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Implications of miR cluster 143/145 
as universal anti‑oncomiRs and their 
dysregulation during tumorigenesis
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Abstract 

Tumorigenesis is a multistep process, de-regulated due to the imbalance of oncogenes as well as anti-oncogenes, 
resulting in disruption of tissue homeostasis. In many cases the effect of oncogenes and anti-oncogenes are medi-
ated by various other molecules such as microRNAs. microRNAs are small non-coding RNAs established to post-
transcriptionally regulate more than half of the protein coding genes. miR cluster 143/145 is one such cancer-related 
microRNA cluster which is down-regulated in most of the cancers and is able to hinder tumorigenesis by targeting 
tumor-associated genes. The fact that they could sensitize drug-resistant cancer cells by targeting multidrug resistant 
genes makes them potent tools to target cancer cells. Their low levels precede events which lead to cancer progres-
sion and therefore could be considered also as biomarkers to stage the disease. Interestingly, evidence suggests the 
existence of several in vivo mechanisms by which this cluster is differentially regulated at the molecular level to keep 
their levels low in cancer. In this review, we summarize the roles of miR cluster 143/145 in cancer, their potential prog-
nostic applications and also their regulation during tumorigenesis.
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Background
Cancer is a complex condition arising from the accu-
mulation of several genetic alterations privileged to 
deregulated cell division. Extensive research to unveil the 
molecular mechanisms of tumorigenesis led to the char-
acterization of a large number of genes as oncogenes and 
anti-oncogenes. It was thought that alterations in these 
molecules are the reasons leading to cancerous growth 
until the involvement of microRNAs (miRNAs) was 
exposed. miRNAs are endogenous small (about 22 bp in 
length); non-coding, regulatory RNAs present in a wide 
variety of organisms and are located in the intronic or 
non-intronic regions of protein-coding genes transcribed 
either along with the genes or independently. miRNAs are 
transcribed as long primary RNAs by RNA polymerase 
II [1] which then undergo two steps of processing: first 
in the nucleus by the RNase III-type protein Drosha [2] 

and DGCR8 [3, 4] generating pre-miRNAs and second by 
Dicer, after exported to the cytoplasm by Exportin-5 or 
Exportin-1 [5], to produce mature miRNAs. Mature miR-
NAs then act as negative regulators of gene functions by 
becoming a part of the RNA-induced silencing complex 
(RISC) [1] and target their downstream mRNAs by base-
pairing to their complementary sequences mostly at the 
3′UTR region which results in the degradation of target 
mRNAs and/or inhibition of translation, thereby decreas-
ing the specific gene expression [6, 7]. Most miRNAs 
are evolutionarily conserved and display diverse tempo-
ral and tissue-specific expression pattern [8–10]. A sin-
gle miRNA can target and regulate more than hundreds 
of mRNAs, and one mRNA can be targeted by multiple 
miRNAs [11–13]. miRNAs contribute to a different level 
of molecular regulation, thus being involved in various 
roles in cellular and developmental functions, such as 
dorso-ventral axis and temporal pattern formation [14, 
15], cell death and cell proliferation [16, 17], neuronal dif-
ferentiation [18], stem cell proliferation and maintenance 
[19, 20] and also, in embryonic development [21].
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Recently, miRNAs have gained tremendous attention in 
the field of cancer research. Altered miRNA expression 
can lead to cellular de-differentiation, oncogenesis, can-
cer metastasis and tumor invasion [22]. miRNA de-regu-
lation is considered as a common hallmark of cancer [23], 
scoring miRNAs as important diagnostic and therapeu-
tic targets. Calin et al. reported for the first time that two 
miRNAs, miR-15 and miR-16, were involved in the devel-
opment of chronic lymphocytic leukemia [24] followed 
by He et al. who demonstrated that expression of miR-17-
92 cluster could enhance c-Myc-induced tumorigenesis 
marking this cluster to be the first potential non-coding 
oncogene, referred to as oncomiR-1 [25]. Likewise, let-7 
family of miRNAs was reported to regulate expression of 
a proto-oncogene, the RAS protein [26, 27], and hence 
were coined as anti-oncomiRs. Later, many miRNAs have 
been reported to have roles in oncogenesis and miR clus-
ter 143/145 is one among them having anti-oncogenic 
effects in many cancers which are being discussed in this 
review in detail.

miR cluster 143/145
miR cluster 143/145 comprises of two miRNAs, miR-143 
and miR-145, that have significant roles in various cel-
lular functions and are co-expressed in a variety of cell 
types and tissues [28]. These miRNAs are transcribed 
from a putative cluster on chromosome 5 in human 
(5q33) and chromosome 18 in mouse (18qE1), and are 
conserved across species (Fig.  1). miR-143 is separated 
from miR-145 by ~1.7  kb sequence [28]. Since they are 
in the same cluster and suggested to be transcribed 
together, it was speculated that they could be involved 
in similar functions. However, independent involvement 
of these miRNAs is also reported in many cellular pro-
cesses. Both miR-143 and miR-145 are expressed in nor-
mal tissues in significant levels, with highest expression 
in colon and lowest in liver and brain [28]. The expres-
sion of these miRNAs was considerably high in prostate, 
cervix, stomach, uterus and small intestine and low in 
kidney, placenta, testis, spleen and skeletal muscle [28]. 
This cluster is found enriched in embryonic stem cells 
which differentiate into cardiac progenitors [29] suggest-
ing an involvement in cardiac morphogenesis. They play 
a very important role in the fate specification of vascular 
smooth muscle cells since they target a number of tran-
scription factors to inhibit proliferation in order to pro-
mote differentiation [29].

miR cluster 143/145 in cancers
miR-143 and miR-145 are now regarded as tumor sup-
pressors since they target a number of genes involved 
in the tumorigenesis (Table  1), and their deregulation 
has been reported as one of the early events in cancer 

development [30, 31]. Both miR-143 and miR-145 are 
commonly seen down-regulated in a wide variety of can-
cer cell lines and tumors of the hematopoietic system, 
breast, lung, colon, prostate, the gastrointestinal system, 
ovary, cervix, head and neck, bladder [23, 32, 33], endo-
crine cancers such as thyroid, pituitary and gonads [34], 
germ-cell tumors (GCTs) [35], gallbladder cancer [36, 
37], renal cell carcinoma [38–40], osteosarcoma [41, 
42], and neuroblastoma [43, 44]. The reduced miR-145 
expression in prostate cancer (PCa) samples correlated 
with higher Gleason score, advanced stage, tumor size, 
higher prostate-specific antigen (PSA) and significantly 
shorter disease-free survival (DFS) for the PCa patients 
[45] and also associated with poor prognosis, lymph node 
metastasis and advanced stage in cervical cancers [46]. 
Low levels of miR-143 was negatively correlated with 
tumor size and lymph node metastasis in breast cancer 
while that of miR-145 was associated with dysplastic 
nodules, Hepatitis C virus-infection and metastasis in 
hepatocellular carcinoma (HCC) [47–49]. The observa-
tion that ALDH+ve/CD44+ve cancer stem cells showed 
low levels of miR-145 reinforced its importance as an 
effective approach to target the stem cell population in 
cancer [50]. Similar observations were made in case of 
glioma as well, where the decreased levels of miR cluster 
143/145 were positively correlated with poor prognosis 
and negatively correlated with ABCG2, suggesting that 
miR-145 could efficiently target stem cell-like popula-
tions and reduce the migration and invasion of such cells 
[51]. miR cluster 143/145 has also been shown to play 
crucial role in the pathogenesis of B cell malignancies. 
It is suggested that miRNAs on chromosome 5q have 
an important role in leukemia and many of the miRNAs 
on the Chr:5q including miR-145 have been found to be 
deregulated in leukemia.

Very interestingly, a significant correlation of miR clus-
ter 143/145 expression with environment-mediated can-
cer development was found in the case of lung cancer. 
Lung cancer is associated with environmental carcino-
gens such as cigarette, air pollution, and heavy metals. 
Chronic exposure of chromium [Cr(VI)], one such heavy 
metal widely used in industries, to non-tumorigenic 
human lung epithelial BEAS-2B cells resulted in the 
repression of miR-143 which in turn led to the malig-
nant transformation, suggesting that the effect of envi-
ronmental carcinogens could be mediated by miRNAs. 
Similarly, in malignant pleural mesothelioma (MPM), 
an aggressive cancer associated with long-term expo-
sure to asbestos, miR cluster 143/145 was found to be 
significantly down-regulated, suggesting that these miR-
NAs may serve as suitable biomarkers for distinguishing 
MPM from non-cancerous pleural tissues [52, 53]. Smok-
ing, another cause for lung cancer, has also a negative 
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effect on miR cluster 143/145 expression. miR-145 was 
one of the mostly down-regulated miRNAs in cigarette 
smoke-exposed lungs of rodents [54]. Whether this effect 
could predict malignant transformation, needs further 
investigation.

miR cluster 143/145 and multidrug resistance
Multidrug resistance is a phenomenon where cells 
develop resistance to a range of cytotoxic agents by 
effluxing them out with the help of transporter proteins. 
Though these transporter proteins, otherwise known as 
multidrug resistant proteins (MDR), are crucial for cell 
survival, their high expression in cancer cells has been 
a significant obstacle to successful chemotherapy. miR 
cluster 143/145 has been known to regulate MDRs in 
various cancers. miR-145 is reported to inhibit MDR1 
in intestinal cells [55] and ABCG2 in glioma cells as we 

all as in corneal cells [56]. The reduction in miR-145 
expression could be related to drug resistance potential 
of many cancer cells [57]. Reduced levels of miR-145 
caused increase in the levels of Sp1 and CDK6 thereby 
reducing the levels of Pgp and pRb, thus suggesting a 
possible the reason for increased chemoresistance in 
ovarian cancer cells [58]. Ectopic expression of miR-145 
increased the sensitivity of cells to various drugs such 
as paclitaxel and adriamycin in cervical cancer [58], as 
well as vemurafenib [59], 5-FU, irinotecan and oxalipl-
atin [60, 61] in colorectal cancer. In glioblastoma cells, 
miR-145 could sensitize the cells to temozolomide as 
well as to irradiation [62]. Likewise, adenoviral medi-
ated over-expression of miR-145 (Ad-miR-145) in breast 
cancer cells increased the sensitivity to 5-FU in  vitro 
and in  vivo, suggesting that a combination of miR-145 
with drugs like 5-FU could be a possible option to target 

Fig. 1  miR cluster 143/145 is evolutionarily conserved across species. a Schematic of chromosomal location of miR cluster 143/145 (adapted from 
UCSC genome browser. b Schematic representation of structures of miR cluster 143/145 primary transcripts and their location. Multi-species align-
ment of sequences of miR-143 (c) and miR-145 (d) (courtesy to Clustal W Omega)
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Table 1  Validated targets for miR cluster 143/145 with their cancer-related function

Target genes Type of cancer Cancer-related function References

miR-143

KRAS CRC, PCa, PaCa Proliferation [109]

MACC1 CRC Metastasis [110]

TLR2 CRC Proliferation, invasion [109]

DNMT3A CRC, BrCa, leukemia Proliferation [111–113]

Akt CRC, BC, HCC, glioma Apoptosis, proliferation [114–117]

ERK5 CRC, PCa, BC, B-cell malignancy Proliferation [115, 117–119]

Bcl2 CRC, BrCa, OC, BC Apoptosis [60, 92, 115, 120]

Survivin BrCa Apoptosis [89]

ARHGEF1 PaCa Metastasis [92]

ARHGEF2 PaCa Proliferation, invasion [121]

FNDC3B HCC Metastasis [121]

Cox2 BC, GC Metastasis [117, 131]

MMP-13 OC, lung Invasion [122, 123]

Lmk1 Lung Metastasis [124]

miR-145

Cateninδ-1 CRC Proliferation, invasion [125]

DFF45 CRC Apoptosis [126]

VEGF CRC, BrCa, OC, thyroid, GB Angiogenesis [127–130]

c-Myc CRC, PCa, EOC, BrCa, PaCa, ESCC, lung, glioma, RCC Proliferation, invasion, apoptosis [58, 131–134]

PAK4 CRC Proliferation, invasion [135]

IRS1 CRC, HCC, BC Proliferation [49]

IRS2 CRC Proliferation [84]

YES CRC Proliferation [136]

STAT1 CRC Proliferation [136]

Fascin-1 CRC, BrCa, BC, ESCC, glioma Invasion [106, 137–140]

SWAP70 PCa Invasion [141]

ERG PCa Proliferation, invasion, apoptosis, angiogenesis [142]

CD44 PCa, lung CSC [132, 134, 143]

Oct4 PCa, lung, GCT CSC [132]

KLF4 PCa, GCT CSC [144]

CDK4 Lung Proliferation [145]

CDK6 EOC, OSCC Proliferation [146]

p70S6K1 CRC, EOC Proliferation [146]

Muc-1 EOC, BrCa Invasion [146, 147]

RTKN BrCa Proliferation, invasion [148, 149]

JAM-A BrCa Proliferation [150]

ERα BrCa Proliferation [83]

RREB1 PaCa Proliferation, apoptosis [74]

HDAC2 HCC Transcriptional regulation [103]

Ets1 GC Migration, apoptosis, angiogenesis [151]

N-cadherin GC Invasion [152]

E-cadherin Thyroid Invasion [130]

EGFR Lung, glioma Proliferation [153, 154]

NUDT1 BC, lung Proliferation [153]

ROCK1 OC, glioma Proliferation, migration [155, 156]

FLT1 OC Proliferation [157]

PAK1 BC Proliferation, metastasis [158]

CBFβ BC Apoptosis [159]
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breast cancer cells [63]. The combined introduction of 
miR-143 and miR-145 in gastric cancer cell line, MKN-1 
cells resulted in a higher sensitivity to 5-fluorouracil 
(5-FU) [64]. Also, inhibition of MDM2 either by miR-143 
or miR-145 sensitized HN30 cells to cisplatin, suggesting 
that this cluster is able to reduce the chemoresistance 
in HNSCC cells too [65]. Curcumin, a proven chemo-
sensitizing agent in cancer cells, has shown to activate 
miR-145 expression in HNSCC cells [50] suggesting that 
the chemosensitizing action of certain agents could be 
mediated by miRNAs. Also, miR-143 could induce che-
mosensitivity towards docetaxel in prostate cancer [66] 
and miR-143-mediated inhibition of Lmk1 enhanced 
the sensitivity of the NSCLC cells to chemotherapy [67]. 
Role of miR cluster 143/145 in sensitizing cancer cells 

to drugs is thus an area of significance in understanding 
therapeutic interventions in cancer.

Regulation of miR cluster 143/145 in cancers
The fact that in most of the cancers miR cluster 143/145 
was found to be de-regulated points towards the exist-
ence of specific mechanisms that regulate their expres-
sion in cancer cells. When analyzed at the genetic level, 
loss of heterogeneity in the miR cluster 143/145 loci 
was detected in a number of ovarian carcinoma samples 
[68]. Li et al. found 12 Single nucleotide polymorphisms 
(SNPs) in the promoter region of miR-143/145 that 
could attribute to the etiology of colorectal tumors [69]. 
Increased methylation at CpG islands on miR-145 pro-
moter could be one reason for the reduced levels which 

CRC colorectal cancer, PCa prostate cancer, PaCa pancreatic cancer, BrCa breast cancer, GC gastric cancer, HCC hepatocellular carcinoma, OC osteosarcoma, RCC renal 
cell carcinoma, BC bladder cancer, HNSCC head and neck squamous cell carcinoma, GCT germ cell tumor, OSCC oral squamous cell carcinoma, GB gall bladder, EOC 
epithelial ovarian cancer, ESCC esophageal squamous cell carcinoma

Table 1  continued

Target genes Type of cancer Cancer-related function References

PPP3CA BC Apoptosis [159]

CLINT1 BC Apoptosis [159]

SOCS7 BC Apoptosis [160]

Ilk BC Cell division/proliferation [161]

ANGPT2 RCC Angiogenesis [40]

NEDD9 Glioma, RCC Proliferation, metastasis [40, 98]

MMP-11 RCC Metastasis [162]

CTGF Glioma Proliferation, invasion, metastasis, angiogenesis [104]

ADAM17 Glioma, RCC, HNSCC Proliferation, invasion, metastasis, angiogenesis [96]

ADAM22 Glioma Metastasis, drug resistance [106]

Abcg2 Glioma Drug resistance, CSC [51]

ADD3 Glioma Proliferation, invasion [70]

Sox9 Glioma, HNSCC Proliferation, CSC [70, 72]

Sox2 Glioma, GCT Proliferation, CSC [97, 163]

Nanog Glioblastoma CSC [97]

PLAUR Glioblastoma Metastasis [106]

SPOCK3 Glioma Invasion [106]

SLC7A5 Glioma Proliferation, metastasis [106]

AKT3 Thyroid Metastasis [205]

miR-143 and miR-145

KLF5 CRC Proliferation [61]

Myo6 PCa Migration, apoptosis [164]

GOLM1 PCa Metastasis [165]

CD133 PCa CSC [132]

IGFIR CRC, HCC, BC Proliferation [114, 166, 167]

MDM2 BrCa, HNSCC Apoptosis [65]

PAI-1 BC Migration, metastasis [168]

HK2 BrCa, HNSCC, OC, RCC, glioma Tumor initiation and maintenance [42, 86, 169–172]

N-ras BrCa, glioma Cell division, proliferation, apoptosis [117, 128, 173, 174]

ERBB3 BrCa Drug resistance [175]
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is observed in many cancers [70]. Also, HDAC has shown 
to up-regulate miR cluster 143/145 in Burkitt’s lymphoma 
cells [71]. On the other hand, Peroxisome proliferator-
activated receptor γ (PPARγ) could activate miR-145 by 
binding to PPARγ-responsive element present on the 
upstream sequence of miR-145 promoter [72].

Evidence suggests that many oncogenic as well as anti-
oncogenic factors mediate their effects through activa-
tion or inactivation of miR cluster 143/145 (Table 2). For 
example, EGFR signals negatively regulate miR cluster 
143/145 thereby removing the suppression on many posi-
tive regulators of tumorigenesis [73–76]. Ras-responsive 
element binding factor (RREB1), which is downstream 
to KRAS-MAPK signaling, was found to down- regulate 
miR 143/145 cluster expression [75]. Through RREB1, 
KRAS independently and/or together with members 
of MAPK and PI3K, has been shown to repress miR 
143/145 cluster in pancreatic cancer cells [74]. On the 
other hand, TGFβ, secreted by cells in scirrhous type of 
gastric cancer, could activate miR-143 expression in the 
neighboring stromal fibroblasts thus inducing their pro-
liferation through activation of collagen type III [77]. Up-
regulation of miR-145 mediated via p65NFkB was also 
observed in response to Resistin, an adipocyte-derived 
cytokine, thereby stimulating insulin resistance in HepG2 
cells [78]. Similarly, FoxO, a transcription factor which 

acts down stream to insulin and insulin-like growth fac-
tor receptor pathways, suppress c-Myc in RCC cells 
by up-regulating miR-145 along with Mxi1-SRα [79]. 
BRCA-1, a suppressor of breast cancer, has also proved 
to be an activator of miR-145 through directly interact-
ing with DROSHA microprocessor complex [80]. Also, 
some of the antitumor effects shown by p53 are medi-
ated through miR-145 since the abrogation of miR-145 
in p53-over-expressed cells reversed the inhibition of p53 
on migration, invasion, EMT and stemness of PC3 cells 
[81, 82] and also could be a reason for suppression of cell 
growth in  vitro and in  vivo in HNSCC [50] and breast 
cancer cells [83]. The fact that activation of p53 pathway 
results in elevation of expression levels of both miR-143 
and miR-145 [84, 85] confirms involvement of this cluster 
in tumor suppression. An interesting observation is that 
miR-155 has been shown to negatively regulate miR-143 
via targeting C/EBPb, a transcriptional activator of miR-
143 in breast cancer cells [86].

There are various other factors including hormones 
which have been proved to regulate the expression of 
miR cluster 143/145 in various cancers. For instance, 
follicle stimulating hormone (FSH) has been shown to 
negatively regulate the expression of miR-143 in cervi-
cal cells [87]. Cortisol also could reduce miR-145 expres-
sion by suppressing p53 and this may also be mediated by 

Table 2  List of molecules that regulate miR cluster 143/145 in cancer

CRC colorectal cancer, PCa prostate cancer, PaCa pancreatic cancer, BrCa breast cancer, GC gastric cancer, RCC renal cell carcinoma, HNSCC head and neck squamous 
cell carcinoma, EOC epithelial ovarian cancer, GCT germ cell tumor, NSCLC non-small cell lung carcinoma

Regulatory molecules Cancer type Expression of these  
regulators in cancer

miRNA References

Positive regulators

FoxO RCC Low miR-145 [79]

p53 CRC, BrCa, PCa, HNSCC, Cervical Low miR-143, miR-145 [50, 83–85]

TGF-β1 GC High miR-143 [77]

BRCA1 BrCa Low miR-145 [80]

C/EBPβ BrCa Low miR-143 [86]

PPARγ CRC Low miR-145 [72]

Negative regulators

HPV-E6 HPV-induced cervical High miR-145 [88]

RREB1 CRC High miR-143, miR-145 [74]

KRAS CRC, PaCa High miR-143, miR-145 [74]

EGFR CRC High miR-143, miR-145 [73–76]

ERα GC High miR-143, miR-145 [89, 90]

17-β-estradiol BrCa High miR-143 [92, 93]

Estrogen BrCa High miR-143, miR-145 [94]

FSH EOC, cervical High miR-143 [176]

Adam17 RCC High miR-145 [96]

Sox2 Glioma, GCTs High miR-143, miR-145 [97]

Limk1 NSCLC High miR-143 [67]

DDX6 GC High miR-143, miR-145 [177]
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HPV-E6 expression in HPV-infected cervical cells [88]. It 
has been reported that ERα inhibits processing of several 
microRNAs, including miR-145 and miR-143 [89, 90]. 
ER-α36, whose up-regulation is positively correlated with 
lymph node metastasis was able to repress miR-143 levels 
in gastric cancer cells [91]. Likewise 17-β-estradiol (E2)-
mediated inhibition of miR-143 could be attributed to the 
increased proliferation in many cancers [92, 93]. While 
miR-143 is inhibited by E2, miR-145 has been reported to 
be regulated by estrogen [94], mediated through the ER 
binding region within upstream regulatory region of miR 
cluster 143/145 [95].

Few targets of miR cluster 143/145 were reported to 
repress the expression of this cluster, establishing a dou-
ble negative feedback loop. For example, ADAM17, a 
proven target of miR-145, could negatively regulate miR-
145 expression in RCC cells [96]. In gliobloastoma, both 
miR-143 and miR-145 have been identified as direct tar-
gets of Sox2 whose interaction led to the down-regulation 
of miR cluster 143/145 which revealed a double negative 
feedback loop [97]. Another target of miR-145, NEDD9, 
suppressed miR-145 expression in glioma [98]. Similarly, 
miR-143 target Limk1 could negatively regulate miR-143 
expression in NSCLC cells [67]. Another negative feed-
back regulation was found in the case of HPV+ve cervical 
cancers. HPV negatively regulated miR-145 in a differen-
tiation-dependent manner [99]. Together, these data sug-
gest that de-regulation of miR cluster 143/145 could add 
to the incidence as well as progression of cancer.

miR cluster 143/145 and cancer therapy
miR cluster 143/145 has been demonstrated to be anti-
oncogenic in several cancers, which emphasizes the use 
of this cluster in a therapeutical approach to treat can-
cers. As of now, miR cluster 143/145 has been shown 
to impart their anti-oncogenic effects at various levels 
including inhibition of proliferation, down-regulation of 
oncogenes, blocking cell invasion and migration, induc-
ing apoptosis and promoting differentiation. A number 
of in  vivo experiments by various groups have proved 
the ability of miR cluster 143/145 to intervene oncogenic 
properties of the cancer cells. Polyethylenimine (PEI)-
mediated delivery of miR-145, either systemically or 
locally, to the tumors in mouse xenograft models led to 
decreased tumor growth, increased apoptosis and inhi-
bition of targets such as c-myc and ERK5 in colon can-
cer cells [100]. Preliminary experiments with synthetic 
mimics of these miRNAs suggested that the stable form 
of such synthetic mimics could be used as therapeu-
tic tool for treating cancers [101, 102]. miRNAs in their 
original form are easily degradable. To overcome this, 
chemically modified analogs could be used. As an effort 
it was found that addition of an aromatic compound 

type (3′-benzene-pyridine; BP) to the 3′-overhang region 
of the RNA-strand enhanced the stability of miRNAs. 
Such stabilized miR-143 (miR-143BP) was able show 
tumor suppressive effects on CRC cells [102]. In another 
approach, subcutaneous injection of miR-145 trans-
fected-Hep3B cells into athymic nude mice showed an 
overall reduction in tumor growth rate and average vol-
ume of the tumors [103].

According to a recent report, mesenchymal stem cells 
(MSCs) could be used as vehicles to deliver miRNAs. In 
osteosarcoma and gliomas, MSCs were used for effective 
delivery of miR-145 since MSCs have migrating ability 
and can easily migrate into the tumors [104]. Introduc-
tion of exosome enveloped-miR-143, derived from syn-
thetic miR-143-transfected MSC-conditioned media, 
significantly reduced the invasion and migration of OC 
cells and this particular technique can be used for effi-
cient delivery of miRNAs into target cells [105]. Another 
group that tried retroviral-mediated delivery of miR clus-
ter 143/145 in PaCa cells observed a reduced anchorage-
independent growth, though they were unable to find a 
reduction in the total proliferation rate. Interestingly, miR 
cluster 143/145 expressing MiaPaCa2 and Panc-1 cells 
were also unable to form tumors in immune-compro-
mised mice [74]. Adenoviral-mediated ectopic expression 
of miR-145 using Ad5CMV.Rz.HSVtk.miR145 exerted an 
enhanced antitumor effect in U87MG/U373MG glioma 
cells suggesting a possible combination therapy using the 
hTERT.Rz.HSVtk gene together with miR-145 [106].

Formulation of a proper delivery system is essen-
tial for miRNAs to be used in therapies. Pramanik et al. 
[107] took another step and delivered vectors express-
ing miR-143/145 conjugated with liposomal nanoparti-
cles in mice. Briefly, nanovectors containing miR143/145 
delivered through tail vein of MiaPaCa-2-xenografted 
mice induced a significant reduction in the tumor size. 
Upon delivery of miR-143/145, levels of KRAS-2 and 
RREB1, two known targets of this cluster, were signifi-
cantly inhibited in the xenografts. Bacteriophage capsid 
mediated delivery system for miRNAs has also become 
promising effort in this aspect. miRNAs encapsulated 
with virus-like particles (VLPs) of bacteriophage MS2 
after conjugating with modified HIV-1 Tat47-57 peptide 
with sulfoSMPB has been reported as an efficient vehicle 
for delivering miRNAs and could be used to deliver miR 
cluster 143/145 efficiently to the tumor cells also [108]. 
Together, these findings are encouraging in the possible 
therapeutic use of this particular cluster as anti-cancer 
agents.

Conclusions
The role of miR cluster 143/145 in cancer is of signifi-
cance since both miR-143 and miR-145 have been shown 
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to suppress tumorigenesis by targeting various genes that 
play significant roles during the development of can-
cer. Though these miRNAs have some common targets, 
they do have specific targets too, thus they act in concert 
or independently to impart the functions. On the other 
hand, miR cluster 143/145 is regulated, either positively or 
negatively, by various factors in cancer cells (Fig. 2). Evi-
dence suggests that many oncogenes repress miR cluster 
143/145 in order to impart their oncogenic effects in those 
cells, whereas anti-oncogenic factors, including transcrip-
tion factors and drugs, elicit their effects through up-reg-
ulation of miR cluster 143/145. The mechanism of their 
regulation is different is different cell types. Both these 
miRNAs are supposed to be under the control of a com-
mon promoter, and are found to follow a similar pattern 
of expression in most of the cases. Since miR-145 has a 
specific upstream regulatory element of ~1.5 kb length, it 
could be possible that this miRNA is regulated independ-
ent of miR-143. This might be a possible reason for the 

disparity in the expression pattern of miR-145 and miR-
143 in some cell types. However, the reason behind their 
differential regulation in different cell types is still unclear. 
More importantly, recent findings suggest that both the 
miRNAs play an important role in sensitizing cancer cells 
to various drugs which could be useful for formulating 
better combination therapy options for cancer. Moreover, 
expression levels of these miRNAs are most of the time 
reflected in the serum, suggesting their use as biomark-
ers for understanding prognosis of the disease. There have 
been few promising steps taken at the laboratory level to 
deliver these miRNAs efficiently to tumor sites and have 
to be investigated further. Taking all these evidences into 
consideration, miR cluster 143/145 can be regarded as 
ideal candidates for therapeutic interventions for cancers.
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