Skip to main content
Fig. 1 | Cancer Cell International

Fig. 1

From: Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2

Fig. 1

Characterization of bulk tumour cells (BTCs), brain tumour spheroid-forming cells (BTSCs) and extracellular vesicles (EVs) released from BTCs or BTSCs (BTCs-EVs or BTSCs-EVs, respectively). The characteristics of BTCs and BTSCs (a–c) are compared, and the characteristics of each EV (d, e) derived from them are analysed. a Representative microscopy images show the phenotype of adherent BTCs and spheroid-forming BTSCs. Scale bars: 100 μm. b The cells expressing the stem cell marker nestin (green) are very rare, and musashi (MSI1, red) expression is scarcely present in adherent BTCs, whereas both nestin and MSI1 are strongly expressed in BTSCs. Cells were counterstained with DAPI (blue). Scale bars: 100 μm. c, f Western blot analysis shows that calnexin and β-actin are detected, but flotillin-1 is not found in cell lysates (BTCs and BTSCs). d EVs appear as isolated vesicles with characteristic round-shaped structures of exosomes in a transmission electron microscopy (TEM) image. e Nanoparticle tracking analysis (NTA) shows that the size distribution ranges from 10 to 200 nm in diameter. f Exosomal marker protein flotillin-1 is observed, but calnexin and β-actin are not observed in EVs (BTCs-EVs and BTSCs-EVs), indicating the presence of exosomes in EVs. g, h NanoView analysis system detect EVs captured by the CD63 antibody and observed simultaneously by fluorescently tagged Alix-PE (green), CD63-AF647 (red), and CD9-AF488 (blue). Representative images provide co-localization information for g Alix(Green)/CD63(Red)/CD9(Blue) and h Syntenin(Green)/CD63(Red)/CD9(Blue). The normalized number of particles is shown in the bar graphs

Back to article page