Skip to main content

Table 1 Investigations on melatonin treatment against prostate cancer

From: Melatonin and urological cancers: a new therapeutic approach

Melatonin dose or concentration Targets Effects Model Cell line Refs
1 pM, 1 nM, 1 μM, 1 mM mTOR, ERK1/2, Akt, OXPHOS, ROS Anti-proliferative and antioxidant effects In vitro PNT1A [55]
UCM 1037 (analogue) Androgen receptor, Akt Anti-proliferative and cytotoxic effects against cancer cells In vitro LNCaP, PC3, DU145, 22Rv1 [76]
1 mM Pentose phosphate pathway Decreased LDH activity, tricarboxylic acid cycle, ATP/AMP ratio, glucose uptake, and lactate labeling
Limited glycolysis
In vitro LNCaP , PC-3 [77]
3 mg/kg Nrf2, HIF-1α Inhibited tumor growth In vivo LNCaP [63]
10− 6 M NF-κB, AR-V7, IL-6, Delayed castration resistance development In vitro LNCaP, 22Rv1 [61]
200 µg/ml
50 µM–1 mM
MAPK/ERK, IGFBP3 Increased survival time of TRAMP mice when administered at the initiation or advanced stages In vivo, in vitro LNCaP [53]
10 µg/kg
500 µM, 5 mM, 10 mM
Androgen receptor (AR), PCNA, MTR1B proliferative and anti-apoptotic effects in prostate cells subjected to HG levels In vivo, in vitro PNTA1, PC-3 [78]
1 mM VEGF, HIF-1α, HIF-2α, miR-3195, miR-374b Anti-angiogenic activity In vitro PC-3 [59]
1 mg/kg Nrf2, Ki67, HIF-1α, Akt Inhibited cancer growth and exerted anti-angiogenic effects In vivo LNCaP [57]
10− 8 M p27, NF-κB, MT1, Anti-proliferative effects In vitro LNCaP, 22Rv1 [79]
1 mM TRAIL, TNF-α Promotes cell toxicity and cancer cell death, inhibited oxidative stress, and suppressed cancer cell proliferation In vitro LNCaP, PC-3 [62]
10 mg/kg GSH, MDA, SOD Inhibited tumor growth and oxidative stress In vivo [80]
10− 11-10− 5 M MT1, p27, AR Anti-proliferative effects In vitro RWPE-1, 22Rv1, VCaP, LNCaP [81]
1 mM Akt/GSK-3β, HIF-1α, SPHK1, VEGF, von Hippel-Lindau Antioxidant effects In vitro PC-3 [82]
100 nM–2 mM Sirt1, IGF-1)/IGFBP3, PCNA, Ki-67 Anti-proliferative effects
Inhibited tumorigenesis
In vivo, in vitro PC-3, DU145, 22Rν1, LNCaP [56]
100 µM, 1 mM, 2mM Per2, Clock, Bmal1 Anti-proliferative effects
Caused a resynchronization of oscillatory circadian rhythm genes
In vitro PC-3, DU145, 22Rν1, LNCaP [83]
10− 8-10− 3 M Inhibited viability and induced apoptosis In vitro PC-3, DU145, 22Rν1, LNCaP [84]
1 mM HIF-1α, Anti-angiogenic effect In vitro PC-3, DU145, LNCaP [58]
0–3 mM p38, JNK Induced apoptosis
Inhibited cancer cell growth
In vitro LNCaP [54]
10− 9, 10− 8, 10− 7 PKA, PKC, p27, MT1 Anti-proliferative effects In vitro 22Rv1 [85]
10− 11, 10− 5 p27, PKA, PKC, MT1, androgen signaling Anti-proliferative effects In vitro 22Rv1 [86]
0.5, 1 mM Induced cell cycle arrest and cellular differentiation
Inhibited proliferation of cancer cells
In vitro LNCaP, PC-3, [87]
5 mg MT1 Anti-proliferative effects
Induced stabilization of patient’s hormone-refractory disease
Human [88]
4 µg/g EGF, Cyclin D1 Inhibited tumor growth and proliferation In vivo PC-3, DU145, LNCaP [89]
AR activity attenuation by melatonin is not due to inhibition of AR binding to the androgen responsive element (ARE) In vitro LNCaP, PC-3 [90]
4 µg/g MT1 Anti-proliferative effects In vivo PC-3, LNCaP [91]
0.01–100 nM cAMP suppressed cancer cell proliferation and induced cell cycle arrest In vitro DU145 [92]
5 × 10−11-5 × 10 −5 MT1, sex steroid-mediated calcium influx Anti-proliferative effects In vitro LNCaP [93]
0.01–1000 nM Mel1a receptor Anti-proliferative effects In vitro LNCaP [94]
20 mg IGF-1, PRL Combination therapy with triptorelin and melatonin decreased PSA mean concentrations
Melatonin reversed clinical resistance to LHRH analogue triptorelin in metastatic prostate cancer
Human [95]
50 µg Inhibited tumor growth In vivo Dunning R-3327-HIF tumor [96]