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Acidic extracellular pH promotes epithelial
mesenchymal transition in Lewis lung
carcinoma model
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Abstract

Background: Epithelial mesenchymal transition (EMT) is thought to be an essential feature of malignant tumor cells
when they spread into the stroma. Despite the extracellular acidity of tumor tissues, the effect of acidic extracellular
pH (pHe) on EMT in carcinoma models, including the Lewis lung carcinoma (LLC) model, remains unclear.

Methods: High and low metastatic LLC variants were generated by repeated tail vein injection of metastatic cells.
DMEM/F12 medium, which has been supplemented with 15 mM HEPES, 4 mM phosphoric acid, and 1 g/L NaHCO3

and adjusted to the desire pH with HCl or NaOH, was used for cell culture. EMT marker gene expression was
determined by quantitative reverse transcription-polymerase chain reaction. Migration and invasion activities were
analyzed by wound healing assay and the Boyden chamber assay through Matrigel®, respectively.

Results: Low metastatic variant LLCm1 cells showed a cobble-stone like morphology at pHe 7.4. At pHe 6.8, however,
their morphology became fibroblastic, similar in shape to high metastatic variant LLCm4 cells. Steady state levels of
matrix metalloproteinase-9 (Mmp9) mRNA were induced by acidic pHe, maximizing at pH 6.8, with the levels of Mmp9
mRNA higher in LLCm4 than in LLCm1 cells. Both variants showed decreased levels of E-cadherin and increased levels
of vimentin at pHe 6.8. Acidic pHe also induced expression of mRNAs encoding the E-cadherin repressors, Zeb2, Twist1
and Twist2, as well as enhancing cell motility and in vitro invasion through Matrigel®.

Conclusions: Acidic pHe can induce EMT in some types of carcinoma.
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Background
Cancer metastasis involves complex steps. The invasion
of cancer cells into surrounding tissues is accompanied
by a change in properties from epithelial to mesenchymal,
i.e., epithelial mesenchymal transition (EMT). EMT can be
induced by cytokines and growth factors, such as epi-
dermal growth factor (EGF), basic fibroblast growth
factor (bFGF/FGF2), and transforming growth factor-β
(TGF-β), either alone or in combinations. EMT is also
accompanied by up-regulation of the expression of
vimentin, N-cadherin, and E-cadherin repressors such
as Snail, Slug, Twist1, Twist2, Zeb1, and Zeb2 (see [1]
* Correspondence: yasumasa-kato@umin.ac.jp
1Department of Oral Function and Molecular Biology, Ohu University School
of Dentistry, Koriyama, Japan
4Department of Oral Physiology and Biochemistry, Ohu University Graduate
School of Dentistry, Koriyama, Japan
Full list of author information is available at the end of the article

© 2014 Suzuki et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
for review). Down-regulation of E-cadherin causes dys-
function at adherence junctions, leading to detachment
of cancer cells from their primary site [2].
Acidic extracellular pH (pHe) is an important feature

of solid tumors [3] that induces tumor metastasis [4].
Indeed, acidic pHe is an important microenvironmental
factor in metastasis induction [5]. Using mouse meta-
static B16 melanoma cells, we found that acidic pHe in-
duces cellular expression of matrix metalloproteinase-9
(MMP-9) and induces morphological changes to a fi-
broblastic phenotype [6]. In addition, acidic pHe was
found to induce EMT-like changes in human melan-
oma cells [7]. Melanomas are tumors that are trans-
formed from melanocytes derived from the neural
crest, but do not show typical properties of EMT [8].
These results suggested that acidic pHe may act as a
microenvironment inducing EMT in carcinoma models.
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Here, we tested this hypothesis using two variants of
Lewis lung carcinoma (LLC) with different metastatic
activities.

Results
Establishment of LLC variants with different metastatic
abilities
To compare the effect of acidic pHe on metastatic poten-
tial, we established two LLC variants (LLCm1 and LLCm4)
by repeating cycles of the experimental pulmonary metas-
tases. LLCm1 cells had a cobble-stone like morphology
and were tightly attached to each other, whereas LLCm4
cells had a spindle shaped morphology and were scattered
(Figure 1A). The metastatic potential of LLCm4 cells was 9
times higher than that of LLCm1 cells (Figure 1B).

Acidic pHe induces MMP-9 production
As shown previously, MMP-9 is an acidic pHe-signal target
gene, with the acid-induced level of MMP-9, but not
MMP-2, expression positively correlated with the meta-
static potential of mouse B16 melanoma variants [6]. We
therefore assessed whether acidic pHe induces MMP-9
production, and whether its level correlated with the meta-
static potential of the two LLC variants. MMP-9 produc-
tion by both variants was clearly pHe dependent (Figure 2),
with maximal production at pHe 6.8. The acid pHe stimu-
lated expression of MMP-9 was much higher by LLCm4
than by LLCm1 cells, while LLCm4 cells produced consti-
tutively higher level of MMP-9 as the basal level at pHe

7.4. Although MMP-2 level was also slightly induced by
acidic pHe, the highly metastatic LLCm4 cells produced
much less MMP-2 than LLCm1 cells. This finding was in
accordance with the mouse B16 melanoma model, in that
Figure 1 Morphology and metastatic abilities of LLC variants. A. Photo
logarithmic phase cells grown in 10% FBS-containing medium. Bar, 100 μm
weeks later, foci that had metastasized to the lungs were counted. Represe
***P<0.001.
MMP-2 levels are high in parental B16 cells but negligible
in highly metastatic B16-F10 and B16-BL6 cells [6].
MMP-9 induction by acidic pHe was also confirmed

by reverse transcription-quantitative polymerase chain
reaction (RT-qPCR). Accordance with zymographic ana-
lysis (Figure 2), the basal level of Mmp9 mRNA at pHe

7.4 was higher in LLCm4 cells than LLCm1 cells. Acid
pHe enhanced the steady state levels of Mmp9 mRNA
2-fold in LLCm1 cells and 6-fold in LLCm4 cells
(Figure 3). In addition to Mmp9, Mmp3, and Mmp13
mRNA expressions were also stimulated by acidic pHe.
Although induction of MMP-2 secretion was observed
(see Figure 2), increase in Mmp2 mRNA expression was
not statistically significant, suggesting a possibility that
acidic pHe affects the efficiency of protein translation.
Mmp14 mRNA, whose protein is critical for MMP-2
activation, was higher in LLCm1 cells than LLCm4 cells
and was not affected by acidic pHe.

Acidic pHe induces morphological changes to a
fibroblastic morphology
Since the optimal pHe value for MMP-9 induction was
about pH 6.8, further experiments compared the effects
of neutral (pH 7.4) and acidic (pH 6.8) pHe. At neutral
pHe, LLCm1 cells had a cobble-stone appearance. When
cultured at acidic pHe, however, their morphology
became fibroblastic and of similar shape as LLCm4 cells
(Figure 4). In contrast to LLCm1 cells, change in pHe

did not induce morphological changes in LLCm4 cells.
These morphological observations suggested that acidic
pHe may induce EMT, however, the interesting lack of
effect in the already mesenchymal cells should be
mentioned.
graphs taken under an inverted phase contrast microscope of
. B. Cells were injected into the tail veins of syngeneic mice. Three
ntative results were shown from two independent experiments.



Figure 2 Acidic pHe induces MMP-9 production. Sub-confluent cells were cultured overnight in serum-free medium at pH 7.4 and stimulated
with serum-free medium at the indicated pH. After 24 h, the conditioned medium was collected, concentrated, and analyzed by gelatin zymography.
A. A clear zone indicates gelatinolytic activity. B. Intensity of zymogram was quantified by Scion Image (Scion corp., Frederick, MD, USA). Representative
results were shown from three independent experiments. *P < 0.01; **P < 0.01; ***P < 0.001; NS, not significant.
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Acidic pHe induces EMT-related gene expression
To determine whether acidic pHe induces EMT, we
analyzed the expression of E-cadherin and vimentin using
immunocytochemistry. In LLCm1 cells, E-cadherin and
vimentin were significantly down- and up-regulated, re-
spectively, by acidic pHe, findings typical of EMT (Figure 5).
Interestingly, increase in ectodomain of E-cadherin was
observed especially in LLCm1 cells (Figure 5E), suggesting
that E-cadherin shedding was occurred by acidic pHe.
Expression of Cdh1 (E-cadherin) mRNA in both LLCm1
and LLCm4 cells was significantly decreased by incubation
at acidic pHe (Figure 6). Moreover, acidic pHe increased
the expression of Vim (vimentin) mRNA in both variants,
but the difference was significant only in LLCm1 cells. Be-
cause LLCm4 is highly metastatic, vimentin expression
may have been increased by other stimulatory systems,
resulting in acidic pHe having a weak effect on vimentin
production by these cells.
Since several repressors of E-cadherin expression have

been described, we tested the effects of acidic pHe on
the expression of these repressor(s) by RT-qPCR tech-
nology. Incubation at acidic pHe induced steady state
levels of Twist1, Twist2, and Zeb2 mRNAs (Figure 7),
with these levels inversely correlated with E-cadherin
expression, suggesting that Twist1, Twist2, and Zeb2
were involved in acidic pHe signaling that repressed
E-cadherin expression. Zeb2 mRNA level showed that
highest degree of induction, suggesting that Zeb2 was
primarily responsible for acidic pHe-induced EMT. In
contrast, acidic pHe had little effect on Snail, Slug, and
Zeb1 mRNA levels, suggesting that these molecules may
be little involved in acidic pHe-induced EMT.

Acidic pHe induces cell migration and invasion
Migration activity was determined using wound healing
assays. Cells that formed a confluent sheet were scratched
with a plastic tip, and the distance between the wound
edge and the migration front were estimated. As expected,
LLCm4 cells showed higher migration (Figure 8) and
in vitro invasion (Figure 9) activities than LLCm1 cells.
Both LLCm1 and LLCm4 cells migrated significantly
further under acidic than neutral conditions. Furthermore,
acidic pHe stimulated the in vitro invasion activity of both
cell lines.



Figure 3 Acidic pHe induces not only Mmp9 but also Mmp3 and Mmp13 mRNA expressions but not obvious Mmp2 and Mmp14 mRNA
expressions. Sub-confluent cell cultures were pretreated overnight with serum-free medium at pH 7.4 and stimulated by serum-free media at
pH 6.8 or 7.4. After 24 h, total RNA was extracted, reverse-transcribed, and amplified by qPCR with specific primer sets. Data are shown as relative
expression compared with LLCm1 cells cultured at pH 7.4. Representative results were shown from three or more independent experiments.
**P < 0.01; ***P < 0.001; NS, not significant.

Figure 4 Morphological changes of LLC variants in acidic
medium. Cultures were pretreated overnight with serum-free
DMEM/12 at pH 7.4 and incubated in serum-free medium at pH 6.8
or 7.4 for 24 h. Photographs were taken under an inverted phase
contrast microscope. Representative results were shown from three
or more independent experiments. Bar, 50 μm.

Suzuki et al. Cancer Cell International 2014, 14:129 Page 4 of 11
http://www.cancerci.com/content/14/1/129
Discussion
Although reports using mouse [6] and human [7,9] melan-
oma models have shown that acidic pHe induced EMT-like
changes and increased invasive potential, the effects of
acidic pHe on EMT in carcinoma models were unclear. We
therefore examined the effect of an acidic microenviron-
ment on EMT in a carcinoma model using the LLC cell
line. We found that acidic pHe induces EMT in a carcinoma
model, similar to findings in the melanoma model [6,7].
Typically, EMT includes the down-regulation of E-

cadherin and the up-regulation of vimentin, N-cadherin,
fibronectin, and MMP-9 expression [10,11]. The down-
regulation of E-cadherin is driven by specific repressors,
including Snail, Slug, Twist1, Twist2, Zeb1, and Zeb2 [1].
TGF-β induces EMT by increasing in Zeb1, Snail, Slug,
and Twist1 mRNA expression through Smad2 and Erk1/2
signaling [12]. In contrast, we found that acidic pHe-
induced EMT was accompanied by up-regulation of
expression of Twist1, Twist2, and Zeb2 mRNAs, but
not by changes in Snail, Slug, and Zeb1 mRNA levels.
In contrast, we found that TGF-β induces EMT along
with MMP-9 expression [11], findings observed in



Figure 5 Acidic pHe induces vimentin but reduces E-cadherin expression. Cultures were pretreated overnight with serum-free DMEM/12 at
pH 7.4 and treated for 24 h with acidic serum-free medium at pH 6.8 and 7.4. The cells were subsequently fixed and incubated with antibodies to
vimentin (A & B) and E-cadherin (C & D). FITC-labeled signals were detected by fluorescence microscopy. (A & C) Representative results were
shown from three or more independent experiments. Immuno-positivity was caliculated and their positivity was shown as relative values compared to
LLCm1 cells at pHe 7.4. Bar, 50 μm. *P < 0.05; **P < 0.01; NS, not significant. E. Western blot analysis for E-cadherin. After incubation of cells at pH 6.8,
as described above, cells were lysed and analyzed by Western blotting. CM was concentrated and analyzed to detect shedded E-cadherin level in
the CM.
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acidic pHe. Therefore, aside from MMP-9 induction,
EMT induction by acidic pHe is via a somewhat differ-
ent mechanism than TGF-β-triggered EMT.
NF-κB has been regarded as a key molecule for acidic

pHe signaling. NF-κB not only induces the expression of
Snail, Twist1, Slug, and Zeb2 mRNAs [13] but also
blocks ubiquitination followed by the stabilization of
Snail [14]. In some cases, NF-κB-induced EMT was
accompanied by MMP-9 expression [15,16]. Metastatic
cells of mesenchymal origin secrete abundant amounts of
MMP-9 [17]. In addition, as we reported previously, acidic
pHe induces MMP-9 expression in mouse melanoma cells
through NF-κB activation with change to a fibroblastic
morphology [6,18,19]. These observations suggested that
induction of MMP-9 expression through NF-κB was
deeply associated with EMT.
TGF-β was shown to induce the expression of MMP9

mRNA but decrease the expression of MMP2 mRNA by
human oral squamous cell carcinoma cell lines [20]. We
have shown that acidic pHe induces abundant MMP-9
production by the highly metastatic B16 variants, B16-F10
and B16-BL6 [6]. Although MMP-2 was expressed in
parental B16 cell, little was expressed in the low and high
metastatic variants, B16-F1, B16-F10 and B16-BL6. Using



Figure 6 Acidic pHe induces Vim (vimentin) but reduces Cdh1
(E-cadherin) mRNA expression. Sub-confluent cultures were
pretreated with serum-free medium at pH 7.4 and incubated in
serum-free medium at pH 6.8 and 7.4. After 24 h, total RNA was
extracted, reverse-transcribed, and amplified by qPCR with specific
primer pairs. Data are shown as relative expression compared with
their levels in LLCm1 cells cultured at pH 7.4. Representative results
were shown from three independent experiments. *P < 0.05; NS,
not significant.

Figure 7 Acidic pHe induces Twist1, Twist2 and Zeb2 but not
Snail, Slug, and Zeb1 mRNA expression. Sub-confluent cells were
washed twice with PBS(−), pretreated with serum-free medium at
pH 7.4, and incubated in serum-free medium at the indicated pH.
After 24 h, total RNA was extracted, reverse-transcribed, and
amplified by qPCR with specific primer sets. Data are shown as
relative expression compared with their levels in LLCm1 cells
cultured at pH 7.4. Representative results were shown from three
or more independent experiments. *P < 0.05; ***P < 0.001; NS,
not significant.
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Figure 8 Acidic pHe induces migration activity. Confluent
cultures were scratched with micropipette tips and further cultured in
2% serum-containing medium adjusted to pH 7.4 or 6.8. Photographs
were taken and cell migration was measured. A. Phase contrast
micrograph. B. Migrated distance relative to LLCm1 cells at pH 7.4.
Representative results were shown from three independent
experiments (n = 8). *P < 0.05; **P < 0.01. C. Relative numbers of
invasive cells compared with LLCm1 cells at pH 7.4.” between
“B. Migrated distance relative to LLCm1 cells at pH 7.4.” and
“Representative results were shown from three independent
experiments (n = 8).

Figure 9 Acidic pHe induces invasive activity. Confluent cultures
were serum-starved and treated with serum-free medium at pH 7.4
or pH 6.8 for 18 h. The conditioned medium was collected and the
cells were harvested by trypsinization. The cells were subsequently
incubated with 10% FBS for 30 min to inhibit trypsin activity, washed
twice with PBS(−) and resuspended in their own conditioned
medium. The chemoattractant was 20% FBS. A. Phase contrast
micrograph. B. Relative numbers of invasive cells compared with
LLCm1 cells at pH 7.4. Representative results were shown from three
independent experiments. *P < 0.05; ***P < 0.001.
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an LLC model, we observed findings similar to those in
the B16 melanoma lines. Reduction of MMP-2 activation
was reported due to increased intracellular Ca2+ [21]. In
contrast, we previously showed that elevation of intracel-
lular Ca2+ induced MMP-9 expression [19]. Although
acidic pHe induces a Ca

2+ influx, its mechanism of expres-
sion of MMP-2 is still unclear.
EMT includes the suppression of the epithelial marker

E-cadherin. Immunocytochemical staining showed that
incubation in acidic pHe markedly reduced E-cadherin
expression, but had little effect on the expression of
Cdh1 (E-cadherin) mRNA. Acidic pHe did not affect the
half life of Cdh1 mRNA level (data not shown). Interest-
ingly, E-cadherin was increased in CM, especially in
LLCm2 cells, by acidic pHe. Because MMP-9 catalyzes E-
cadherin ectodomain shedding during EMT [22,23], acidic
pHe-induced MMP-9 production may not only promote
extracellular matrix degradation but also E-cadherin shed-
ding to induce EMT.
Signal cross talk is also important in EMT. For example,

in an oral squamous cell carcinoma model, the combin-
ation of TGF-β1 and EGF, but not either alone, induced
cell scattering activity [24]. Similarly, TGF-β sensitizes
cells to basic FGF/FGF-2 stimulation to induce EMT [25].
Thus, intracellular signaling pathways seem to be com-
plex. Acidic pHe can arise through the production of
lactate and/or the generation of excess amounts of CO2

through the pentose-phosphate pathway [26]. Because
hypoxia induces EMT [27], acidic pHe-induced EMT may
be modulated by hypoxia.
Acidic pHe induces the expression of many genes,

including MMP-9 [6,28], VEGF-A [29-31], VEGF-C [32],
interleukin-8 [33-35], the inducible isoform of nitric
oxide synthase (iNOS) [36], platelet-derived endothelial
cell growth factor (PDGF)/thymidine phosphorylase [37],
and acidic sphyngomyelinase [19], as well as Twist1,
Twist2, Zeb2, vimentin, MMP-3, and MMP-13, which
were shown in this study. In addition, acidic pHe can
affect cell migration, stress fiber formation, invasion and
metastasis [4,9]. Thus, acidic pHe acts as a microenviron-
mental factor that promotes malignant phenotypes, such
as metastatic ability.
LLC is thought to originate from a cancer derived from

granular pneumocytes and to be equivalent to a human al-
veolar cell carcinoma (squamous cell carcinoma) [38].
Therefore, LLC is regarded as a mouse model of non-small
cell lung cancer [39,40]. Acidic pHe-induced EMT may also
be involved in the origins of other types of squamous cell
carcinoma such as head and neck and esophageal cancers.

Conclusion
These findings suggest that acidic pHe constitutes an
important microenvironment that induces EMT in some
types of carcinoma.
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Methods
Reagents
Dulbecco’s modified Eagle medium (DMEM), Ham’s F12
medium, and High Capacity RNA-to-cDNA kit were pur-
chased from Life Technologies (Grand Island, NY, USA).
Realtime PCR master mix was from Takara (Tokyo,
Japan). Anti-vimentin polyclonal antibodies was from
ImmunoResearch Laboratories (Grove, PA, USA). Anti-E-
cadherin monoclonal antibody was from Santa Cruz
(G-10, Santa Cruz, CA, USA) Avidin-conjugated fluores-
cein isothiocyanate (FITC) was from Vector Laboratories
(Burlingame, CA, USA), and N102 blocking reagent was
from NOF Corporation (Tokyo, Japan). Fetal bovine
serum (FBS) was from Hyclone (South Logan, UT, USA).
DC protein assay kits (based on the Lowry method) were
Table 1 Primer sets for RT-qPCR analysis

Gene Sequences

β-actin Forward: 5′-CATCCGTAAAGACCTCTATGCC

Reverse: 5′-ATGGAGCCACCGATCCACA-3′

Mmp2 Forward: 5′-AGGCAGTAGAGTAAGGGGATC

Reverse: 5′-TAGAAAGTGTTCAGGTATTGCA

Mmp3 Forward: 5′-TGAAGCATTTGGGTTTCTCTACT

Reverse: 5′-GATGCCTTCCTTGGATCTCTTT-3

Mmp9 Forward: 5′-GCCCTGGAACTCACACGACA-3

Reverse: 5′-TTGGAAACTCACACGCCAGAAG

Mmp13 Forward: 5′-TCCCTGGAATTGGCAACAAAG-3

Reverse: 5′-GCATGACTCTCACAATGCGATTA

Mmp14 Forward: 5′-TCTTCAAGGAGCGATGGTTCT-3

Reverse: 5′-CAGGGAGGCTTCGTCAAACA-3

Vim Forward: 5′-GGACGTTTCCAAGCCTGACCTC

Reverse: 5′-CCGGTACTCGTTTGACTCCTGC-

Cdh1 Forward: 5′- ATTGCAAGTTCCTGCCATCCTC

Reverse: 5′-CACATTGTCCCGGGTATCATCA-

Cdh3 Forward: 5′-TCGTGAGGACGAGCAGTTTG-3′

Reverse: 5′-GCCATGGTCGTTGATGTCAG-3′

Snail Forward: 5′-AGGACGCGTGTGTGGAGTTC-3′

Reverse: 5′-TGGGAGCTTTTGCCACTGTC-3′

Slug Forward: 5′-CATTCGAACCCACACATTGCC-3

Reverse: 5′-AGAGAAAGGCTTTTCCCCAGTG

Twist1 Forward: 5′-GCCGGAGACCTAGATGTCATTG

Reverse: 5′-ACGCCCTGATTCTTGTGAATTTG

Twist2 Forward: 5′-GCAAGCCAGGACCCACC-3′

Reverse: 5′-GTCATGAGGAGCCACAAGGT-3

Zeb1 Forward: 5′-GCTGGCAAGACAACGTGAAAG

Reverse: 5′-AGGATAAATGACGGCGGTGT-3

Zeb2 Forward: 5′-AGACTTCACAGATCGAGCCT-3′

Reverse: 5′-CCTCCTGGGATTGGCTTGTT-3′
*Accession number of the National Center for Biotechnology Information (NCBI).
from Bio-Rad Laboratories (Hercules, CA, USA), and
Isogen RNA extraction kits were from Nippon Gene
(Tokyo, Japan). Transwell chambers with 8 μm pores were
from BD Bioscience (Franklin Lakes, NJ, USA). Matrigel®
was from Corning (Tewksbury, MA, USA).

Cells and cell culture
The LLC cell line, a squamous cell carcinoma cell line
derived from granular pneumocytes and equivalent to
human alveolar cell carcinoma [38], was the kind gift
of Dr. Ryu-Ichro Hata (Kanagawa Dental University,
Yokosuka, Japan). LLC cells were cultured in DMEM/
F12 (a 1:1 mixture of DMEM and Ham’s F12 media,
adjusted to pH 7.4 with 15 mM HEPES, 4 mM phos-
phorus, 1 mg/ml NaHCO3), supplemented with 10% FBS
Product size (bp) Accession number*

AAC-3′ 186 NM_007393

G-3′ 279 NM_008610.2

CTG-3′

-3′ 134 NM_010809

′

′ 85 NM_013599

-3′

′ 120 NM_008607.2

C-3′

′ 182 NM_008608.3

′

-3′ 198 NM_011701

3′

-3′ 145 NM_009864

3′

130 NM_007665

235 NM_011427

′ 112 NM_011415

-3′

-3′ 149 NM_011658

-3′

100 NM_007855

′

-3′ 116 NM_011546

′

146 NM_015753
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at 37°C in a humidified atmosphere of 5% CO2 and 95%
air. The cells were passaged with 0.05% trypsin/0.02%
EDTA. The pH of the medium was adjusted with NaOH
or HCl and measured after incubation in the CO2 incuba-
tor for 3 h.

Experimental metastasis and in vivo selection of
metastatic variants
Cells (3 × 105 cells) were resuspended in 200 μl Ca2+- and
Mg2+-free Dulbecco’s phosphate-buffered saline (PBS(−))
and injected into the tail vein of a C57BL/6 mouse (Clea
Japan, Tokyo, Japan). Three weeks later, the mice were
sacrificed under anesthesia with an excess dose of pento-
barbital and the metastasized foci in the lungs were
counted.
Variants with different metastatic potential were estab-

lished as described [41]. Briefly, LLC parental cells were
injected into the tail vein of a syngeneic C57BL/6 mouse.
Three weeks later, the mice were sacrificed, and metasta-
sized foci were taken from the lungs, treated with trypsin/
EDTA and cultured in DMEM/F12 + 10% FBS. These
cells, referred to as LLCm1 cells, were again injected into
mouse tail veins and metastasized foci in the lungs were
cultured. The cells obtained after 4 cycles were the high
metastatic variant, referred to as LLCm4 cells.
All animal protocols were approved by the Animal

Use Committee of Ohu University.

Preparation of conditioned medium for zymography
Conditioned media were prepared essentially as described
[6], with modifications. Briefly, serum-free conditioned
media were taken from cultured cells, and proteins were
precipitated by addition of 2.5 volumes of acetone. The
samples were reconstituted in PBS(−) or 0.5 mM Tris–HCl
(pH 6.8) supplemented with 1% SDS and 0.2% glycerol.

Zymography
Zymography on gelatin-containing sodium dodecyl sulfate
(SDS)-7.5% polyacrylamide gels was performed as described
[19]. Briefly, concentrated samples were electrophoresed in
0.1% gelatin-containing 7.5% polyacrylamide gels. The gels
were washed with 2.5% Triton X-100 at room temperature
with gentle shaking for 1 h and incubated for 20 h in
reaction buffer (50 mM Tris–HCl (pH 7.5), 10 mM CaCl2)
at 37°C. Gelatinolytic activity was visualized by Coomassie
Brilliant Blue R250 staining. Activity was normalized rela-
tive to cell number or protein concentration, with the latter
determined by the Lowry method using bovine serum albu-
min as the standard.

RT-qPCR
Total RNA was extracted by Isogen and transcribed into
cDNA using reverse transcriptase. Quantitative PCR was
performed using specific primer sets (Table 1) according
to the manufacturer’s protocol.

Immunocytochemistry
Cells were fixed in 4% paraformaldehyde and blocked with
20% N102 blocking reagent in Tris-buffered saline
(20 mM Tris, pH 7.5, 150 mM NaCl, supplemented with
0.05% Tween 20 (TBS-T). The cells were incubated over-
night at 4°C with primary antibody, washed extensively,
incubated with biotin-conjugated secondary antibody,
washed, and treated with avidin-conjugated fluorescein
isothiocyanate (FITC). The cells were viewed by fluores-
cence microscopy (EVOS® FLoid® Cell Imaging Station,
Life Technologies, Carlsbad, CA, USA).

Wound healing (scratch) assay
Wound healing assays were performed as described,
with slight modifications [42]. Briefly, confluent cultures
were serum-starved for 24 h and scratched off with a
micropipette tip. The cells were cultured in medium
containing 0.2% FBS at pH 7.4 or pH 6.8. After indicated
time period, photographs were taking and estimated
wound distance.

In vitro invasion assay
In vitro invasive activity was determined using Matrigel®-
coated filter mounted transwell chambers (Corning,
Tewksbury, MA, USA) as described [43]. Briefly, cells were
serum-starved overnight at pH 7.4 and then further main-
tained in serum-free media at pH 7.4 or 6.8 for 18 h. The
cells were harvested with 0.05% trypsin/0.02% EDTA and
incubated at 37°C for 30 min in medium containing 10%
FBS to inhibit trypsin activity. The cells were washed twice
with PBS(−), re-suspended in serum-free medium at
pH 7.4 or 6.8, and inoculated at density of 5 × 105 cells/
100 μl/chamber onto a Matrigel® (37.9 μg/cm2)-coated
filter in the insert, which had been mounted onto a well of
a 24 well plate, with each well filled with 600 μl 10% FBS-
containing medium adjusted to each pH. After incubation
for 18 h, non-invasive cells were scraped off with a cotton
swab and invasive cells were fixed in 100% methanol,
stained with hematoxylin, and counted under light micro-
scope (×200).

Statistical analysis
Between group differences were compared using Student’s
t-tests or ANOVA. Statistical significance was defined as a
p value less than 0.05.

Abbreviations
EMT: Epithelial mesenchymal transition; FGF: Basic fibroblast growth factor;
TGF-β: Transforming growth factor-β; pHe: Extracellular pH; MMP-9: Matrix
metalloproteinase-9; LLC: Lewis lung carcinoma; RT-qPCR: Reverse
transcription-quantitative polymerase chain reaction; DMEM: Dulbecco’s
modified Eagle medium; FBS: Fetal bovine serum; PBS(−): Ca2+- and
Mg2+-free Dulbecco’s phosphate-buffered saline.
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