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Acidic extracellular microenvironment and cancer
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Abstract

Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be
due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps
contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate
transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic
extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but
induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is
different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of
acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply
associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a
microenvironmental factor participating in tumor progression is reviewed.
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Introduction
The extracellular pH (pHe) of tumor tissues is often
acidic [1], and acidic metabolites, e.g. lactic acid caused
by anaerobic glycolysis in hypoxia, seem to be the main
cause. Accumulating evidence shows that an acidic micro-
environment is a regulator of cellular phenotype. Whereas
Na+-HCO3

- co-transporter and Cl-/HCO3
- exchanger con-

tribute a fall in intracellular pH, the Na+/H+ exchanger
(NHE) [2], the H+-lactate co-transporter, monocarboxylate
transporters (MCTs), and the H+-ATPase (H+ pump) are
responsible for the secretion of H+ [3]. Because carbonic
anhydrase (CA) is widely distributed and can form H+ by
catalyzing hydration of CO2, an excess amount of CO2

production through the pentose phosphate pathway in
tumor cells is an alternative cause of a lower pH [4]. Acidic
pHe increases not only the activation of some lysosomal
enzymes with acidic optimal pH, but also the expression
of some genes involved with pro-metastatic factors.
When melanoma cells pretreated with an acidic medium
were injected into the tail vein of mice, a significantly
higher frequency of them metastasized to the lungs [5].
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Thus, an acidic microenvironment is closely associated
with tumor metastasis.
Acidity is found at the surface of skin and in inflamma-

tory sites. It is also associated with bone resorption. Thus,
an acidic microenvironment plays a role of homeostasis
and the immune defense system. We will review the roles
of acidic pHe in tumor progression along with other
physiological and pathological conditions.
Lactate and tumor
The “Warburg effect” is a well-accepted theory that says
that tumors tend to produce lactate by using the anaer-
obic glycolytic pathway, even in the presence of suffi-
cient oxygen, rather than oxidative phosphorylation for
energy production [1]. High lactate levels indicate me-
tastases, tumor recurrence, and prognosis in some can-
cer patients [6-9]. In the molecular mechanism relating
to these clinical contributions, lactate from tumor cells
contributes to their immune escape. High lactate secre-
tion from tumor cells inhibits its export from T cells,
thereby disturbing their metabolism and function [10].
Tumor-derived lactate affects inflammation and immune
deficiency of tumor cells. Lactate itself functions as an
intrinsic inflammatory mediator that increases interleu-
kin (IL)-17A production by T-cells and macrophages,
resulting in the promotion of chronic inflammation in
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tumor microenvironments [11]. Lactate inhibits dendritic
cell activation during antigen-specific autologous T-cell
stimulation [12]. It also enhances the motility of tumor
cells and inhibits monocyte migration and cytokine release
[13]. It can contribute to angiogenesis through induction
of IL-8 via nuclear factor-κB (NF-κB) [14] and induction
of vascular endothelial growth factor (VEGF/VEGF-A)
via hypoxia-inducible transcription factor (HIF)-1 [15].
Furthermore, lactate production contributes to radio-
resistance of tumors due to its antioxidant properties [16].
Inhibition of the lactate transporter has been consid-

ered a potential new therapeutic strategy. For example,
α-cyano-4-hydroxycinnamate, a specific inhibitor of the
lactate transporter MCT1, suppresses tumor angiogen-
esis [17]. Quercetin (CYP2C9), which is an inhibitory
flavonoid, inhibits lactate transport and acts as a hyper-
thermic sensitizer of HeLa cells [18].

Appearance of acidic microenvironments under
physiological and pathological conditions
An oncogenic transformation assay by oncogenic-virus
infection shows that lactate production is correlated with
an increase in the number of transformed foci by viral
infection in a presence of 5% CO2 in 95% air [19]. Since
high lactate corresponds to a high proton concentration,
an acidic pHe is a major feature of the solid tumor tissue
[1,20-22]. Lactic acid is a product of the anaerobic gly-
colysis including the activity of lactate dehydrogenase
(LDH) 5 that generates lactic acid from pyruvate and the
expression of which has been strongly associated with
the poor prognosis of patients with non-small cell lung
[23,24] and colorectal cancers [25-27].
CO2 is a major source of acid in glycolytically impaired

mice [4]. The pentose phosphate pathway is seen as a
major productive pathway for CO2 which can be processed
to H+ and HCO3

- by the catalytic activity of CA. In osteo-
clasts, CA II, a CA isozyme, is a major enzyme producing
H+ to decalcify bone hydroxyapatite. Osteoclasts secrete
H+ and create an acidic microenvironment below pH 5.5,
which is critical for the bone resorption [28,29] and the
proton can be secreted through H+-ATPase [30]. Induction
of CA II expression itself is also induced by an acidic
pHe [31]. Thus, secretion of acidic metabolites and/or
the pentose phosphate pathway-mediated CO2 produc-
tion, and CA-mediated production of H2CO3 form acidic
microenvironments.
Extracellular acidity is a pathological feature of inflam-

mation [32] and solid tumor tissue [1,20-22]. Acidity in
inflammatory tissue is due to production of proton from
macrophages, whereas tumor tissue acidity is due to
acidic metabolites, e.g., lactate, caused by anaerobic glycoly-
sis under the hypoxia [20-22,33]. The acidic microenviron-
ment acts as a trigger for pain in both inflammation
[34,35] and in cancer patients [36].
Ovarian cancer G-protein-coupled receptor 1 (OGR1), a
receptor for sphingosylphosphorylcholine, and GPR4, a
close relative of OGR1, also act as a proton-sensing recep-
tor in osteosarcoma cells and primary human osteoblast
precursors [37]. OGR1 (GPR68) stimulates cyclooxygenase-
2 expression and prostaglandin (PG) E2 production in re-
sponse to acidic pHe in a human osteoblastic cell line [38].
Because PGE2 is involved in osteoclastic differentiation
of precursor cells [39], inhibition of the OGR1 signal-
ing negatively regulates osteoclastogenesis [40]. Another
type of G-protein-coupled receptor, TDAG8 (GPR65), also
senses pHe [41,42].
Breast cancer frequently metastasizes to bone. Osteo-

clasts can be activated by breast cancer-derived H+ such
that osteolysis occurs when cancer cells metastasize to bone
[36]. During this process, patients feel pain through acid-
sensing ion channels (ASIC) 1a, 1b and 3 [36,43,44].
An acidic pHe is also found in the epidermis and plays

an important protective role against bacterial infection
[45-47]. Using the conditional knockout (KO) mice for
focal adhesion kinase (FAK) in keratinocytes, Ilic et al.
[47] showed that the stratum corneum pHe gradient of
keratinocytes in these mice had significantly more neutral
pH values, and that NHE1 failed to localize to the plasma
membrane [47]. Thus, FAK controls pH-dependent epider-
mal barrier homeostasis by regulating actin-directed NHE1
plasma membrane localization [47].
Lung liquid is acidic [48], which is worse in patients

with cystic fibrosis [49], although the airway pH is not
known for certain because different detecting methods
have been used [50].

CA expression in cancer
CA isoforms are associated with tumor malignancy, in-
cluding CA I [51], CA II [51,52], CA IX [53,54], CA XII
[55], and CA XIII [56]. Among them, CA IX in particular
has been well studied in association with hypoxia and
tumor survival through regulating intracellular pH [53,57].
In ovarian cancer, high expression of CA IX with a con-
comitant increase in VEGF-A is associated with overall
survival rates positively [58]. Overexpression of CA IX in-
creases tumor cell migration and invasion [59]. CA inhibi-
tor suppresses invasion of renal cancer cells in vitro [60].
Based on the accumulated evidence, a new therapeutic
strategy targeting CA has been considered [61-63].

Acidic pHe activates proteinase activity and induces
gene expression
Acidic pHe activates some proteinases. Although caries is
due to some bacterial acidic metabolites, Tjäderhane et al.
[64] found that host-derived pro-matrix metalloproteinase-
9 (proMMP-9), proMMP-2 and proMMP-8 in saliva could
be activated by acid, and thereby suggested that these
MMPs contribute to the disruption of dentin in caries.
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Alternatively, host derived proMMP-9 could be activated
in the stomach, and this suggests it functions as a digest-
ive enzyme for collagenous foods [65,66]. Activation of
proMMP-9 by an acidic pHe also occurs in a human mel-
anoma model [67].
Lysosomal enzymes have an acidic optimal pH. Some

tumor cells have the ability to secrete them, such as
cathepsin B and cathepsin L [5]. Cathepsin K plays an
important role in osteoclast-mediated bone resorption
[68,69]; its inhibition prevents breast cancer-induced oste-
olysis and skeletal tumor burden [70]. Thus, osteoclast-
mediated acidic pHe leads to mineral dissolution and
activation of cathepsins to digest bone matrix, such as type
I collagen. Podgorski et al. [71] reported that SPARC/
osteonectin, a major non-collagenous protein in bone, is
digested by cathepsin K and its fragments are associated
with bone-metastasis. Another lysosomal enzyme, hepa-
ranase, has an acidic optimal pH; it degrades heparan sul-
fate in the basement membrane and contributes to tumor
invasion and metastasis [72,73].
Also, acidic microenvironments affect the expres-

sion of some genes, such as MMP-9 [74,75] and acidic
sphingomyelinase in mouse B16 melanoma [74], platelet-
derived endothelial cell growth factor (thymidine phos-
phorylase) in human breast cancer cells [76], the inducible
isoform of nitric oxide synthase (iNOS) in macrophages
[77], VEGF-A in glioma [78] and glioblastoma [79] cells,
and IL-8 expression in human pancreatic adenocarcinoma
[80-82] and ovarian carcinoma cells [83].

Acidic pHe signal transduction pathway
Thus, although acidic pHe occurs in several physiological
and pathological conditions, information on its signaling
remains limited. Transcription factors AP-1 and NF-κB,
independent of hypoxia, have important roles in the
acidic pHe-induced expression of VEGF-A [78,84] and
IL-8 [80-83,85]. p38 mitogen-activated protein kinase
(MAPK) is involved in acidic pHe signaling that induces
IL-8 [85].
We also found involvement of phospholipase D (PLD)

in the acidic pHe-intracellular signaling to induce MMP-
9 production [75,86]. Acidic pHe-induced PLD activation
was prolonged for at least for 24 h, different from gen-
eral growth factor signaling. Inhibition of PLD activity
by 1-butanol and Myr-ARF6 suppresses acidic pHe-in-
duced MMP-9 expression [87]. Acidic pHe increases the
steady-state levels of phosphorylated ERK1/2 and p38,
and PLD inhibitors prevent these increases. Using 5′-de-
leted constructs of the MMP-9 promoter, we found that
the acidic pHe-responsive region was located at nucleo-
tides -670 to -531, a region containing the NF-κB bind-
ing site. A mutation in the NFκB binding site reduced
acidic pHe-induced MMP-9 promoter activity, and NF-
κB activity was induced by acidic pHe. Pharmacological
inhibitors specific for MEK1/2 (PD098059) and p38
(SB203580) attenuated acidic pHe-induced NF-κB activity
and MMP-9 expression. The data suggest that PLD,
MAPKs including ERK 1/2 and p38, and NF-κB mediate
acidic pHe signaling thereby inducing MMP-9 expression.
Activation of ERK1/2 and p38, followed by the NF-κB axis,
which is stimulated by tumor necrosis factor-α (TNF-α),
also occurs in cholangiocarcinoma [88]. This suggests that
acidic pHe signaling is, at least in part, the signaling path-
way for TNF-α. However, it has been reported that acidic
pHe activates p38, but not ERK1/2, in T-cell receptor sig-
naling in Jurkat cells [89]. This may be cell-type specific. In
a further contribution dealing with the intracellular sub-
stances of acidic pHe, we have found that calcium influx
triggers acidic pHe-induced PLD activation and that acidic
sphingomyelinase mediates acidic pHe signaling to activate
NF-κB independently of the PLD-MAPK pathway [74].
OGR1 stimulates cyclooxygenase-2 expression and

PGE2 production in response to an acidic pHe in a hu-
man osteoblastic cell line through G(q/11)/phospholipase
C/protein kinase C pathway [38] and in human aortic
smooth muscle cells through the phospholipase C/cyclo-
oxygenase/PGI2 pathway [90].
Acidic pH directly affects transcription factor activity;

DNA binding activity of the transcription factor, SP1, is
enhanced by intracellular acidic pH [91]. Intracellular
pH is maintained a constitutively neutral state but known
to become transiently acidic when pHe decreases to acidic.
Therefore an acidic pH can activate SP1.

Acidic pHe stimulates disruption of adherence junctions
When tumor cells move into their surrounding tissue,
cell-cell junctions become dissociated. Acidic pH dis-
rupts adherence junction by Src activation, resulting in
E-cadherin degradation through the protein kinase Cδ
pathway [92,93]. Acidic pHe also induces motility of
tumor cells, and inhibits monocyte migration and cytokine
release [13].

Acidic pHe stimulates metastatic potential
Brockton et al. [54] have shown that high stromal CA IX
expression is associated with nodal metastasis. The high
activity produces an acidic microenvironment that leads
to increased metastatic ability of the tumor cells. We
have reported that induction rate of MMP-9 secretion
correlates with metastatic potential of mouse B16 mel-
anoma clones, and an acidic pHe stimulates invasion
through a type-IV collagen barrier [75,86]. In human
melanoma models, an acidic pHe increases both migra-
tion and invasiveness in vitro, accompanied by MMP-9
activation [67]. NHE1 is also associated with the meta-
static ability of tumor cells; it is accumulated in leading
edge of the cell and is activated by CD44 (a hyaluronan
(HA) receptor) -binding to HA [94]. Because HA directs
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membrane-type 1 matrix metalloproteinase (MT1-MMP)
to the invasion front (invadopodia) [95,96], NHE1 might
interact with MT1-MMP through CD44 at an acidic
pHe [97,98].
Pretreatment of the tumor cells in an acidic medium in-

duces production of proteinases (MMPs and cathepsins)
and proangiogenic factors (VEGF-A and IL-8) and pro-
motes experimental metastasis to the lung after injection
into the tail vein of nude mice [5]; elevation of pH by one
unit following injection of sodium bicarbonate prevents
spontaneous metastases [99]. Furthermore, using P-31
magnetic resonance spectroscopic evaluation, it was found
that acidic pHe in spontaneous soft tissue sarcomas pre-
dicts metastasis in dogs [100].

Acidic pHe sensing systems
ASICs are voltage-independent and proton-activated
channels found in tumor cells and associated tumor ma-
lignancy [101]. Transient receptor potential (TRP) V
isoforms, TRPV1, TRPV5 and TRPV6, also act as acid-
sensitive channels [102,103]. ERK1/2 plays as a downstream
target of ASICs and TRPVs [104-106]. Another subfamily
of TRP, TRPM7 has proton conductivity [107]. TRPM7 reg-
ulates EGF signaling to induce STAT3 activation and
vimentin expression during epithelial-mesenchymal transi-
tion [108]. OGR1 also acts as a proton-sensing receptor,
stimulating inositol phosphate formation [37].

pHe gradient formation by H+ pumps and exchangers
NHE1 accumulates at the leading edge to make a pHe

gradient associated with cell migration [109]. The Rho-
ROCK pathway contributes to NHE1 activation and focal
adhesions [110,111]. Protons stabilize the collagen–α2β1
integrin bond, but alkalosis, a lack of protons or an
inhibited NHE activity, prevents adhesion [112]. Further-
more, the cell forms an individual pHe gradient to facili-
tate movement: i.e. at leading edge or invadopodia, cells
preferentially attach to the substrate due to the acidic
pHe induced by NHE1, while cell-matrix interaction at
the rear end is weak due to a mid-alkaline pHe [113].
Mutation studies clearly showed that downregulation of
NHE1 function suppresses cell polarity, migration, and
invasion through matrigel™ [111]. Inhibition of NHE1 ac-
tivity by HOE642 (cariporide) reduced migration and ad-
hesion activities [109].
To secrete acidic metabolites, NHE1 and the H+-lac-

tate co-transporter are involved [114]. H+-ATPase (the
H+ pump) and cell surface ATP synthase also play a role
in extracellular acidification [115,116], thereby contribut-
ing to tumor metastasis [3]. Therefore, inhibition of the
H+ pump can be a new strategy for cancer treatment
[117-119]. Angiostatin has anti-tumor efficacy by inhibiting
cell surface ATP synthase activity through binding its
β subunit [116]. In particular, treatment of the cells with
angiostatin proved more cytotoxicity at an acidic pHe than
a neutral pHe.
Drug efficacy and acidic pHe

Two analogues of camptothecin (CPT), topotecan (TPT)
and irinotecan (CPT-11), have significant anti-tumor ac-
tivity in the clinic, although their abilities depend on the
CPT E ring lactone, which forms an inactive hydroxy
acid at physiological pH. The reaction is reversible at an
acidic pHe, which provides a rationale for selectivity be-
cause many solid tumors, while creating an acidic extra-
cellular environment, maintain a normal intracellular
pH [120]. An acidic pHe inhibits cellular uptake of
mitoxantrone and topotecan, so that elevation of pHe in
tumor tissue enhances those drugs’ efficacy [120,121]. Be-
cause the buffer action is weaker in tumor tissue than nor-
mal tissue, NaHCO3 has much potential to raise pHe

relatively specifically in tumor tissue [122,123]. Acidic pHe

also plays a role in the resistance of tumor cells to
drugs by increasing the expression of p-glycoprotein,
thereby increasing drug efflux [124,125]. Recently, an
acidic pHe-specific drug-releasing system has been de-
veloped [126,127]. A novel polymeric micelle constituted
of 2 block copolymers of poly (L-lactic acid)-b-poly
(ethylene glycol) b-poly (L-histidine) - TAT (trans-
activator of transcription) and poly(L-histidine)-b-poly
(ethylene glycol) increases the cytotoxicity of doxorubicin
in several multidrug-resistant tumor cell lines [127]. To
measure pHe, a magnetic resonance image technique
has been developed using acidic pHe specific probes
[128,129]. Thus, clinicians should pay attention to tumor
pHe in selecting drugs and helping to maximize their
chemotherapeutic action. Vasodilating drugs, such as
hydralazine and captopril, inhibit tumor growth rate
in vivo by reducing tumor blood flow [130]. Although the
reduction in tumor growth by those drugs also reduces
the oxygen supply, it reduces pHe. In patients given
vasodilating drugs, anti-tumor drugs with weak acidic pKa

value, such as 5-fluorouracil (5FU) and cyclophosphamide,
may have increased efficacy at an acidic pHe. In contrast,
the anti-tumor drugs with weak base pKa values, such as
doxorubicin, mitoxantrone and daunorubicin, may not be
fully functioned because acidic pHe reduces their cytotox-
icity [121,131]. In early-stage breast cancer, high CAIX is a
predictive marker of doxorubicin resistance [132].
Because cis-diamminedichloroplatinum (II) (CDDP) so-

lution has an acidic pH, NaHCO3 is used to prevent the
angialgia in the cancer patients coming from the acidic pH
solution injection because it increases pH [133,134]. How-
ever, CDDP is frequently used for co-injection with other
chemotherapeutic drugs, such as 5FU. In some cases, co-
injection of NaHCO3 (depends on the concentration) may
reduce the clinical efficacy of 5FU + CDDP regimen.
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Hyperthermia and acidic pHe

Hyperthermic treatment (42.5°C) for JB-1-E plasmacytoma
tumor cells in vitro enhances the colony formation index
when cells are maintained at pH 6.4, regardless oxygen ten-
sions [135]. Melanoma cells growing at low pH are sensi-
tized to hyperthermia because of the altered intracellular
pH threshold for the heat sensitization in vitro [136,137].

Conclusion
Acidic pHe is toxic to many cells, including tumors [138].
However, if tumors have successfully adapted to their con-
dition, and use it for their own cellular activation, this
increases drug resistance and leads to more aggressive be-
havior. Therefore, management of tumor pHe and inhib-
ition of blockade of proton-sensing system are important
in not only raising drug efficacy, e.g. mitoxantrone, but in
preventing metastasis.
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