
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wang et al. Cancer Cell International          (2024) 24:164 
https://doi.org/10.1186/s12935-024-03346-w

Introduction
Kidney Clear Cell Carcinoma (KIRC), also known as 
Renal Cell Carcinoma (RCC), is the most common pri-
mary kidney malignancy in adults. It embodies approxi-
mately 75% of all kidney cancers and proves more lethal 
than its non-clear cell counterparts [1, 2]. The heightened 
mortality rate of KIRC can be attributed to its propensity 
for metastasis and resistance to conventional chemother-
apy or radiation treatments [3].

Therapeutic and prognostic approaches to kidney can-
cer have been historically challenging due to the dis-
ease’s heterogenous nature and complexity [4]. In the 
last decade, immune checkpoint therapy, notably the 
PD-1 pathway blockade, has precipitated groundbreak-
ing advances in cancer treatment. However, responses to 
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Abstract
Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response 
to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has 
constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with 
tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this 
model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities 
to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-
PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition 
markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting 
KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.
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immunotherapies, such as PD-1 blockade, present con-
siderable variation between patients, with many exhib-
iting primary resistance or susceptibility to side effects. 
The need for novel prognostic biomarkers and therapeu-
tic strategies for KIRC is paramount to enhance survival 
rates and health outcomes [5].

Understanding the mechanisms of Programmed Cell 
Death (PCD) unlocks significant potential in developing 
novel cancer therapies [6]. Various forms of PCD exist, 
such as apoptosis, endolytic cell death, necroptosis, fer-
roptosis, reticulocyte death, autophagy-dependent cell 
death, pyroptosis, parthanatos, cuproptosis, lysosome-
dependent cell death, oxidative death, anoikis and alka-
line death. Apoptosis is a tightly regulated form of cell 
death that plays a critical role in numerous homeostatic 
and pathological processes [7]. Necroptosis is another 
regulated type of cellular demise that does not rely on 
the activation pathways of the cysteine family proteases 
[8]. Ferroptosis is yet another form of controlled cell 
death, primarily characterized by an overload of iron 
and the accumulation of lipid peroxides that are depen-
dent on reactive oxygen species (ROS) [9]. Distinguished 
by plasma membrane pores reliant on caspase-1, pyrop-
tosis leads to the release of pro-inflammatory cytokines 
and cell lysis [10]. Netotic cell death is shaped by ROS 
production mediated by NADPH oxidase and histone 
glutamylation [11]. A process termed Entotic cell death 
entails one cell enveloping and killing another [12]. Lyso-
some-dependent cell death is a form of PCD mediated by 
hydrolases such as cathepsin or iron discharge through 
lysosomal membrane permeabilization (LMP) and is 
identified by lysosomal rupture [13]. Parthanatos, also 
known as PARP-1-dependent cell death, is an innovative 
form of PCD premised on DNA damage and the activa-
tion of PARP-1 [14]. The autophagy-dependent cell death 
is characterized by cytoplasmic vacuolization, autopha-
gosome formation, and the removal of materials via 
lysosomes [15]. Oxeiptosis, a new form of PCD, is trig-
gered by oxygen radicals, independent of caspases, and 
propelled by the KEAP1-PGAM5-AIFM1 pathway [16]. 
Alkaliptosis, another novel form of PCD, is driven by the 
internal alkalinization of cells [17]. Cuproptosis is a cop-
per-dependent, controlled form of cell death [18]. Anoi-
kis refers to a process in which normal adherent cells 
undergo cell death due to a lack of attachment, colloqui-
ally known as ‘homelessness’, if they remain suspended 
for an extended period [19]. Each determining the immu-
nological response to cell death, hence rendering specific 
cell deaths as either “immunogenic” or “non-immuno-
genic”. Decoding the mechanisms and implications of 
diverse cell death modalities could provide substantial 
insights into cancer immunology, immunotherapy, and 
drug development.

This study rigorously examined the differential expres-
sion of thirteen types of PCD genes in KIRC. We also pio-
neered a prognostic model for KIRC patients grounded 
on PCDs (PCD signature) features and assessed their 
relevance to KIRC’s clinical features. Our focus extended 
to the capacity of PCDs to reflect the tumor immune 
microenvironment and their prospective applicability 
in predicting prognosis and response to PD-1 blockade 
in KIRC patients. The findings from our study have the 
potential to augment the efficacy of immunotherapy and 
expedite the development of innovative therapeutic strat-
egies for KIRC.

Methods
Data collection
PCD genes encompass crucial regulatory elements for 
the 13 aforementioned PCD modalities. These genes 
were sourced from GSEA gene sets, KEGG, and articles 
[8]. Among them, a significant number of genes are asso-
ciated with each distinct cell death mode. Apoptosis is 
related to 161 genes, Pyroptosis has 27 associated genes, 
and Ferroptosis is linked to 64 genes. Autophagy, with 
a relation to 238 genes, and Necroptosis, with 96 genes. 
Anoikis and Phagocytosis are associated with 35 and 
237 genes, respectively. Moreover, Cuproptosis relates 
to 14 genes, Parthanatos to 9 genes, Entotic cell death 
to 15 genes, and Netotic cell death to 8 genes. Alkalip-
tosis, Oxeiptosis, and lysosome-dependent cell death are 
related to 7, 5, and 170 genes, respectively (Supplemen-
tary Table 1).

Sample collection and data preprocessing
Data of KIRC patients were downloaded from The Can-
cer Genome Atlas (TCGA) database. After exclud-
ing samples without adequate survival information, a 
total of 528 KIRC patients were analyzed in this study. 
Additionally, data of 101 KIRC and 181 KIRC patients 
were used as external validation cohorts obtained from 
E-MTAB-1980 [20] and Braun 2020 [21] datasets respec-
tively. GSE14994, GSE36895, GSE40435, GSE46699, 
GSE53757, and GSE66272 were retrieved from the 
Gene Expression Omnibus (GEO) database. GSE14994 
included 59 KIRC tissue samples and 11 adjacent non-
tumor tissues. GSE36895 comprised of 29 KIRC tissue 
samples and 23 adjacent non-tumor tissues. GSE40435 
was composed of 101 KIRC tissue samples and 101 cor-
respondent adjacent non-tumor tissues. Moreover, 
GSE46699 contained 67 samples of KIRC tissues, along 
with 63 samples of adjacent non-tumor tissues. Similarly, 
GSE53757 boasted 72 samples of KIRC tissues and 72 of 
adjacent non-tumor tissues. Lastly, GSE66272 accom-
modated 27 samples of KIRC tissues and 27 samples of 
the adjacent non-tumor tissues. Normalization and pre-
processing of microarray data were performed using the 
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Robust Multi-array Average (RMA) method within the 
Affy package in R.

Differentially expressed gene analysis
The expression levels of genes related to programmed cell 
death were analyzed in KIRC and normal tissues using 
R package “limma”. Based on the criteria of |log2FC| ≥ 
0.585 and adjusted p-value < 0.05, differentially expressed 
genes were then selected for downstream analyses.

Functional enrichment analysis
To investigate the potential biological processes and 
pathways that these differentially expressed genes might 
involve, KEGG and Hallmark pathway enrichment analy-
ses were conducted. Adjusted p-value < 0.05 was used as 
a cutoff for significant pathways or processes.

Gene mutation analysis
The GSCA database (https://guolab.wchscu.cn/
GSCA/#/) is a cancer genomics portal for gene set cancer 
analysis. In the study, it was used to analyze the relation-
ship between programmed cell death genes expression 
and single nucleotide variation (SNV) in KIRC.

Univariate and multivariate Cox analysis
The univariate Cox regression model was used to evaluate 
the association between each gene and overall survival to 
screen the survival-associated genes. The Cox propor-
tional hazards model was constructed based on these 
survival-associated genes by LASSO regression analy-
sis using R package “glmnet”. Both univariate and multi-
variate Cox regression analyses were done to explore the 
prognostic value of genes and clinical features.

Construction and validation of the prognostic model
The prognostic risk score was calculated for each patient 
according to the expression level and LASSO coeffi-
cient values of the contributing genes of the model. The 
patients in the TCGA-KIRC cohort were stratified into 
high- and low-risk groups using the median risk score as 
the cut-off. The prognostic performance of the model was 
evaluated by plotting survival curves with the log-rank 
test and ROC curves. The external validation cohorts 
were also used to validate the robustness of the prognos-
tic model.

Subgroup clustering and analysis
Based on the contributing genes of the prognostic model, 
consensus clustering was performed using the R package 
“ConsensusClusterPlus” to subdivide the KIRC patients 
into different clusters [22]. Kaplan-Meier survival analy-
sis was used to assess the survival difference between the 
different clusters.

Immune infiltration analysis
To estimate the immune infiltration in KIRC, we 
employed the ESTIMATE, CIBERSORT [23], and XCELL 
[24]algorithm. We analyzed the correlation between 
PCDs and immune cells.

Nomogram construction and validation
The nomogram was built with the rms package based on 
multivariate Cox regression analysis results. The confu-
sion matrix and the area under the ROC curve (AUC) 
were applied to evaluate the predictive efficiency of the 
nomogram. The nomogram performance was deter-
mined by performing a bootstrapping validation with 
1000 bootstrap resamples.

Acquisition of cell lines and culturing and transfection 
processes
The KIRC cell lines 786-O and ACHN were obtained 
from the American Type Culture Collection (ATCC, 
Manassas, VA, USA). The 786-O cultures were nurtured 
in PRMI 1640, and ACHN cell lines in DMEM (Gibco 
by Life Technologies, Grand Island, NY, USA), supple-
mented with 10% FBS (BI, Kibbutz Beit Haemek, Israel) 
and grown in a humidified incubator at 37°C supplying 
5% CO2. The shRNA1 and shRNA2 sequences aimed at 
TOP2A were cloned respectively into pLVX vectors. The 
sequences included; TOP2A shRNA-1, 5’-​G​C​T​C​C​A​A​A​
T​C​A​A​T​A​T​G​T​G​A​T​T-3’; TOP2A shRNA-2, 5’​G​C​C​T​G​A​
T​T​T​G​T​C​T​A​A​G​T​T​T​A​A-3’. Transfection was performed 
employing the PEI transfection kit (Invitrogen) as per the 
guidelines provided by the manufacturer.

Cell counting kit-8 assay
Cell proliferation was assessed employing a Cell Count-
ing Kit-8 (CCK-8) assay. Both the ACHN and 786-O 
cultures were converted to cell suspensions and densi-
fied to 1 × 104 cells/ml. The cell suspensions were added 
into four 96-well plates (2 × 103 cells well) and incubated 
at 37 °C with 5% CO2. After predefined durations of 24, 
48, and 72 h, CCK-8 solution (10 µl) was added an hour 
before recording the absorbance. The absorbance was 
subsequently read at 450 nm with a microplate reader.

Scratch-based assay
ACHN and 786-O cultures post-transfection were inocu-
lated on six-well plates (1 × 106 cells/well). To negate the 
impacts of cell vitality, cultures were serum-starved. A 
scratch was introduced in the monolayer, with a 10-µl 
pipette tip at approximately 90% of cell convergence. 
PBS was used to wash off detached cells and the wound 
closure was evaluated with an inverted microscope at 0 
and 48 h. ImageJ software was employed to compute the 
migration area.

https://guolab.wchscu.cn/GSCA/#/
https://guolab.wchscu.cn/GSCA/#/
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Transwell analysis
Cell invasion was examined using polycarbonate mem-
brane Transwell inserts (Costar; Corning Inc.). Post 
48  h of transfection, cells were introduced to the upper 
chamber (2 × 104 cells/well) along with 200 µl serum-free 
medium. The upper chamber was subsequently incu-
bated for 24 h in a 24-well plate chamber supplied with 
200 µl complete medium with 10% FBS.

RT-PCR analysis
Total RNA was extracted using TRIzol. This RNA was 
reverse transcribed using an mRNA Reverse Transcrip-
tion Kit (Takara, Japan). SYBR Green Kit (Vazyme, 
China) was used for an RT-PCR experiment. The primer 
sequences were: TOP2A forward primer 5’-​T​A​A​T​C​A​G​G​
C​T​C​G​C​T​T​T​A​T​C​T​T-3’, TOP2A reverse primer 5’-​T​C​C​
G​A​A​T​C​A​T​A​T​C​C​C​C​C​T​C​T-3’; GAPDH forward primer 
5’-​G​G​A​A​G​G​A​C​T​C​A​T​G​A​C​C​A​C​A​G​T​C​C-3’; GAPDH 
reverse primer 5’-​T​C​G​C​T​G​T​T​G​A​A​G​T​C​A​G​A​G​G​A​G​
A​C​C-3’. GAPDH was used as the control. The 2−△△CT 
method was used to determine gene expression levels.

Zebrafish xenograft methodology
Zebrafish were obtained from Fuzhou Bio-Service Bio-
technology Co. Ltd. in Fuzhou, China. The ACHN cells 
underwent labeling with a red-fluorescent lipophilic 
membrane dye at 5 µM concentration. They were trans-
planted into zebrafish larvae utilizing a microinjector. 
Approximately 200 cells were injected into each speci-
men, with each group consisting of ten zebrafish larvae. 
To evaluate tumor cell proliferation within the zebraf-
ish, fluorescent images of each group’s ten specimens 
were captured at two separate time points: 2 h and 48 h 
after xenotransplantation. Tail fluorescence images were 
captured at 2 h and again at 24 h post-transplantation to 
monitor and evaluate distant metastatic activity.

Statistical analysis
Survival differences between high-risk and low-risk 
patient groups were tested using a log-rank test. Multiple 
Cox regression analyses were used to test the indepen-
dence of the risk score.

Results
Variation of programmed cell death genes (PCD) in KIRC 
patients
Firstly, we analyzed the expression of thirteen types of 
programmed cell death genes in kidney clear cell carci-
noma. Based on the TCGA-KIRC cohort, we identified 
519 differentially expressed genes (Fig.  1A; Supplemen-
tary Table 2). Compared to adjacent normal tissue, there 
were 299 genes with significantly upregulated expres-
sion and 220 with significantly downregulated expression 
in KIRC tissues (Fig. 1B). KEGG and Hallmark pathway 

enrichment analysis indicated that these differential 
genes were mainly enriched in pathways such as Apopto-
sis, Inflammatory response, interferon gamma response, 
lysosome, necroptosis, and tuberculosis (Fig.  1C&D). 
Using TCGA-KIRC cohort, we assessed the mutations 
of programmed cell death genes in KIRC patients. The 
results showed that 294 KIRC patients had mutations in 
programmed cell death genes, with MTOR having the 
highest mutation frequency at 11%, and the mutation fre-
quencies of nine other genes ranged between 2 and 5% 
(Fig. 1E&F).

Construction and validation of a prognostic model for KIRC 
patients based on PCD features
Univariate Cox regression analysis was used to screen 
for survival-related programmed cell death genes. In the 
TCGA-KIRC cohort, a total of 297 genes were associated 
with the prognosis of KIRC patients (Fig. 2A; Supplemen-
tary Table 3); in the E-MTAB-1980 cohort, there were 
142 prognostically relevant genes (Fig.  2B; Supplemen-
tary Table 3); and in the Braun-2020 cohort, there were 
57 prognostically relevant genes (Fig. 2C; Supplementary 
Table 3). Venn diagram analysis showed an intersection 
of 20 genes across these three cohorts (Fig. 2D). Subse-
quently, we used the TCGA-KIRC cohort as a testing set 
and utilized LASSO analysis to construct a PCD based on 
the expression of these 20 genes. The model performed 
best with 7 genes (Fig. 2E), the regression coefficients of 
these genes are shown in Fig.  2F. The prognostic model 
PCDs (programmed cell death genes signature) is for-
mulated as (0.0026 * expression of CDC25B) + (-0.0036 * 
expression of KDR) + (-0.0029 * expression of RNF152) + 
(-0.0331 * expression of SPATA18) + (0.0225 * expression 
of TCIRG1) + (0.0001 * expression of TIMP1) + (0.0418 * 
expression of TOP2A) (Fig. 2F). Figure 2G demonstrates 
the PCDs, survival status, and expression levels of the 
seven programmed cell death genes in the training set of 
the TCGA-KIRC cohort. Next, we compared the over-
all survival rate of KIRC patients with different PCDs 
values. Results indicated that patients with High-PCDs 
subtype had shorter survival rates than those with Low-
PCDs subtype (Fig.  2J; Supplementary Table 4). Then, 
we used E-MTAB-1980 and Braun-2020 as validation 
cohorts (Supplementary Table 4). Based on the median 
PCDs of the validation cohorts, 101 KIRC patients from 
the E-MTAB-1980 cohort and 311 KIRC patients from 
the Braun-2020 cohort were divided into two groups. 
Figure 2H&I show the PCDs, survival status, and expres-
sion levels of the seven programmed cell death genes 
in the validation cohorts of E-MTAB-1980 and Braun-
2020, respectively. Kaplan-Meier analysis indicated that 
patients in the high PCDs group had shorter overall sur-
vival and higher mortality rates (Fig.  2K&L).Moreover, 
the ROC curves for PCDs at 1, 2, and 3 years stood at 
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0.78, 0.75, and 0.74 respectively in TCGA cohort (Supple-
mentary Fig. 1).

Unsupervised clustering analysis of PCDs
To explore unidentified KIRC subtypes, we performed 
unsupervised clustering analysis with seven pro-
grammed cell death genes. We discovered that when 
k = 2, the distinction between subgroups was most sig-
nificant, suggesting that the 528 KIRC patients could 
be well categorized into two classes (Supplementary 
Fig. 2A&B). There was a significant difference in survival 
time between the two subtypes (Supplementary Fig. 2C). 
The C2 subtype was associated with a favorable progno-
sis, while the C1 subtype was linked to a poor progno-
sis. Similar results were also found in the E-MTAB-1980 

cohort (Supplementary Fig.  2E-G) and the Braun-2020 
cohort (Supplementary Fig. 2I-K). Moreover, Sankey dia-
grams illustrated that the majority of the C1 subtype was 
associated with high PCDs, while the majority of the C2 
subtype was associated with low PCDs (Supplementary 
Fig. 2D&H&L).

Correlation between PCDs and higher tumor grade and cell 
cycle progression
Subsequently, we evaluated the relevance of PCDs with 
clinical characteristics of KIRC. Among the seven pro-
grammed cell death genes, except for TIMP1 which is 
located on the X chromosome, the remaining six genes 
were found on autosomes (Fig.  3A). Figure  3B-D pres-
ent the expression correlation analysis of these seven 

Fig. 1  Variant landscape of PCD genes in KIRC patients. (A) Heatmap and (B) Volcano plot showing differentially expressed PCD genes. Results of (C) 
Hallmark and (D) KEGG enrichment analyses for the differentially expressed genes. (E) An oncoplot of PCD-related genes in the TCGA cohort
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genes. Utilizing the TCGA-KIRC cohort, we observed an 
increasing trend in PCDs values with progression in stage 
(Fig. 3E). A similar pattern was also discerned across dif-
ferent T stages (Fig.  3F). Significantly higher PCDs val-
ues were noted in patients with M1 and N1 compared 
to those with M0 and N0 (Fig. 4G & H), and the PCDs 
values were elevated in patients with tumor recurrence 
compared to those without (Fig. 3I). KIRC patients who 
were alive exhibited significantly lower PCDs compared 
to those who had deceased (Fig.  3J). In addition, we 
investigated the mutational landscape in patients with 
different PCDs groupings, revealing that VHL, PBRM1, 
and TTN were among the top three mutated genes in 
both groups (Fig. 3K). To elucidate the potential mecha-
nisms by which PCDs contribute to KIRC progression, 
we performed GSVA analysis on data from TCGA-KIRC, 
E-MTAB-1980, and Braun-2020 cohorts. Figure 4L illus-
trates the correlations between PCDs and signaling path-
ways in the three cohorts, with the G2M Checkpoint 
signaling pathway exhibiting high relevance across all 
(Fig.  3L). The relationship between PCDs and the G2M 

Checkpoint signaling pathway across the three cohorts is 
depicted in Fig. 3M-O. Consequently, KIRC with a High-
PCDs subtype is characterized by an upregulated cell 
cycle process, which may lead to excessive proliferation 
of tumor cells and adverse outcomes.

Immune landscape between low-PCDs and high-PCDS 
subtypes
To assess whether PCDs can reflect the tumor immune 
microenvironment, we estimated the infiltration of 
immune cells in KIRC using three independent algo-
rithms: ESTIMATE, CIBERSORT, and XCELL. Immune 
score results indicated more extensive infiltration of 
immune cells within the High-PCDs subtype. More-
over, this subtype contained higher levels of immuno-
suppressive cells (Follicular helper T cells, Regulatory T 
cells (Tregs), Macrophages) (Fig. 4A). By comparing the 
results from XCEL and CIBERSORT, both Tregs and 
Macrophages were significantly upregulated in the High-
PCDs subtype (Fig. 4B-C), suggesting the presence of an 
immunosuppressive phenotype within these tumors.

Fig. 2  Construction of a prognostic model for KIRC patients based on PCD genes. Univariate survival analysis of differentially expressed PCD genes in (A) 
TCGA, (B) E-MTAB-1980, (C) Braun-2020 cohorts. (D) Venn diagram showing the intersection among the three cohorts. (E & F) LASSO Cox regression to 
construct a prognostic model for KIRC patients. (G-I) Expression levels of PCDs, survival status, and seven genes in the three KIRC cohorts; (J-L) Impact of 
PCDs on OS of patients in the three KIRC cohorts
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Fig. 3  Analysis of the clinical correlation of PCDs with KIRC patients.(A)The chromosomal location distribution of 7 genes. the expression correlation 
analysis of 7 genes in the (B) TCGA, (C) Braun-2020, and (D) E-MTAB-1980 cohorts. (E) Differences in PCDs values across different stages. (F) Differences 
in PCDs values across different T classifications. (G) Differences in PCDs values across different M classifications. (H) Differences in PCDs values across dif-
ferent N classifications; (I) Differences in PCDs values between recurrent and non-recurrent patients. (J) Differences in PCDs values between living and 
deceased patients. (K) Gene mutation analysis in the High-PCDs and Low-PCDs subgroups. (L) Correlation analysis of PCDs with the Hallmark signaling 
pathways. Correlation analysis of PCDs with the G2M checkpoint in the (M) TCGA, (N) Braun-2020, and (O) E-MTAB-1980 cohorts. *, p < 0.05; ***, p < 0.001
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To further validate the immunosuppressive phenotype, 
we studied the immune molecules negatively regulating 
anti-tumor immune responses. Results indicated that 
genes involved in the negative regulation of the cancer-
immunity cycle were generally upregulated in patients 
with the High-PCDs subtype, suggesting lower activ-
ity of the anti-tumor immune process in these patients 
(Fig.  4D). We compared common immune checkpoints 
such as PD-L1, CTLA-4, and LAG3 between the two sub-
types. Findings showed that PD-L1, CTLA-4, and LAG3 

were significantly overexpressed in High-PCDs subtype 
patients compared to Low-PCDs (Fig.  4E). Chemokines 
involved in immunosuppression induced by Macro-
phages and Tregs, such as IL-4, IL-10, TGF-β, were also 
significantly upregulated in the high-risk group (Fig. 4F). 
Finally, we explored the expression of model genes in 
KIRC patients using single-cell RNA transcriptome data 
(GSE171306) (Fig.  4G). Dot plots demonstrated wide-
spread expression of most model genes across different 
cell types (Fig. 4H).

Fig. 4  Relationship between PCDs and the Immune Microenvironment. (A) Results of estimated scores and differential immune cell infiltration between 
High-PCDs and Low-PCDs subgroups in TCGA, assessed by CIBERSORT and ESTIMATE. In TCGA, the relative cell abundances of macrophages and Tregs 
between the two groups are calculated using (B) XCELL and (C) CIBERSORT. (D) Differentially expressed genes profile involved in the negative regulation 
of the Cancer-Immunity Cycle between High-PCDs and Low-PCDs subgroups. (E) Expression of common immune checkpoints between High-PCDs and 
Low-PCDs subgroups. (F) Expression of immunosuppressive cytokines between High-PCDs and Low-PCDs subgroups. (G) t-SNE plot visualization of all 
cell subtypes from KIRC patients in the GSE171306 cohort. (H) Bubble plot depicting the expression of model genes across different cell subtypes. ns, 
p > 0.05; *, p < 0.05; ***, p < 0.001
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Low-PCDs subtype correlated with enhanced response to 
anti-PD-1 immunotherapy in patients
Given the correlation between PCDs and immune activ-
ity in KIRC, we sought to examine if there was an asso-
ciation between PCDs and response to immunotherapy. 
The Braun 2020 cohort included 181 KIRC patients 
treated with anti-PD-1 therapy. Survival analysis revealed 
that the High-PCDs subtype was associated with poorer 
overall survival (OS) (at 6 months, p < 0.001; at 12 
months, p < 0.001; Fig. 5A). Considering that the clinical 
effects of immunotherapy can be delayed, we compared 
the OS rates three months post-treatment and found the 
High-PCDs subtype similarly correlated with poorer OS 
(Fig. 5B). On the other hand, a similar analysis in the Mel-
anoma-GSE91061 cohort, consisting of 101 melanoma 
patients undergoing PD-1 blockade treatment, indicated 
that the High-PCDs subtype was associated with worse 
OS in melanoma patients (Fig. 5C-D). These findings sug-
gest that PCDs have the potential to predict the response 
to immunotherapy across various malignancies, with 
patients in the Low-PCDs subtype more likely to benefit 

from immunotherapeutic interventions, and vice versa. 
PCDs could serve as a promising prognostic marker for 
the immunotherapeutic response in KIRC patients.

Nomogram based on PCDs for predicting OS
Subsequently, univariate and multivariate Cox regres-
sion analyses were conducted to determine if PCDs could 
act as an independent prognostic factor. Univariate Cox 
regression analysis showed that PCDs were considered 
a risk factor (HR = 3.53, 95% CI: 2.78–4.47, Fig. 6A). The 
results of a multivariate analysis, adjusted for other con-
founding factors, still designated PCDs as an indepen-
dent prognostic factor for patients with KIRC (HR = 2.79, 
95% CI: 2.15–3.63, Fig.  6B). A nomogram model was 
established using multivariate Cox and stepwise regres-
sion analyses to estimate the survival at 1, 3, and 5 years, 
incorporating age, stage, and PCDs (Fig. 6C). Calibration 
curves demonstrated the accuracy of this model in pre-
dicting the 1, 3, and 5-year survival rates (Fig. 6D). Sig-
nificant survival differences across different subgroups 
were observed based on nomogram scores (Fig. 6E). The 

Fig. 5  Kaplan-Meier estimator displaying the overall survival curves for High-PCDs and Low-PCDs subgroups, with two non-proportional hazards sta-
tistical methods utilized to compare the prognosis of different PCDs. The restricted mean survival (RMS) time difference at six months and one-year 
post-treatment were compared in (A) Braun-2020-anti-PDL1 cohort and (B) Melanoma-GSE91061-anti-PDL1 cohort. The first three months following 
immunotherapy were considered to have a delayed clinical effect, hence the long-term survival post three months of treatment was compared using 
Chi-square (Qua) approach in (C) Braun-2020-anti-PDL1 cohort and (D) Melanoma-GSE91061-anti-PDL1 cohort
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ROC analysis suggested the nomogram provided high 
accuracy in predicting 1-year, 3-year, and 5-year survival 
in KIRC patients (Fig. 6F).

TOP2A is associated with proliferation and metastasis in 
KIRC cells
Next, we assessed the diagnostic utility of these 7 PCD 
genes between KIRC tissues and adjacent non-tumor 
tissues, with ROC analysis showing that TOP2A had 
the highest AUC value (Fig.  7A). In the GSE14994, 
GSE36895, GSE40435, GSE46699, GSE53757, GSE66272, 
and TCGA cohorts, TOP2A expression was significantly 
elevated in KIRC compared to adjacent non-tumor tis-
sues (Fig.  7B-H). TOP2A was associated with higher 
tumor grade and advanced pathological stage (Fig.  7I-
K). High TOP2A expression was associated with worse 
overall survival (OS) and disease-free survival (DFS) in 
patients with KIRC (Fig. 7L-O).

To investigate the impact of TOP2A on the functional 
behavior of KIRC cells, we silenced TOP2A in 786-O 
and ACHN cells (Fig.  8A-B). Results from CCK8 assays 

indicated that knockdown of TOP2A significantly inhib-
ited the proliferation of 786-O and ACHN cells (Fig. 8C-
D). Wound healing and invasion assays demonstrated 
that TOP2A knockdown significantly repressed the 
migration and invasion abilities of 786-O and ACHN cells 
(Fig. 8E-H). Moreover, we further analyzed the effects of 
TOP2A knockdown on in vivo proliferation and meta-
static capabilities of ACHN cells using a zebrafish model. 
The results suggested that knockdown of TOP2A signifi-
cantly inhibited the in vivo proliferation and metastasis 
of ACHN cells (Fig. 8I & J).

Discussion
The pivotal significance of Programmed Cell Death 
(PCD) in biological fundamentals has been steadily sub-
stantiated by mounting evidence [25, 26]. PCD has been 
confirmed to be associated with the incidence and metas-
tasis of malignant tumors [27, 28]. Recent research reveals 
that PCD characteristics manifest a robust predictive 
capacity in triple-negative breast cancer, and hold poten-
tial for assessing tumor immune microenvironments and 

Fig. 6  Establishment and assessment of the nomogram survival model. (A) Univariate analysis for the clinicopathologic characteristics and PCDs in 
TCGA cohort. (B) Multivariate analysis for the clinicopathologic characteristics and PCDs in TCGA cohort. (C) A nomogram was established to predict 
the prognosis of Kidney Renal Clear Cell Carcinoma (KIRC) patients. (D) Calibration plots showing the probability of 1-, 3-, and 5-year overall survival in 
TCGA cohort. (E) Kaplan-Meier analyses for the two KIRC groups based on the nomogram score. (G) Receiver operator characteristic (ROC) analysis of the 
nomogram in TCGA cohort
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responsiveness to adjunct chemotherapy [8]. Two stud-
ies have already explored the relationship between PCD 
and KIRC. Our research shares some similarities with 
previous publications but also elucidates the unique con-
tribution of our study.We utilized a comprehensive and 
rigorous approach in constructing our prognostic model 
by integrating three independent renal cancer datasets 
for univariate survival analysis, followed by an intersec-
tion for LASSO Cox regression analysis. This method 
contrasts with the studies by Zhang, Xi, et al. [29]., and 
Wu, Zhengqi, et al. [30]., where only TCGA data were 
leveraged, and in Zhang et al.‘s case, single-cell data inter-
section may have limited the gene selection. Our model’s 
superior accuracy is substantiated by the ROC curve 
AUC values, which outperform those reported in the 
aforementioned studies. These findings underscore the 
robustness of our prognostic mode.

Within our investigation, we designed a signature that 
comprises seven PCD genes (CDC25B, KDR, RNF152, 
SPATA18, TCIRG1, TIMP1, and TOP2A) and unveiled 
its predictive prowess regarding the survival rate of KIRC 
patients. CDC25B is a critical member of the CDC25 
gene family, playing an indispensable role in cell cycle 
progression. Recent research has showcased an overex-
pression of the CDC25B gene in a spectrum of human 
cancers, including breast cancer, nasopharyngeal carci-
noma, and hepatocellular carcinoma. This overexpression 
has been linked to poorer survival rates and is implicated 
in the progression of KIRC [31]. KDR, a pivotal receptor 
in both vasculogenesis and angiogenesis, processes that 

are crucial for tumor growth and progression, has been 
found to exhibit increased expression that correlates with 
a poor prognosis in renal cell carcinoma [32]. RNF152 
is part of the RNF protein family, is known to undergo 
polyubiquitination via its RING finger domain. It has 
been reported to inhibit the growth of colorectal cancer 
cells [33]. The SPATA18 gene codes for a protein with the 
ability to induce lysosome-like organelles within mito-
chondria. Notably, a higher expression rate of SPATA18 
in KIRC has been linked to a more favorable prognosis 
[34]. TCIRG1, a gene crucial for cellular life functions 
through its acidification dependency, acts as a promoter 
for tumor growth by influencing aerobic glycolysis and 
the tumor immune microenvironment in KIRC [35]. 
TIMP1, or Tissue Inhibitor of Metalloproteinases 1, is an 
inhibitor of the matrix metalloproteinases. Interestingly, 
TIMP1 contributes to an immunosuppressive microenvi-
ronment by regulating anoikis, thereby propping up the 
progression of KIRC [36]. TOP2A acts as a key catalytic 
enzyme triggering DNA replication. Significant over-
expression of the TOP2A gene has been noted across a 
range of human cancers [37].

Indications suggest that tumors classified under the 
High-PCDs subtype exhibit a more aggressive biological 
demeanor, owing to their pronounced association with 
higher tumor grades and advanced stages of pathology. 
Additionally, tumors in the High-PCDs subtype have 
an immune suppressive phenotype, with an infiltra-
tion of more Tregs and tumor-associated macrophages 
(TAM), accompanied by an overexpression of genes 

Fig. 7  TOP2A is overexpressed in KIRC and associated with poor prognosis. (A) Area under the curve (AUC) analysis of seven genes distinguishing KIRC 
tissue from adjacent non-cancerous tissue; Expression of TOP2A in KIRC tissue and adjacent non-cancerous tissue in (B) GSE14994, (C) GSE36895, (D) 
GSE40435, (E) GSE46699, (F) GSE53757, (G) GSE66272, (H) TCGA cohort. (I) Expression analysis of the TOP2A gene at different stages in the TCGA cohort. 
(J) Expression analysis of the TOP2A gene in different grades in the TCGA cohort. (K) Expression analysis of the TOP2A gene in different grades in the E-
MTAB-1980 cohort. OS analysis of TOP2A in (L) TCGA, (M) Braun-2020, and (N) E-MTAB-1980 cohorts. (O) Disease-free survival (DFS) analysis of TOP2A in 
TCGA cohort. ***, p < 0.001
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that negatively regulate the anti-tumor immune process. 
Concurrently, we discovered that tumors under the Low-
PCDs subtype have an enhanced response to anti-PD-1 
drugs.

Tumor cells are permitted to thrive as the tumor 
microenvironment provides sanctuary against immune 
detection and drug intervention. Our research unveils 
the relationship between PCDs and immune microenvi-
ronment. Both Tregs and TAMs are more infiltrated in 

Fig. 8  TOP2A promotes proliferation and metastasis of KIRC cells. RT-PCR detection of TOP2A expression in (A) 786-O and (B) ACHN cells after knockdown 
of TOP2A. CCK8 assay to measure changes in proliferation ability after knockdown of TOP2A in (C) 786-O and (D) ACHN cells. Effect of TOP2A knockdown 
on (E) migration and (G) invasion ability of 786-O cells. Effect of TOP2A knockdown on (F) migration and (H) invasion ability of ACHN cells. Impact of TO 
P2A knockdown on (I) proliferation and (J) metastasis of ACHN cells in zebrafish. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001
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High-PCDs subtype tumors. Tregs, uniquely character-
ized by FOXP3 expression [38], can suppress immune 
activation through the secretion of immune repressive 
cytokines or expression of co-suppressive molecules. 
Whereas the TAMs, exemplifying M2 polarization, rep-
resent the most populous subgroup of white blood cells 
within cancer, molded by chemokines that impede anti-
tumor immunity [39–41]. Employing both CIBERSORT 
and XCELL for our analysis revealed heightened levels of 
Tregs and TAMs under the High-PCDs subtype. These 
findings pave the way towards a refined understanding 
of PCD patterns’ influence on immune responses, and 
in turn, may greatly aid the creation of more effective 
immunotherapy methods, such as combining PCD-tar-
geting drugs with immune-checkpoint inhibitors.

Despite the global scale of immunotherapeutic clinical 
trials currently in progress, propelling the usage of ICIs 
in KIRC, the remission rate (5-12.5% for CTLA-4 inhibi-
tors and 20–27% for PD-1 inhibitors) remains relatively 
low compared to other solid tumors. This is despite prior 
studies indicating benefits to KIRC patients upon inhi-
bition of immune checkpoints like CTLA-4 and PD-1/
PD-L1 [2].

The role of PD-L1 as a biomarker for predicting the ICI 
response in major malignant tumors, including KIRC, is 
a disputed topic. The outcome of the CHEKMATE-025 
trial of treating refractory mRCC with Nivolumab and 
Everolimus showed consistent improvement in over-
all survival regardless of PD-L1 expression [42]. Our 
research suggests that high PCD KIRC patients exhibit 
unfavorable survival outcomes post-immunotherapy. 
As such, this implies that PCD-high patients potentially 
represent a segment intolerant to PD-1 blockade therapy. 
This revelation has been reinforced in melanoma cohorts, 
suggesting that PCDs might have general predictive abili-
ties in determining immune therapeutic responses across 
a multitude of malignant tumors. Therefore, stratifying 
patients based on PCD identifiers could enhance per-
sonalized immunotherapy methods and increase benefi-
cial outcomes. Given these conclusions, we proceeded to 
construct a nomogram employing PCDs as a proficient 
prognostic tool for predicting the potential prognosis of 
KIRC.

TOP2A plays a crucial role in the processes of DNA 
replication, transcription, recombination, and repair 
by altering the topological states of DNA. Specifically, 
TOP2A works by creating transient double-stranded 
breaks in the DNA molecule, which allows the manipu-
lation of DNA topology, including relaxing supercoiled 
DNA, untangling interlinked DNA strands, and facilitat-
ing chromosome segregation during cell division. In can-
cer, the role of TOP2A is of particular interest because 
of its involvement in the proliferation of cells. Given 
that cancer is characterized by uncontrolled cell growth 

and division, enzymes like TOP2A that are essential for 
DNA replication are often found to be overexpressed 
in various tumor types. Overexpression of TOP2A has 
been linked to a more aggressive tumor phenotype and is 
associated with poor prognosis. Based on these research 
insights, TOP2A emerges as a potential biomarker for 
the screening, diagnosis, prognosis, and monitoring 
of these types of tumors. In our study, we discovered a 
noteworthy overexpression of TOP2A in KIRC, which 
correlated with poorer prognosis. Moreover, the sup-
pression of TOP2A significantly hindered the growth and 
metastasis of KIRC cells, both in vivo and in vitro. Thus, 
TOP2A holds significant promise as a molecular target 
for groundbreaking preventative and therapeutic strat-
egies in KIRC patients. However, it is crucial for future 
studies to thoroughly decode the molecular mechanisms 
behind TOP2A dysregulation and its consequential role 
in KIRC progression.

Despite the comprehensive nature of our research, 
we acknowledge several limitations. First, our findings 
are based on retrospective data, which may introduce 
potential bias. Future well-designed propective trials are 
needed to confirm these findings. Second, our research 
primarily relied on transcriptome sequencing data and 
corresponding clinical information from public data-
bases. Hence, the findings may not fully capture the 
dynamics and complexity of immune interactions and 
tumor microenvironment given the inherent limitations 
of such data sources. Our future research will focus on 
overcoming these limitations to further enhance our 
understanding of the complex interplay between PCD, 
tumor immune microenvironment, and immunotherapy 
responses.

Conclusion
In conclusion, our study represents an initiative to eluci-
date the complex relationship between PCD gene char-
acteristics and KIRC prognosis. We devised a unique 
PCD gene signature composed of seven genes that exhib-
ited significant predictive capability for KIRC patient’s 
survival. Our findings also highlighted that the tumor 
microenvironment is considerably altered in high-PCDs 
phenotype owing to an excessive infiltration of immune 
suppressive cells such as Tregs and tumor-associated 
macrophages. This leads to an immune evasion phenom-
enon thereby causing a poor response to ICI therapy in 
high-PCDs patients.
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