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Abstract

Background: ORAI1 channels play an important role for breast cancer progression and metastasis. Previous studies
indicated the strong correlation between breast cancer and individual single nucleotide polymorphisms (SNPs) of
ORAI1 gene. However, the possible SNP-SNP interaction of ORAI1 gene was not investigated.

Results: To develop the complex analyses of SNP-SNP interaction, we propose a genetic algorithm (GA) to detect the
model of breast cancer association between five SNPs (rs12320939, rs12313273, rs7135617, rs6486795 and rs712853) of
ORAI1 gene. For individual SNPs, the differences between case and control groups in five SNPs of ORAI1 gene were not
significant. In contrast, GA-generated SNP models show that 2-SNP (rs12320939-GT/rs6486795-CT), 3-SNP (rs12320939-
GT/rs12313273-TT/rs6486795-TC), 5-SNP (rs12320939-GG/rs12313273-TC/rs7135617-TT/rs6486795-TT/rs712853-TT) have
higher risks for breast cancer in terms of odds ratio analysis (1.357, 1.689, and 13.148, respectively).

Conclusion: Taken together, the cumulative effects of SNPs of ORAI1 gene in breast cancer association study were well
demonstrated in terms of GA-generated SNP models.
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Background
Single nucleotide polymorphisms (SNPs) are one of the
most common variants in human genome [1]. Currently,
SNPs have been applied to the association studies for
complex diseases [2-4]. Genome-wide association studies
(GWAS) can identify the several SNPs predisposing to
many diseases [5-8]. Although GWAS covers human
genome-wide SNPs, many SNPs of non-significance are
commonly ignored. Recently, the possible jointed effects
of gene-gene interactions are gradually uncovered in pre-
dicting many disease risks [9-12]. However, when simul-
taneously evaluate the complex interactions amongst huge
SNPs, these interactions are complex and it may need the
help of new strategy [13] or computation [14].
Similarly, the non-GWAS association studies have

the similar condition to ignore the possible gene-gene
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interactions. For example, several individual SNPs of
the ORAI calcium release-activated calcium modulator 1
(ORAI1) gene have reported to be involved in breast can-
cer susceptibility [15]. However, the possible SNP-SNP in-
teractions of ORAI1 gene associated with breast cancer
were not addressed. Different computational analyses have
been introduced to examine SNP-SNP interaction in many
association studies [14,16-23]. Genetic algorithm (GA) is
potential for feature selection for genome-wide scale data-
sets [24] and may apply to compute the difference between
case and control groups to identify good models from the
huge SNP combinations as well as tagSNP selection [25].
To address the possible SNP-SNP interaction in breast

cancer susceptibility, five tagSNPs (rs12313273, rs6486795,
rs7135617, rs12320939, and rs712853) of ORAI1 gene were
selected in this study. Therefore, we introduced the GA to
optimizing the analyses of SNP-SNP interactions of ORAI1
gene associated with breast cancer. GA is used to identify
the best SNP models (SNP combinations with genotypes)
with maximum frequency difference between breast cancer
and control groups. Therefore, the best GA-generated SNP
models of ORAI1 gene may be useful for predicting the
breast cancer risk.
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:changhw@kmu.edu.tw
mailto:mifeho@kmu.edu.tw
mailto:chyang@cc.kuas.edu.tw
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Chang et al. Cancer Cell International 2014, 14:29 Page 2 of 6
http://www.cancerci.com/content/14/1/29
Methods
Data set collection
The case and control subjects are 345 female breast cancer
patients and 290 female normal controls where the recruit-
ment was approved by Cancer Center of Kaohsiung
Medical University Hospital. The genotype dataset of breast
cancer patients of five tagSNPs (rs12313273, rs6486795,
rs7135617, rs12320939, and rs712853) of ORAI1 gene with
minimum allele frequency (MAF) >10% obtained from our
previous study [15]. For normal controls, samples of were
collected in current study and SNP genotyping was per-
formed as described [15].

Genetic algorithm
The GA [26] is a well-known evolutionary algorithm, and it
has been applied for solving the complex problems in sev-
eral fields. GA simulates the natural evolution to generate
solutions of complex problems, including selection, cross-
over, mutation, and inheritance. The process of GA has six
steps: (1) initializing population, (2) evaluate chromosome
values, (3) select two parents using selection operation, (4)
crossover operation, (5) mutation operation, and (6) re-
placement operation.
A population in first step is initialized according encod-

ing schemes of problem. Second step aims to evaluate
value of chromosomes in population using fitness func-
tion. Third step use the evaluated value of chromosomes
to select the two good parents for generating two offspring
(step 4). Then firth step is probabilistic to mutate two
offspring. Final step is used to improve the value of popu-
lation. Thus repeat of steps 2 to 6 in several generations
can effectively search the good values of chromosomes
in population, and a best chromosome in population is
regarded to best solution. Algorithm 1 shows the GA
pseudo-code, and the below section is detailed to explain
the processes of six steps.

Algorithm 1: Genetic algorithm pseudo-code.

01: begin 
02: Initializing population according encoding schemes 
03:   for g = 1 to the number of generations
04:       evaluate chromosomes of population using fitness 

function
05:       select two parents using selection operation
06:       generate two offspring using crossover operation 
07:       mutate two offspring using mutation operation 
08:       improve the value of population using replacement 

operation 
09:   next g
10: end 

Encoding schemes
A population consists of the several possible solution of
problem. The possible solution in GA is named a
chromosome that is a set C = {c1, …, cd}. In this study, a
chromosome indicates a possible model of associations
between SNPs. All combinations of SNPs and genotypes
can be represented a set A = S ×G = {(s, g)| s∈S and g∈G}
where S is a set of SNPs and G is a set of genotypes. For
example, we assume an S contains two SNPs and a G
contains three genotypes, i.e., S = {s1, s2} and G = {g1, g2, g3}.
All possible subsets can be represented A = S ×G = {(s1, g1),
(s1, g2), (s1, g3), (s2, g1), (s2, g2), (s2, g3)}. Each subset in A
represents the selected SNP and their genotype. A chromo-
some is defined C = {c1, …, cd | ci, cj ∈A, ci ≠ cj, 1 ≤ i ≠ j ≤ d}
where d is the association model size. A possible chro-
mosome in above example can be assigned as C = {(s1, g1),
(s2, g2)}; it means a model that includes the genotype “AA”
of first SNP and the genotype “Aa” of second SNP.

Fitness function
A value of chromosome C can be evaluated by comput-
ing the fitness function; it facilitates GA for eliminating
the worst chromosomes of population in each gener-
ation. In this study, a total number difference between
case data and control data at a model is used to design a
fitness function. Equation 1 is used to check a model
whether a SNP is repeatedly selected or not. If a SNP is
repeatedly selected in a C, the value of C is evaluated to
zero. If it is not, Equation 2 is used to calculate the total
number difference between cases and controls at a
model. In Equation 2, the max_P and max_N are a total
number of case data and a total number of control data,
respectively. The P and N are respectively represented
the set of case data and a set of control data; Pi is the ith

patient sample in case data and Ni is the i
th normal sample

in control data. Equation 3 is used to evaluate whether all
factors in a model are included in a set of sample. If a
sample includes the model, the Equation 3 returns one
value into Equation 2; whereas, it returns zero value.

f Cð Þ ¼
0 if \

si∈C
si ≠ φ

d Cð Þ if \
si∈C

si ¼ φ

(
ð1Þ

d Cð Þ ¼

Xmax P

i¼1

m C; Pið Þ

max P
−

Xmax N

i¼1

m C;Nið Þ

max N
ð2Þ

m X;Yð Þ ¼ 0 if X⊄Y
1 if X⊆Y

�
ð3Þ

Selection operation
Selection operation aims to select the good chromosomes
for generating the great offspring; the selected chromo-
somes name parents. Selection operation in this study uses
a rank-based tournament scheme for selecting the two par-
ents. The operation uses fitness function to evaluate all
chromosomes of a population P = {C1, …, Ci|i is population



Table 1 The performance of five individual SNPs for
breast cancer and control groups

SNP ID Genotype Case (%) Control (%) p-value

1. rs12320939 GG 97 (28.12) 79 (27.24)

GT 181 (52.46) 140 (48.28) 0.785

TT 67 (19.42) 71 (24.48) 0.248

2. rs12313273 TT 183 (53.04) 161 (55.52)

TC 142 (41.16) 100 (34.48) 0.189

CC 20 (5.80) 29 (10.00) 0.107

3. rs7135617 GG 103 (29.86) 94 (32.41)

GT 187 (54.20) 145 (50.00) 0.367

TT 55 (15.94) 51 (17.59) 0.947

4. rs6486795 TT 137 (39.71) 121 (41.72)

TC 173 (50.14) 126 (43.45) 0.260

CC 35 (10.14) 43 (14.83) 0.204

5. rs712853 TT 154 (44.64) 128 (44.14)

TC 158 (45.80) 134 (46.21) 0.904

CC 33 (9.57) 28 (9.66) 0.942
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size}, and all values in P are recorded into a set R = {r1, …,
ri| i is population size}. These values represent chromo-
some ranks. Then R is sorted from the big value to small
value, i.e., r1 ≥ r2 ≥ ri. Thus the r1 and r2 with corresponding
Cs in P are two selected parents.

Crossover operation
Crossover operation is used to generate the offspring from
the parents, and the operation use a uniform crossover
scheme. Uniform crossover firstly generate a binary mask
set B = {b1, …, bi| b∈[0,1], i = |C|}; a binary value at b is
randomly generated. The one value of bj indicates that j

th

elements of two parents are must be exchanged; the zero
value represents the no exchange. Two offspring are gen-
erated by exchanging the elements of two parents accord-
ing the binary mask set, and the offspring are represented
C’. For example, let a generated binary mask B = {1, 0, 1, 0}
and two parents C1 = {(s1, g1), (s2, g2), (s5, g1), (s3, g3)} and
C2 = {(s1, g3), (s2, g1), (s4, g2), (s3, g2)}. The generated two
offspring are C’1 = {(s1, g3), (s2, g2), (s4, g2), (s3, g3)} and
C’2 = {(s1, g1), (s2, g1), (s5, g1), (s3, g2)}, respectively.

Mutation operation
Mutation operation can facilitate the diversity of chro-
mosomes in population, and avoid population for trap-
ping the local optimal. The operation uses a one-point
mutation operation. A mutation point set M = {m1, …,
mi| m∈[0,1], i = |C|} is used to indicate the mutation
points in the offspring C’. Each binary value in M is ran-
domly generated according to the mutation probability.
The one value of mj represents that jth element of C do
the mutation; the zero value represents the no mutation.
The mutation randomly generates a possible c element,
where c∈A, to replace the original element at a mutation
point. For example, let a generated mutation point M =
{0, 0, 1, 0} and offspring C’1 = {(s1, g3), (s2, g2), (s4, g2),
(s3, g3)}. Suppose the number of SNPs is five, a possible
set is E = {(s4, g1), (s4, g2), (s4, g3), (s5, g1), (s5, g2), (s5,
g3)}. After mutation the offspring could be C’1 = {(s1, g3),
(s2, g2), (s5, g3), (s3, g3)}.

Replacement operation
Replacement operation aims to gradually improve value
of population. The generated two offspring C’1 and C’2
are evaluated by fitness function, and are used to com-
pare the value to all chromosomes. When an offspring is
higher value than a chromosome of population, it re-
places the chromosome; otherwise, the offspring is
deleted.

Parameter settings
In the GA parameters, both of the exchange probabilities
in the tournament selection and uniform crossover are
1.0. The exchange probability of a one-point mutation is
0.1. The population size is 50, and the number of gener-
ations is 100.

Statistical analysis
All statistical value is computed using SPSS version 19.0
(SPSS Inc., Chicago, IL). Odds ratio (OR) with 95% con-
fidence interval (CI) is used for measuring a single SNP
and the model of association between SNPs; a P value
of < 0.05 is considered statistically significant difference
between the cases and controls.

Results
Data collection
The complete genotype data set is available at http://
bioinfo.kmu.edu.tw/BRCA-ORAI1-5SNPs.xlsx. Based on
these data, the GA-generated SNP models to address the
possible SNP-SNP interaction in ORAI1 gene were eval-
uated in terms of breast cancer association later.

Comparison of patients and normal in terms of effect of
single SNP
Table 1 shows the occurrence of breast cancer for five
SNPs in ORAI1 gene. The genotype with major allele
(G in rs12320939; T in rs12313273; G in rs7135617; T in
rs6486795; and T in rs712853) is regarded as the refer-
ence for analyzing breast cancer risks in terms of single
SNPs. Minor allele is selected according the dbSNP
database of NCBI (National Center for Biotechnology
Information). No significant differences between the
breast cancer patients and controls in all genotypes for
each single SNP were found.

http://bioinfo.kmu.edu.tw/BRCA-ORAI1-5SNPs.xlsx
http://bioinfo.kmu.edu.tw/BRCA-ORAI1-5SNPs.xlsx


Table 2 The best 10 models in 2-SNP order association

Combined SNP number
(specific SNPs)

SNP
Genotypes

Case
no.

Control
no.

Difference
(%)*

SNP(1,4) 2-2 145 101 7.20

SNP(2,4) 2-3 22 1 6.03

SNP(3,4) 2-2 121 85 5.76

SNP(2,5) 2-3 83 54 5.44

SNP(2,4) 3-2 65 40 5.05

SNP(1,5) 2-3 81 55 4.51

SNP(4,5) 2-3 81 55 4.51

SNP(3,5) 2-3 78 53 4.33

SNP(2,3) 3-3 38 23 3.08

SNP(4,5) 2-2 77 56 3.01

SNP(1,3) 2-2 147 116 2.61

*Difference (%) = Frequency of cases (breast cancer group) - Frequency
of controls.
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Identification of the best model of SNPs association with
maximum frequency difference between breast cancer
and control groups
During GA processing, the best ten models of two SNP
combinations with genotypes (2-SNP models) were demon-
strated in Table 2. In these 2-SNP models, the SNPs (1, 4)
with genotype 2-2, i.e., [rs12320939-GT]-[rs6486795-TC],
possessed the maximum frequency difference (7.20%) be-
tween the breast cancer and control groups, namely the
best 2-SNP model. Similarly, the best GA-generated SNP
models involving three to five SNP were shown in left side
of Table 3.

Odds ratio analysis to identify the best models of SNP
associations associated with high breast cancer
Table 3 shows five best models of association involving
two to five SNPs. Odds ratio analysis shows the perform-
ance (OR, 95% CI, and P value) of five types of the best
models (2- to 5-SNP models) addressing the breast can-
cer association. The 2-SNP model, i.e., SNPs (1, 4) in
genotype 2-2, indicates the borderline significance with
Table 3 The odds ratio of the best SNP models associated wit

Combined SNP no. (specific SNPs) SNP Genotypes Case no./contro

2-SNP (1-4) 2-2 145/101

Others 200/189

3-SNP (1-2-4) 2-1-2 58/31

Others 287/259

4-SNP (1-3-4-5) 2-2-2-1 78/53

others 267/237

5-SNP (1-2-3-4-5) 1-2-3-1-1 14/0

Others 331/290

Bold letters: The SNP models associated with breast cancer are significant (P value <
*Difference (%) = Frequency of cases (breast cancer group) - Frequency of controls.
breast cancer (OR: 1.357, P = 0.064). The 3-SNP model,
i.e., SNPs (1, 2, 4) in genotype 2-1-2, indicates three
SNPs (rs12320939, rs12313273, and rs6486795) have a
significant association when their genotypes are GT, TT,
and TC, respectively (OR: 1.689, P = 0.028). The 5-SNP
model, SNPs (1, 2, 3, 4, 5) in genotype 1-2-3-1-1, indi-
cates all SNPs (rs12320939, rs12313273, rs7135617,
rs6486795, and rs712853) have a strongly association
when their genotypes are GG, TC, TT, TT, and TT, re-
spectively (OR: 13.148, P = 0.013).
Discussion
GA is a robust non-parametric method that detects non-
linear interactions amongst multiple discrete genetic fac-
tors. The advantage of GA is that the method can
directly search the good models from the huge number
of possible combinations without the training data set.
In this study, the fitness function is designed based on
the unbalanced data set to compute the difference be-
tween case data set and control data set. The function
can effectively measure high-risk to search the good
model in real data set.
In current study, the OR values of 2- to 3-SNP models

are larger than 1 but small, suggesting that the cumula-
tive effect of these four SNPs (rs12320939, rs7135617,
rs6486795, and rs712853) are weak. When five SNPs in-
cluded, the OR value is 13.148, indicating that the cumu-
lative effect of 5-SNP model becomes strong. This
unstable cumulative effect of SNP combinations in SNP
models may be partly explained by the experiment de-
sign that these five SNPs were only derived from a single
gene ORAI1. Because breast cancer is a kind of multi-
gene disease [27-30], therefore, SNPs derived from more
genes included in association studies may reveal the cu-
mulative effect effectively [9,11,12,31-33]. Accordingly,
the differential performance of the cumulative effects of
SNPs from single gene and multigene is worth of further
investigation in future.
h breast cancer

l no. Cancer (%) Difference (%)* Odds ratio (95%CI) P value

58.94 7.20 1.357 0.064

51.41 (0.983-1.873)

65.17 6.12 1.689 0.028

52.56 (1.058-2.694)

59.54 4.33 1.306 0.180

52.98 (0.884-1.930)

100.00 4.06 13.148 0.013

53.30 (1.726-100.142)

0.05).
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The computational complexity of GA is calculated by
a fitness function of computation. Suppose n iterations
is implemented in a test, the computational complexity
of GA is O(n) which represents the big-O in complexity
analysis. GA in search of good association model has the
below advantages: (1) GA effectively identify the high-
risk models in high-order interaction, (2) the best model
with statistical significant can be fast identified, and (3)
it only has two parameters to need setting and is easily
to fulfil for searching the good model. Further, GA is
able to analyze high order SNP interactions amongst the
huge number of SNPs from GWAS and pharmacogen-
omics studies in our experiences.

Conclusions
Although the polymorphisms of ORAI1 gene have been
reported to associate with inflammatory diseases [34-36],
effects of SNP-SNP interaction to diseases are still unclear.
In this study, the GA successfully identified appropriate
models of SNP-SNP interactions in breast cancer associ-
ation study in terms of five SNPs in ORAI1 gene. The
resulting SNP models can predict the breast cancer sus-
ceptibility more effective than the individual SNPs. This
methodology can also apply to any kinds of SNP associ-
ation studies, such as GWAS, pharmacogenomics and
others. Therefore, the possible cumulative effect of SNP
combination will be uncovered by this methodology.
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