer 
setting, increased generation of reactive oxygen species 
(ROS) obstructs the ability of DNA repair mechanisms, 
leading to a buildup of DNA harm, including altera-
tions in the DNA bases, connections between strands 
and within strands, and interactions between DNA and 
proteins. Additionally, heightened levels of  H2O2 and 
 O2− contribute to enhanced cell proliferation, ultimately 
fostering the development of tumors. A wide range of 
reactive oxygen radicals includes oxygen-based radicals 
like ROS (which consist of  O2−,  OH−, and  H2O2) and 
nitrogen-based radicals known as reactive nitrogen spe-
cies (RNS, which include NO,  CO2, and  ONOO−) [3].

Glioma is closely linked to oxidative stress, mainly 
because of the brain’s high metabolism of oxygen, which 
renders the nervous system susceptible to damage caused 
by oxidation. The generation of ROS causes oxida-
tive stress, resulting in harm to DNA, which affects the 
growth and programmed cell death of glioma cells [4]. 
Based on experimental findings, like the examination of 
 H2O2-triggered apoptosis in glioma cells, it is evident 
that oxidative stress hinders development and triggers 
cell death through a caspase-3-dependent pathway [5]. 
Moreover, the involvement of ROS is essential in the 
invasion and movement of glioma cells, controlling the 
manifestation of intercellular adhesion protein-1 while 
increasing the levels of MMP-9 and MMP-13 [6]. Studies 
have demonstrated that scavengers of ROS can diminish 
the invasive and migratory abilities of malignant glioma 
cells [7]. Furthermore, ROS has the ability to promote the 
production of vascular endothelial growth factor, con-
sequently facilitating the process of glioma angiogenesis 
[8].

In our study, we employed bioinformatic methods to 
investigate ORGs in GBM, aiming to establish a prog-
nostic model and gain deeper insights into the interac-
tions between GBM and oxidative stress. This approach 
provides a foundation for inspiring early diagnosis, 

improving prognosis, and developing novel therapeutic 
targets in the treatment of glioblastoma.

Materials and methods
Data collection
A total of 169 data pairs for TCGA-Glioblastoma 
(TCGA-GBM), were obtained from TCGA (The Cancer 
Genome Atlas) accessible at [https:// portal. gdc. cancer. 
gov]. For the validation cohort, the GEO dataset GSE7696 
was downloaded, excluding patient samples lacking sur-
vival data (n = 80), along with 241 normal human samples 
from the GTEx database. Prior to analysis, patient bio-
data was prepared by normalizing expression profiles to 
transcripts per kilobase. This normalization and the sub-
sequent analyses were conducted using the R program-
ming language. For mRNA annotation and differentiation 
purposes, Gencode (version 26) GTF files were sourced 
from Ensemble, available at [http:// asia. ensem bl. org]. 
Additionally, clinical data encompassing gender, age, 
clinical stage, and survival information were retrieved 
from the TCGA data portal. Samples with a survival 
duration of less than 30 days were deemed ineligible for 
the study. The data was normalized using the R package 
‘limma’ and then subjected to variance analysis using the 
R package ‘Deseq2’.

Identification of differentially expressed genes (DEGs):
We used the R package ‘limma’ to identify DEGs in the 
normalized gene expression data of TCGA-GBM and 
normal brain tissue samples from the GTEx database. 
The R package ‘VennDiagram’ was used to identify over-
lapping ORGs between DEGs and genes related to oxi-
dative stress, where expression changes with |LogFC|> 1 
and adjusted P < 0.05 were considered significant.

GSVA enrichment analysis
Genomic Spatial Event Analysis (GSVA) is an advanced, 
non-parametric, and unsupervised technique designed 
to evaluate transcriptome-wide genomic enrichment. 
By generating integrated scores for specified genomes, 
GSVA facilitates the translation of gene-level alterations 
into pathway-level changes, thus illuminating the bio-
logical functions of the samples. In this investigation, 
genomes were sourced from the Molecular Signature 
Database (MSigDB, version 7.0). Utilizing the GSVA 
algorithm, we conducted a comprehensive scoring for 
each genome to gauge potential shifts in biological func-
tion across different samples.

GSEA enrichment analysis
The Gene Set Enrichment Analysis (GSEA) is a tech-
nique that orders genes according to the variation in 
expression between two types of samples and employs 
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predefined gene sets to determine whether these sets 
are disproportionately represented at the top or bot-
tom of the ranked list. In our study, GSEA was executed 
using the “clusterprofiler” and “enrichplot” R packages. 
The objective of this analysis was to clarify the possible 
molecular mechanisms that contribute to differences 
in prognosis among GBM patients. This was achieved 
by examining variations in signaling pathways between 
groups with high and low gene expression levels.

Construction and identification of oxidative stress‑related 
signatures
In our research, the initial step to identify genes sig-
nificantly linked to Oxidative Stress within the TCGA 
dataset involved employing univariate Cox regression 
analysis focused on ORGs. This method was instru-
mental in evaluating the predictive efficacy of ORGs 
through Cox regression analysis. Subsequently, to refine 
the gene profile associated with oxidative stress, we 
utilized LASSO and Cox regression analysis, executed 
via the Glmnet software. This approach facilitated the 
identification of overlapping genes.

For practical application, all TCGA and GEO glioma 
patients were arbitrarily divided into two cohorts: a 
training group (n = 120) and a test group (n = 119). The 
training group calculated prognostic risk scores related 
to oxidative stress and divided the patient population 
into two categories based on the median risk score. 
Kaplan-Meier analysis (KMA) was utilized to com-
pare the overall survival time between the two groups, 
a method that enabled the comparison of OS times 
across the groups.

Further, DEG-based Principal Component Analysis 
(PCA) was conducted employing a statistical software 
package to assess the multidimensional nature of the 
data. The performance of the test group regarding oxi-
dative stress for each DEG was normalized, ensuring the 
validity of the model. The test group served as a crucial 
component for model validation.

A specific formula was used to calculate the risk 
score for each individual patient based on the lev-
els of different genes. The risk score is calculated using 
the following formula: Risk Score = (0.455 × expres-
sion level of H6PD) − (0.252 × expression level of 
BMP2) + (0.161 × expressionlevel of SPP1) − (0.908 × expres-
sion level of HADHA) + (0.401 × expression level of 
SLC25A20) + (0.332 × expression level of TXNIP) + (0.587 × expres-
sion level of ACTA1) − (0.253 × expression level of 
CCND1) − (0.451 × expression level of EEF1A1). This for-
mula encapsulates a comprehensive approach to deter-
mining the risk associated with oxidative stress in glioma 
patients.

Consensus clustering analysis of differentially expressed 
ORGs
The R package ‘Consensus Clusterplus’ was utilized 
to conduct unsupervised consensus clustering analy-
sis, aiming to determine the stability and number of 
clusters. It employs consensus clustering by k-means 
method to find patterns associated with oxidative stress 
differential gene expression. To ensure that our classi-
fication was accurate, we performed 1000 replications 
to categorize patients into various molecular subtypes 
based on oxidative stress-related differential genes. 
We next applied KMA to calculate survival differences 
between parents.

Correlation of signatures, genotypes and TME associated 
with ORGs
To assess the percentage of immune cells in 23 glioma 
immune cell subpopulations, we employed CIBERSORT. 
We analyzed the level of inflammation in the tumor 
microenvironment (TME) of glioma patients by employ-
ing the single-sample gene set enrichment analysis algo-
rithm. The “ESTIMATE” software assessed immune and 
tumor purity grades.

Single nucleotide polymorphism (SNP) and copy number 
variation (CNV) analysis of mutations
Glioma SNP data was analyzed using Map Toolkit to cre-
ate a waterfall plot using the ten key genes from Sect. 2.12 
depicting mutations in the top 20 genes to explore 
changes in SNP expression between the two groups. The 
specific analysis procedure was as follows: the CNV files 
from the database were first tagged and imported into 
GenePattern software for CNV analysis, after which the 
data were visualized using Map Toolkit.

Creation and validation of nomograms and scoring 
systems
Prediction curve plots were created using “rms” software. 
Recipient Operating Characteristics (ROC) curves were 
used to evaluate the histograms over time.

Drug sensitivity analysis
The pRRophetic algorithm was employed to forecast 
drug half-maximal inhibitory concentrations  (IC50) using 
a correlated ridge regression model. The model used the 
TCGA cohort as evaluation data for expression profiles 
and the Genomics of Drug Sensitivity in Cancer (GDSC) 
cell line as training data (https:// www. cance rrxge ne. org/). 
By analyzing the correlation between mRNA expression 
and the  IC50 values of both cisplatin and other commonly 
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used drugs in the TCGA dataset, this study predicted the 
 IC50 values using spearman correlation.

Cell culture
Procell Life Science & Technology (Wuhan, China) pro-
vided U251, LN229, U87, and NHA cells, which were cul-
tured at 37 °C in DMEM, (HyClone, USA) supplemented 
with 10% FBS (Invitrogen, USA) and 5%  CO2. For the 
experimental study, cells in the logarithmic growth phase 
were chosen.

Clinical sample size collection
We acquired samples of normal brain tissue from 10 
patients diagnosed with gliomas between 2020 and 2023 
at the Fourth Hospital of Harbin Medical University. 
Furthermore, we gathered specimens from 10 patients 
who underwent surgical treatment following severe 
craniocerebral trauma. The human tissues or specimens 
used in this study were obtained from previous medical 
records and data, not specifically collected for this study, 
and were exempted from informed consent in accord-
ance with national medical ethical standards. The tis-
sues or specimens were used only for this study and not 
for other purposes, and the excess tissues or specimens 
will be returned at the end of the study, and no personal 
information about the source of the tissues or specimens 
will be disclosed as a result of the study. The study was 
approved by the Medical Ethics Committee of The Fourth 
Hospital of Harbin Medical University.

Cell transfection
The lentivirus shRNA-HADHA was procured from 
Genechem(Shanghai, China). The sequences for this 
study are as follows: HADHA-RNAi: 5′-CCT GGT GAC 
AAG ATT TGT GAA-3′, and NC-RNAi: 5′-TTC TCC 
GAA CGT GTC ACG T-3′. Cells were cultured in 6-well 
dishes with a concentration of 3–5 ×  104 cells/ml and kept 
at 37 °C for 16–24 h until the cells reached a confluence 

of 30–50%. The cells were treated with the lentivirus and 
infection enhancement solution according to the instruc-
tions provided by the manufacturer. The medium was 
replaced 16 h later to facilitate further cultivation.

Western blot analysis
After the cells were treated according to the procedure, 
the cells of each group were collected and washed twice 
with PBS, and then RIPA lysis buffer containing phos-
phatase inhibitor was added. The lysate was lysed in an 
ice water bath for 30 min. During lysis, the supernatant 
was lysed by an ultrasonic cell fragmentation apparatus, 
and the concentration was detected by the BCA method 
after centrifugation. The denatured proteins were added 
to prepared SDS‒PAGE gels at a loading amount of 
60  µg per well for electrophoresis separation, and then 
the proteins in the gels were transferred to PVDF mem-
branes. Initially, the PVDF membranes were soaked in a 
solution containing 5% skim milk powder for a duration 
of 2  h. This was then followed by an overnight incuba-
tion at a temperature of 4  °C with the primary antibod-
ies. Subsequently, they were washed thrice with 1 × PBST 
and incubated for 2 h with a secondary antibody (Beyo-
time, Shanghai, China) at room temperature. After being 
washed three times with 1 × PBST, the membranes were 
visualized using a chemiluminescence kit (Beyotime) 
that enhanced the visibility. Protein bands were analyzed 
using ImageJ software. GAPDH was applied as a refer-
ence, and the primary antibody information is shown in 
Table 1.

qRT‒PCR analysis
Cells were used to extract total RNA with TRIzol 
(Invitrogen). Then, the mRNA Reverse Transcription 
Kit (Roche) was used to synthesize cDNA, follow-
ing the provided instructions. The SYBR Green RNA 
Kit (Applied Biosystems, USA) was used to perform 
quantitative real-time PCR (qRT‒PCR), following the 

Table 1 Specific information about the primary antibody

Primary antibody Company Molecular weight Article no Dilutions (WB) Dilutions (IHC)

H6PD Santa cruz 89 kDa sc-377180 1:1000 1:200

BMP2 Santa cruz 45 kDa sc-137087 1:1000 1:100

SPP1 Santa cruz 55 kDa sc-73631 1:500 1:100

HADHA Santa cruz 83 kDa sc-374497 1:1000 1:150

SLC25A20 ABclonal 32 kDa A23763 1:1000 1:100

TXNIP Santa cruz 46 kDa sc-271237 1:1000 1:200

ACTA1 ABclonal 42 kDa A2319 1:1000 1:100

Cyclin-D1 Santa cruz 37 kDa sc-8396 1:1500 1:200

EEF1A1 Santa cruz 50 kDa sc-21758 1:1000 1:100

GAPDH Santa cruz 37 kDa sc-47724 1:1000
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manufacturer’s instructions. The PCR cycling param-
eters consisted of an initial denaturation step at a tem-
perature of 95  °C for a duration of 30 s, followed by 45 
cycles of denaturation at 95  °C for 10  s and annealing 
at 60  °C for 30  s. The specific sequences of the prim-
ers can be found in Table  2. The  2−ΔΔCq method [9] 
was utilized to quantify the levels of mRNA expression, 
with GAPDH acting as the reference gene.

Immunohistochemistry
Glioma specimens of varying grades and normal brain 
tissue underwent formalin fixation, paraffin embed-
ding, and sectioning into 4  µm slices. These sections 
were dewaxed, rehydrated, and pre-treated with citrate 
buffer for antigen retrieval, followed by endogenous 
peroxidase quenching using 3%  H2O2. To block non-
specific antigenic sites, 10% normal goat serum was 
applied. Primary antibodies, as specified in Table  1, 
were incubated overnight at 4 °C. This was followed by 
the application of a secondary antibody (goat anti-rab-
bit IgG, 1:5000, Proteintech) and staining with diamin-
obenzidine tetrahydrochloride (DAB) and hematoxylin. 
IHC images were captured and analyzed using Image J 
software to quantify protein expression levels.

Cell viability analysis
Cells were seeded in 96-well plates at a density of 
2 ×  103 cells per well using DMEM. Following various 
treatments, they were cultured for 24 and 48  h. Sub-
sequently, each well received 10  μL of CCK8 reagent 
(Glpbio, California, USA) and was incubated at 37  °C 
for 1 h. The microplate reader was used to measure the 
absorbance at 450 nm for each well.

Colony formation assay
U251 and LN229 cell suspensions were seeded in 6-well 
plates at a concentration of 1000 cells per well and cul-
tured for a duration of two weeks under different exper-
imental conditions. After the incubation period, the 
cells were rinsed using PBS, then treated with metha-
nol and finally stained with 0.1% crystal violet. Colo-
nies comprising 50 or more cells were then enumerated 
using a microscope.

Wound healing assay
1.5 ×  105 cells/ml were added to 6-well plates for cell 
seeding. Upon reaching 80–90% confluence, a wound 
was created using a 200 μL pipette tip, followed by rins-
ing with PBS and incubation in FBS-free DMEM. Cell 
migration in the wound area was photographed at 24 
and 48 h using a microscope. Wound healing was quan-
tified by measuring the reduction in wound length from 
the original size using ImageJ software.

Invasion assay
For the invasion test, the chamber inserts were cov-
ered with 40  μL of BD Matrigel (Corning, USA) and 
left to solidify at 37 °C for 1 h. Around 50,000 cells sus-
pended in 500 µL of DMEM without FBS, were added 
to the top chamber of the insert. Then, the insert was 
placed in a 24-well plate filled with 750  µL of DMEM 
supplemented with FBS. Following a 24  h period, the 
cells that passed through the insert were immobilized 
using 4% paraformaldehyde, then subjected to staining 
with 0.05% crystal violet, and finally quantified under a 
microscope.

Xenograft nude mouse model
To explore the impact of HADHA on tumor progres-
sion in vivo, we used two GBM cell lines with reduced 
HADHA expression. These cells were cultured and 
expanded for subsequent experiments. Harvest the 
tumor cells using trypsinization, neutralize the trypsin, 
and then count the cells using a hemocytometer or an 
automated cell counter. Adjust the cell concentration to 
the desired density using PBS. We then implanted these 
modified cells subcutaneously into 4 week-old BALB/c 

Table 2 Primers and probes used for qRT-PCR

Gene Sequences

H6PD F: 5′- ACC CAG GCA TGT GGA ATA TG -3′
R: 5′- GTT GCT CCC AGC AGG ATT AT -3′

BMP2 F: 5′- AGA CCT GTA TCG CAG GCA CT -3′
R: 5′- GTT TTC CCA CTC GTT TCT GG -3′

SPP1 F: 5′- CGA GGT GAT AGT GTG GTT TATGG -3′
R: 5′- GCA CCA TTC AAC TCC TCG CTTTC -3′

HADHA F: 5′- AGG GCT TCC TAG GTC GTA AA -3′
R: 5′- GCA GCT TCA GAC TCG CTA AA -3′

SLC25A20 F: 5′- CTG GGA TGT TAT CTG GCG TATT -3′
R: 5′- GGT ACC AGT GTA CTT GCT TTCT -3′

TXNIP F: 5′- CCT TCG GGT TCA GAA GAT CAG -3′
R: 5′- GGA TCC AGG AAC GCT AAC ATAG -3′

ACTA1 F: 5′- GAG GTA TCC TGA CCC TGA AGTA -3′
R: 5′- AAG CTC GTT GTA GAA GGT GTG -3′

Cyclin-D1 F: 5′- AGG CGG AGG AGA ACA AAC AGA -3′
R: 5′- GGA GGG CGG ATT GGA AAT GAA -3′

EEF1A1 F: 5′- TCA TTG ATG CCC CAG GAC AC -3′
R: 5′- TAG GAT GCA GTC CAG AGC CT -3′

GAPDH F: 5′- CTG GGC TAC ACT GAG CAC C -3′
R: 5′- AAG TGG TCG TTG AGG GCA ATG -3′
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nude mice. Inject the prepared tumor cells subcutane-
ously into the right underarm of the nude mice using 
a sterile syringe and needle. Each mouse received an 
injection of 120  µL containing 2 ×  107 exponentially 
growing cells. Monitor the mice regularly for tumor 
growth, general health, and any signs of distress. Meas-
ure the tumors with calipers and record the dimensions 
to calculate the tumor volume. Provide appropriate care 
and nutrition to the mice throughout the experiment.

The formula used to calculate tumor volume is 
V = (length/2) ×  width2. After one month of implantation, 
the mice were euthanized, and the tumors were removed, 
weighed, and captured in photographs for subsequent 
analysis. All experiments involving animals were carried 
out in accordance with a protocol that was approved by 
the Institutional Animal Care and Use Committee of The 
First Affiliated Hospital of Harbin Medical University.

Statistical analysis:
We assessed the independent predictive capability of the 
proposed model by employing a Cox regression model. 
With R4.1.0, all statistical calculations were carried out. 
Significant differences between different groups are indi-
cated *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The 
cutoff for statistical significance was P < 0.05.

Result
Identification of DEGs associated with GBM patients 
and their associated functional enrichment analysis 
compared to normal tissues
The analytical process of this study is detailed in Addi-
tional file  1: Fig.  S1. To delineate the transcriptome of 
GBM patients, we conducted a screening for differentially 
expressed genes, focusing on those with a substantial 
log fold change (|logFC|> 1) and statistical significance 
(p < 0.05) (Fig.  1A) (Additional file  1: Table  S1). This 
analysis revealed that genes such as ADCY5, DRD2, SST, 
TAC1, SNAP25, GRIN1, ATP1A3, HSPA1A, PRKCZ, 
SNCA, CAPN3, TF, HBA1, CBS, GSTM2, NDUFB9, 
ETFB, PINK1, MAPK10, SRXN1, VARS2, CPT1B, 
NDUFS7, NDUFV2, SDHA, MIF, MUTYH, COX4I1, 
ALDH2, and PRODH were underexpressed in tumor 
tissues, while AGT, EGFR, CCL2, CXCL8, PLA2G2A, 
LTF, FTL, CXCR4, HMOX1, CD44, SPP1, MSR1, CYBB, 
TREM2, JUN, EGR1, HSPA5, CALR, ANXA5, GPX1, 
GPX7, PRDX4, MMP2, ODC1, PCNA, MMP9, LOX, 
TIMP1, PLAU, and SERPINE1 showed higher expression 
in tumor tissues (Fig. 1B).

Further exploration into the functions of these GBM-
associated differential genes, via GESA, indicated that 
many of these genes were enriched in pathways related 
to cytokine receptor interactions, secretions from 
glands, regulation of coagulation mechanisms, and drug 

metabolism (Fig. 1C). Additionally, we analyzed the func-
tional aspects of both upregulated and downregulated 
genes. The findings indicated that the overexpressed 
genes were primarily enriched in interactions involving 
receptors for cytokines, lineage of hematopoietic cells, 
mechanisms of coagulation, rheumatoid arthritis, and 
interactions between proteins of viruses and receptors 
of cells. Conversely, downregulated genes were predomi-
nantly associated with bile, insulin, and salivary gland 
secretion, drug metabolism, and phosphatidylinositol 
signaling systems (Fig.  1D–F). The results indicate that 
the genes expressed in different ways might have impor-
tant functions in the growth and advancement of GBM 
by influencing diverse pathways of communication.

Determining the association between prognosis and ORGs
To further explore the mechanisms of ORGs in glioma, 
we merged the survival data of patients and identified 
40 ORGs closely related to GBM prognosis through 
univariate analysis. The analysis results show that these 
genes are associated with poorer overall survival in 
GBM patients (Fig.  2A). Through gene prognostic net-
work mapping, we discerned co-expression interactions 
among these oxidative stress-related differential genes, 
integral to GBM prognosis. These interactions seemingly 
play a role in shaping GBM’s formation and progression 
through mutual regulatory effects (Fig.  2B). Addition-
ally, our study brought to light regulatory mutations 
associated with oxidative stress, with the most frequent 
mutation found in H6PD (Fig. 2C–D). Collectively, these 
findings indicate that the expression levels of ORGs are 
intricately connected with gliomas, potentially mirroring 
a spectrum of patient characteristics.

Consensus clustering identified three relevant isoforms 
of ORGs
Using expression profiles, we delineated three ORG-asso-
ciated isoforms for optimal clustering stability at K = 3 
(Additional file  1: Fig.  S2A). Of the 241 GBM patients 
studied, 113 were categorized into subtype A, 93 into 
subtype B, and 35 into subtype C. These ORG-related 
gene subtypes were sorted into three distinct clusters. 
Heat maps display the normalized enrichment scores for 
ORGs across these subtypes (Additional file 1: Fig. S2B–
D). Glioma patients were distinctly segregated into all 
three groups as per PCA and tSNE analyses (Additional 
file  1:Fig.  S2E–G). Survival analysis indicated that each 
subgroup, demarcated by differences in ORGs, had 
diverse clinical outcomes. Subtype C patients enjoyed a 
more favorable prognosis compared to A and B, with B 
faring the worst (Fig. 3A). We discovered that the expres-
sion of these prognostic ORGs varied among the groups. 
Investigating immune correlations, ssGSEA revealed 
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Fig. 1 Identification of DEGs and functional enrichment analysis. A Screening for DEGs based on the TCGA, GEO combined GTEx cohort. B The 
expression of DEGs in the control group and glioma patients. C Enrichment analysis of GSEA in the DEGs. D-F Enrichment analysis of upregulated 
and downregulated genes
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Fig. 2 Determining the association between glioma and ORGs. A Univariate prognostic analysis of ORGs in glioblastoma. B Co-expression 
interactions between ORGs. C, D SNP and CNV analysis of mutations in ORGs
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differential immune cell distributions across the sub-
groups (Fig.  3B, C). By conducting GSVA analysis pair-
wise among the three subgroups, the results suggest that 
in the comparison of the AC subgroups, Ribosome and 
Non-homologous end joining are significantly enriched 
in the C subgroup, while Glycolysis, Apoptosis, and 
PPAR signaling pathway are significantly enriched in the 
A subgroup (Fig. 3D). In the comparison of the AB sub-
groups, Oocyte meiosis is significantly enriched in the A 
subgroup, while Apoptosis, NOD-like receptor signaling, 
and Tryptophan metabolism are significantly enriched in 
the B subgroup (Fig. 3E). The BC subgroup comparison 
analysis shows that ECM-receptor interaction, Starch and 
sucrose metabolism, and Cell adhesion molecules (cams) 
are significantly enriched in the C subtype (Fig. 3F). Fur-
thermore, GSEA analysis of the possible mechanisms 
of action between the three subgroups found that the 
Chemokine signaling pathway, Cytokine-cytokine recep-
tor interaction, and NOD-like receptor signaling pathway 

are significantly enriched in the A subgroup. The NOD-
like receptor signaling pathway and Complement and 
coagulation cascades are significantly enriched in the B 
subgroup, while the C subgroup is significantly enriched 
in Cytokine-cytokine receptor interaction and Graft ver-
sus host disease (Fig.  3G–I). The above results indicate 
that our model effectively predicts the prognosis of GBM 
patients and proposes the predictive value of oxidative 
stress-related gene subtype.

Modeling oxidative stress‑related gene signatures
We employed LASSO and Cox regression analyses to 
assess the expression profiles of 40 genes, building a pre-
dictive model. Optimal values were used to characterize 
9 critical genes. The optimal threshold linked high gene 
expression with suboptimal outcomes from previous 
analyses (Fig.  4A, B). Patients were stratified into high-
risk (n = 114) and low-risk (n = 125) groups based on 
the median critical value. High-risk patients, across the 

Fig. 3 Determining the association between glioma and ORGs. A Survival analysis of 3 subgroups. B, C ssGSEA revealed differential immune cell 
distributions across the subgroups. D–I GSEA and GSVA analysis of 3 subgroups
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Fig. 4 Construction of a prognosis model for glioblastoma associated with ORGs. A, B LASSO and Cox regression analyses. C–E Analysis of overall 
survival in low-risk and high-risk groups. F–H ROC curves were used to evaluate the histograms over time
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overall cohort and in the training and validation groups, 
exhibited a higher mortality rate than those in the low-
risk group, consistently indicating significantly lower 
overall survival for the high-risk group (Fig. 3C–E). Risk 
scores were evaluated with Receiver Operating Charac-
teristic (ROC) curves, yielding areas under the curve 
(AUC) of 0.719, 0.759, and 0.778 for 1, 3, and 5  years, 
respectively, in the overall cohort. In the training group, 
AUCs were 0.799, 0.843, and 0.989 for the same time 
intervals, while the validation group recorded AUCs of 
0.651, 0.662, and 0.727 for 1, 3, and 5 years, respectively 
(Fig.  4F, H). In summary, this paper presents a robust 
predictive model for risk classification in glioma patients, 
with consistent validation results across all cohorts, fur-
ther affirming its sensitivity as a prognostic tool.

Clinical characterization of different genetic signatures 
associated with oxidative stress in low and high risk 
populations
Afterwards, we investigated the possibility of utilizing the 
oxidative stress pattern to forecast the outcome of GBM 
individuals, evaluating its practical use in medical environ-
ments. Distinct expression patterns were observed in the 
risk scoring groups. The low-risk group showed predomi-
nant expression of BMP2, CCND1, EEF1A1, and HADHA, 
whereas the high-risk group exhibited notable expression 
of TXNIP, SPP1, SLC25A20, H6PD, and ACTA1 (Fig. 5A). 
The mulberry diagram results showed that most patients 
in group B were placed in the high-risk scoring category, 
showing lower rates of survival in comparison to group C. 
Moreover, patients in group B generally displayed higher 
risk scores than those in groups A and C, which is consist-
ent with our previous analysis findings (Fig. 5B, C). Fig. 5D, 
E are forest plots of the hazard ratio, showing the effects of 
age, gender, TMN status, and risk score on outcomes. Our 
study findings reveal significant associations between the 
high-risk group and various factors, such as higher tumor 
grade, older age, and higher risk score. These correlations 
underscore the relevance of these factors in the context 
of GBM prognosis and validate the utility of our oxidative 
stress-based prognostic model.

Tumor microenvironmental status in high and low 
risk scoring groups for oxidative stress Contemporary 
research indicates that ORGs are crucial in initiating 
specific anti-tumor immune responses. In this study, we 
compared the TME compositions of different risk groups. 
The presence and activity of immune cells in the TME 
have a profound impact on tumor development and treat-
ment responses. Different types of immune cells, such as 
T cells, B cells, macrophages, and neutrophils, can be 
classified based on their roles in anti-tumor or pro-tumor 
processes. High-risk patients typically had greater pro-
portions of monocytes, M0, M1, and M2 macrophages 

and patients in the low-risk group have a higher propor-
tion of T cells and NK cells. (Fig. 6A, B). Further, a strong 
correlation was observed between neutrophils, eosino-
phils, resident B lymphocytes, and risk score (Fig. 6C–G). 
Evidence suggests that the altered expression of these 
genes is key in triggering distinct anti-tumor responses. 
When examining the TME in groups at different risk 
levels, we observed differences in ESTIMATE immuno-
logical scores. Specifically, the high-risk group had higher 
scores compared to the low-risk group (Fig.  6H). Based 
on these findings, we can speculate that variations in 
the cellular makeup of the TME could play a significant 
role in the diversity of oxidative stress. Particularly, there 
seems to be a noteworthy correlation between the extent 
of immune cell infiltration and the different risk group. 
Classifying patients with a risk score based on the cellular 
composition and level of oxidative stress in the TME can 
help doctors develop more personalized treatment plans 
for each patient. High-risk patients may require more 
aggressive treatment methods, including immunotherapy 
and targeted therapy, while low-risk patients may benefit 
from more conservative treatment approaches.

Correlation analysis of risk scores and drug sensitivity 
analysis
To elucidate the impact of our oxidative stress-related 
predictive model on GBM medication responses, we 
delved into the correlation between risk scores and 
GBM therapeutic drugs. The analysis unveiled a pro-
nounced link between risk scores and drug efficacy. We 
highlighted certain medications like Bibr-1532, Bi-2536, 
Niraparib, Venetoclax, BMS-345541, AT13148, UMI-77, 
Tozasertib, and Dasatinib that displayed significant vari-
ations in effectiveness between high-risk and low-risk 
groups (Additional file 1: Fig. S3). These insights suggest 
that genes associated with oxidative stress could play a 
role in GBM treatment resistance and present as poten-
tial focal points for GBM drug therapy development.

Expression level of model genes in target tissues
The qRT-PCR results indicated that the mRNA lev-
els of H6PD, SPP1, SLC25A20, TXNIP, and ACTA1 in 
GBM cells were considerably greater than those in nor-
mal human astrocytes, whereas the expression of BMP2, 
HADHA, CCND1, and eEF1A1 in GBM cells was nota-
bly lower compared to normal human astrocytes. Sig-
nificantly, the Western Blot test exhibited comparable 
findings. Furthermore, our immunohistochemical find-
ings additionally demonstrated a substantial upregu-
lation of H6PD, SPP1, and ACTA1 in the GBM patient 
tissues (Fig.  7). The findings validate that HADHA and 
BMP2 exhibit significant expression levels in glioma 
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Fig. 5 Clinical characterization of different genetic signatures associated with oxidative stress in low and high risk populations. A Distribution 
of ORGs expression in low and high risk populations. B Riskscores for three subgroups. C Sankey diagram showing the prognosis of four GBM 
subtypes. D, E Univariate Cox analysis and Multivariate Cox analysis of the TGGA and GEO cohort
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Fig. 6 Tumor microenvironmental status in high and low risk scoring groups for oxidative stress. A–C Correlations between high and low-risk 
groups and 16 kinds of immune cells. D Correlations between ORGs and 16 kinds of immune cells. E–G Correlations between neutrophils, 
eosinophils, resident B lymphocytes, and risk score. H Immune, Stromal, and Estimate Scores in high and low-risk groups
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tissues, potentially playing a role in the development and 
advancement of glioma.

Knockout of HADHA led to diminished proliferation, 
migration, and invasion abilities in GBM cells and tumor 
growth in vivo
We transfected HADHA lentivirus into cells to elucidate 
its role in GBM. To verify the effectiveness of the knock-
down, PCR analyses were performed (Fig.  8A). In com-
parison to the control group, the group with HADHA 
knockdown showed a notably decreased cell count 
(Fig.  8B). A series of subsequent experiments revealed 
significant findings. The CCK8 assay indicated a sub-
stantial reduction in cell viability due to HADHA knock-
down (Fig. 8C). Wound healing assays showed a marked 
decrease in the migration ability of U251 and LN229 cells 
(Fig. 8D). Additionally, HADHA knockdown resulted in 
a notable decrease in clone cell abundance (Fig. 8E). To 
deeply assess the effect of HADHA on gliomas in  vivo, 
we chose two cell lines, LN229 and U251, and divided 
them into control groups and HADHA stable knockdown 
groups. These cells were then subcutaneously injected 
into female BALB/c nude mice to establish a xenograft 
model. As demonstrated in the figure, compared to the 
control group, the gliomas with HADHA knockdown in 
both cell lines showed significantly reduced volume and 
weight (Fig. 8F). Hence, HADHA significantly influences 
the development of gliomas, both in vivo and in vitro.

Discussion
GBM represents the most prevalent primary intracranial 
malignancy in adults. However, even with standard treat-
ment protocols, the median survival duration for GBM 
patients remains below 14 months [10]. Reactive oxygen 
species (ROS), products of oxidative stress, are pivotal 
in influencing the tumor microenvironment of gliomas 
due to their fluctuating levels. The imbalance of oxida-
tive stress functions as a trigger for the malignant char-
acteristics in clusters of glioma, setting off a sequence of 
immune-suppressing mechanisms and harmful cellular 
responses, ultimately leading to the progression of the 
disease and a grave prognosis [11]. Comprehending the 
tumor microenvironment affected by ORGs is essential 
in the creation of a clinical prognosis model, the iden-
tification of new markers, and the establishment of risk 
stratification and therapeutic targets.

In this study, we analyzed ORGs in tumor versus nor-
mal tissues. By employing univariate and LASSO regres-
sion analyses, we discovered 9 crucial ORGs. Next, a 
multivariate Cox regression analysis was utilized to cal-
culate coefficients and develop a risk model. According 
to our research, individuals classified as low-risk expe-
rienced extended survival rates in comparison to those 

categorized as high-risk. To further confirm the accu-
racy of our model, we created forest and ROC diagrams, 
in addition to calculating risk scores. The risk model’s 
efficacy was corroborated through risk heatmaps, risk 
curves, ROC curves, and survival curves, with similar 
outcomes observed in the validation set.

Within the nine pivotal genes we have discerned, 
BMP2, HADHA, CCND1, and eEF1A1 emerge as pro-
tective factors for the prognosis of GBM, while H6PD, 
SPP1, SLC25A20, TXNIP, and ACTA1 present as ele-
ments of risk. The upregulation of H6PD plays a vital 
role in the acid-driven purine metabolic reprogram-
ming, conferring a propensity towards the progression of 
gliomas [12].BMP2 exerts a significant influence on the 
advancement of gliomas; it can undermine the stability 
of HIF-1, rendering glioma stem cells more susceptible 
to temozolomide therapy. Moreover, the expression level 
of BMP2 is intimately linked to patient survival rates and 
is considered a prognostic marker for glioma [13].SPP1, 
a crucial extracellular glycoprotein, is associated with 
immunomodulation, oncogenesis, and cellular signal 
transduction [14].Additionally, elevated levels of SPP1 
in concert with CD44 correlate with increased mac-
rophage infiltration and an adverse prognosis in patients 
with neuroglioma [15].TXNIP, a multifaceted protein 
involved in cellular proliferation, differentiation, and 
apoptosis, has been shown to promote glioma cell inva-
sion, migration, and proliferation upon downregulation 
[16].CCND1, a key regulator of the cell cycle, exhibits 
increased expression with the progression and malig-
nancy of gliomas, portending unfavorable outcomes [17].
eEF1A1, a protein ubiquitous in all eukaryotic cells, is 
essential in the elongation of peptide chains during pro-
tein synthesis [18].Its presence is crucial for maintaining 
the integrity of the cytoskeleton, given its unique bind-
ing capabilities with actin, as well as its association with 
microtubule binding, disassembly, and cell division [19].
Literature on SLC25A20, ACTA1, and HADHA remains 
scant.

By employing the nine predictive genes, we compute 
a risk assessment for every individual. Patients who 
are categorized according to the median of these risk 
scores show a significant disadvantage in terms of sur-
vival among those in the high-risk category. Patients in 
all dataset cohorts, including the training and validation 
groups, who have higher risk scores, exhibit consider-
ably shorter survival durations in comparison to their 
low-risk counterparts. Moreover, we observed that the 
risk score correlates with immune cell expression. As 
the risk score increases, the quantities of T cells, B lym-
phocytes, memory cells, NK cells, and T helper cells 
decrease, whereas the levels of monocytes, M0 mac-
rophages, M1 macrophages, and M2 macrophages rise. 
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Fig. 8 The Impact of HADHA Knockout on GBM cell. A After 24 h of transfection, PCR was utilized to analyze the mRNA expression levels of HADHA. 
B Knockdown of HADHA markedly increased the invasion ability of GBM cells. C The vitality of transfected GBM cells was measured through CCK8 
assay. D The migration ability of transfected U251 and LN229 cells was measured through wound healing assay. E Knockdown of HADHA 
significantly reduced the quantity of clones in GBM cells. F The knockdown efficiency of HADHA in tumor growth in vivo ** P < 0.01
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The connection implies a suppression of both natural 
and acquired immune reactions. Despite the increase 
in macrophages in these circumstances, it could poten-
tially indicate a counteractive response to the inhibition 
of immune cells. Furthermore, it should be highlighted 
that tumor-related macrophages have been documented 
to result in unfavorable consequences in individuals with 
GBM, suggesting that the immune condition linked to an 
elevated risk score does, in fact, imply a worse prognosis 
for GBM patients [20, 21]. Although age and MGMT sta-
tus affect the overall survival of GBM patients, our risk 
score significantly improves the prognostic significance 
of the disease. Immunotherapy has emerged as the fourth 
major treatment modality for cancer, following surgery, 
radiotherapy, and chemotherapy. Our risk model, which 
demonstrates a significant association with tumor immu-
nity and mutation, indicates that immunotherapy could 
be particularly effective in GBM patients with high-risk 
scores.

Finally, we have identified several drugs correlated 
with the risk score. Dasatinib, approved by the FDA for 
use in GBM, is a central nervous system penetrant [22]. 
The use of UMI-77, a substance that inhibits Mcl-1, 
enhances the effectiveness of TRAIL therapy in glioma 
cells by increasing TRAIL-induced apoptosis. This pro-
vides a new approach for treating gliomas [23]. Although 
it exhibits a tendency to provoke resistance, Tozasertib, 
a broad-spectrum Aurora kinase blocker, efficiently trig-
gers abnormalities in cytoplasmic division and leads to 
the demise of high-grade glioma cells in both pediatric 
and adult [24].

In addition to identifying potential biomarkers in 
GBM, it is essential to subtype GBM for the improve-
ment of personalized treatment approaches. Based on 
34 ORGs, we categorized GBM patients into three GS 
subtypes. Afterwards, we assessed the prognostic sig-
nificance, genes specific to each subtype, enriched path-
ways, and immune infiltration. Our findings reveal that 
patients within the GS-C subtype have the most favora-
ble prognosis.

Our survival analyses and in vitro studies indicate that 
four of the nine pivotal genes significantly predict adverse 
overall survival. GBM tissues exhibit significant upregu-
lation of BMP2, HADHA, CCND1, and eEF1A1 mRNA 
and protein levels compared to normal tissue. The find-
ings indicate that the proteins produced by these crucial 
genes might have a potential oncogenic function in GBM. 
As a result, we selected HADHA for conducting in vitro 
experiments to determine its impact on the physiologi-
cal processes of GBM. The results of our study showed 
that the suppression of HADHA led to a decrease in the 
proliferation, invasion, and migration of GBM cells, and 

had an impact on the growth of tumors in vivo. Despite 
its insights, our study has limitations and necessitates 
further comprehensive mechanistic research and animal 
experimentation to investigate the relationship with oxi-
dative stress.

HADHA, central to mitochondrial fatty acid beta-
oxidation, plays a significant role in glioma through its 
impact on energy metabolism, cell proliferation, oxida-
tive stress, immune response, and therapeutic targeting. 
It influences glioma cell growth and tumor aggressiveness 
by supporting altered metabolic demands and affecting 
the balance of reactive oxygen species. This enzyme’s 
activity might modulate the immune microenvironment 
and response to therapy, making it a potential target 
for glioma treatment strategies. Understanding HAD-
HA’s specific roles could lead to improved therapeutic 
approaches for glioma patients.

Conclusion
The present research signifies the first creation and veri-
fication of a GBM experiment-derived model for pre-
dicting Oxidative Stress. Based on 9 crucial genes, the 
model acts as a standalone prognostic determinant for 
patients with GBM. Enhancing precision therapy tailored 
to patients’ clinical profiles and their responsiveness 
to chemotherapy and radiotherapy could be achieved 
by our understanding of the Oxidative Stress-based 
RiskScore for GBM. Furthermore, subsequent studies 
revealed that HADHA significantly influences the pro-
liferation, invasion, and migration of GBM cells, as well 
as tumor growth in  vivo. In general, these discoveries 
might encourage additional investigation into focusing 
on these genes and investigating new mechanistic path-
ways, potentially leading to the creation of new pharma-
cotherapies based on gene profiling.
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