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Human cytomegalovirus interleukin-10 
enhances matrigel invasion of MDA-MB-231 
breast cancer cells
Cendy A. Valle Oseguera and Juliet V. Spencer* 

Abstract 

Background: While some risk factors for breast cancer are well-known, the influence of other factors, particularly 
virus infection, remains unclear. Human cytomegalovirus (HCMV) is widespread in the general population, and both 
molecular and epidemiological evidence has indicated links between HCMV and breast cancer. The HCMV protein 
cmvIL-10 is a potent suppressor of immune function that has also been shown to promote proliferation and migra-
tion of breast cancer cells. In this study, the impact of cmvIL-10 on tumor cell invasion through a simulated basement 
membrane was investigated.

Results: MDA-MB-231 breast cancer cells exhibited invasion through a matrigel layer that was significantly enhanced 
in the presence of either purified cmvIL-10 or supernatants from HCMV-infected cells containing secreted cmvIL-10. 
Transcriptional profiling revealed that cmvIL-10 altered expression of several genes implicated in metastasis. Exposure 
to cmvIL-10 resulted in higher MMP-3 mRNA levels, greater protein expression, and increased enzymatic activity. Treat-
ment with cmvIL-10 also increased expression of both urokinase plasminogen receptor (uPAR) and plasminogen acti-
vator inhibitor-1 (PAI-1), which can stimulate MMP-3 activity and have previously been identified as poor prognostic 
markers in breast cancer patients. Finally, MDA-MB-231 cells treated with cmvIL-10 showed significant downregulation 
of metastasis suppressor 1 (MTSS1), a scaffolding protein that regulates cytoskeletal rearrangements and is frequently 
lost in metastatic tumors.

Conclusions: HCMV, and in particular the secreted viral cytokine, cmvIL-10, can induce cellular changes that facilitate 
cell migration and invasion. These findings indicate that HCMV may be associated with promoting the malignant 
spread of breast cancer cells and suggest that antiviral treatment may be a useful complement to chemotherapy in 
some patients.
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Background
Breast cancer is the second leading cause of cancer deaths 
for women in the United States and a significant cause of 
mortality worldwide. While there are many known risk 
factors for breast cancer, infectious disease has emerged 
as one likely contributor to carcinogenesis [1, 2]. Recent 
studies have implicated a number of different viral infec-
tions in breast cancer, including bovine leukemia virus 

[3, 4], human mammary tumor virus [5], human papillo-
mavirus [6], Epstein–Barr virus (EBV) [7–9], and human 
cytomegalovirus (HCMV) [10, 11]. Although there is no 
clear causal role for any of these viruses, a combination 
of molecular and epidemiological evidence suggests an 
association between HCMV and breast cancer.

HCMV is a β-herpesvirus that infects 70–90% of the 
general population, causing acute, persistent, or life-
long latent infection [12]. HCMV infections are typi-
cally subclinical and serious disease occurs mainly in 
immune-compromised individuals [12]. Overall, HCMV 
serostatus has not been positively correlated with breast 
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cancer; however, women with breast cancer were found 
to have higher mean HCMV IgG levels in an Australian 
case–control study [13], suggesting that they might have 
experienced a recent infection. Analysis of a Norwegian 
cohort by the same group also revealed that elevation of 
HCMV IgG, but not EBV IgG levels, preceded the devel-
opment of breast cancer in some women [14].

While serological evidence for HCMV in breast cancer 
may be limited, a stronger case is made by studies that 
have detected viral DNA and proteins by PCR and immu-
nohistochemistry (IHC) in tumor biopsy specimens. In 
Taiwan, analysis of 62 breast cancer patients found that 
detection of both HHV-8 and HCMV in tumor samples 
by PCR was associated with lower overall survival and a 
decrease in relapse-free time [6]. Harkins et  al. detected 
HCMV immediate early (IE) proteins by IHC in breast 
glandular epithelial cells in 31 of 32 specimens from 
patients with ductal carcinoma in situ (DCIS) or infiltrat-
ing ductal carcinoma (IDC) [10]. Another study found 
both HCMV IE and late proteins expressed in metastatic 
tumor cells in 100% of breast cancer specimens analyzed 
(73 total), and viral DNA was detected in 12/12 samples 
tested [11]. Detection of virus in breast epithelial cells is 
consistent with the notion that epithelial cells are a site of 
HCMV persistence [15], and further supported by the fact 
that transmission of infectious virus through breast milk 
is well-documented [16–19].

Despite the evidence indicating the presence of viral 
proteins and DNA in breast tumor tissue, HCMV is not 
typically considered an oncogenic virus [20]. Virus infec-
tion can, however, promote many of the classic hallmarks 
of cancer [21, 22], such as cell cycle dysregulation, inhibi-
tion of apoptosis, increased migration and invasion, and 
immune evasion [20, 23]. HCMV has been linked not 
only to breast cancer, but to an array of other malignan-
cies, including glioblastoma [24–27], medulloblastoma 
[28], colon cancer [29], and prostate cancer [30]. Indi-
vidual HCMV gene products can have profound effects 
on cell growth, such as immediate early proteins IE1 and 
IE2, which are known to stimulate entry into S phase [31, 
32]. IE1 expression was found to increase the growth 
rate of glioblastoma cells in culture, suppress p53 and Rb 
tumor suppressor activity, and stimulate PI3K/Akt sign-
aling [33]. IE1 was detected in breast tumor tissue [10, 
11] as well as in CD133+ glioma stem cells isolated from 
glioblastoma multiforme (GBM) patients [34], suggest-
ing that IE1 may promote tumorigenesis enhancing the 
growth and self-renewal of tumor stem cells.

Another HCMV gene implicated in tumor develop-
ment is US28, which encodes a functional chemokine 
receptor that binds several human chemokines, includ-
ing CCL2/MCP-1, CCL5/Rantes, and CX3CL1/Frac-
talkine [14, 35]. US28 also exhibits constitutive signaling 

activity, and cells expressing US28 are highly invasive [27] 
and form tumors in nude mice [36, 37]. US28 was found 
to induce vascular endothelial growth factor (VEGF), 
cyclooxygenase-2 (COX2), and Stat3 activation through 
upregulation of IL-6 [36–38]. Analysis of glioblastoma 
tumor specimens revealed the presence of both US28 and 
phosphorylated Stat3 [27, 38], demonstrating that US28 
may play role in tumor development in vivo.

Whereas the US28 and IE1 gene products are 
expressed in infected cells, the UL111A gene encodes 
cmvIL-10, a viral cytokine that is secreted from infected 
cells. Although cmvIL-10 has only 27% sequence identity 
to human interleukin-10 (hIL-10) [39], the viral cytokine 
binds to the cellular IL-10 receptor with greater affinity 
than hIL-10 itself [40]. Extensive immunosuppressive 
properties of cmvIL-10 have been documented, including 
inhibition of inflammatory cytokine synthesis, downreg-
ulation of class I and II MHC, and inhibition of dendritic 
cell maturation [41–48]. Engagement of the IL-10 recep-
tor by cmvIL-10 leads to activation of Stat3 [49–53], 
which is commonly constitutively activated in breast can-
cer cells [54], associated with poor prognosis in ovarian 
cancer, and considered a key factor in metastasis forma-
tion [55]. CmvIL-10 was found to activate Stat3 and play 
a pivotal role in the progression of malignant glioma by 
enhancing the invasiveness and migration of glioma can-
cer stem cells [56]. Because cmvIL-10 is secreted from 
the infected cell, it has the potential to act on any cell 
type, infected or not, that expresses the IL-10 receptor.

We have previously shown that the breast cancer cell 
lines MDA-MB-231 and MCF-7 express the IL-10R and 
that exposure to cmvIL-10 results in enhanced cell pro-
liferation and migration [57, 58]. In the present study, we 
examined the impact of cmvIL-10 on MDA-MB-231 cell 
invasion through a simulated basement membrane and 
investigated the effect of cmvIL-10 on a panel of metas-
tasis-related genes. We found that cmvIL-10 was a potent 
enhancer of invasion and influenced expression of genes 
strongly linked to the metastatic spread of breast cancer.

Methods
Cell, viruses, and reagents
MDA-MB-231 human breast adenocarcinoma cells 
(American Type Culture Collection, Manassas, VA) were 
cultured in L-15 Leibovitz’s Medium (Mediatech, Manas-
sas, VA) supplemented with 10% fetal bovine serum 
(FBS) (Atlanta Biologicals, Flowery Branch, GA) at 37 °C 
with atmospheric CO2. The human foreskin fibroblast 
(HFF) cell line (ATCC) was cultured in Dulbecco’s Modi-
fied Eagle Medium (DMEM) with 10% FBS at 37 °C in a 
humidified chamber with 5% CO2. Human cytomegalo-
virus strain AD169 (ATCC) was used to infect conflu-
ent monolayers of HFFs at the indicated multiplicities of 
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infection. Purified recombinant cmvIL-10, human IL-10, 
and epidermal growth factor (EGF) were purchased from 
R&D Systems (Minneapolis, MN). IL-10R neutralizing 
antibody and S3I-201 Stat3 inhibitor were from Santa 
Cruz Biotechnology (Santa Cruz, CA).

Migration and invasion assays
Transwell migration was monitored using 96-well BD 
Fluoroblock plates with 8 µm filters (Corning, Inc., Corn-
ing, NY). Cells were harvested and suspended at density 
of 2 × 106 cells/ml in migration media (L-15 + 1% FBS), 
and a volume of 75 μl cell suspension was placed on top 
of the filter inserts. Where indicated, IL-10R neutralizing 
antibody was added at a concentration of 30 μg/ml. The 
bottom wells were loaded with the indicated concentra-
tions of EGF in the presence of conditioned medium from 
mock or HCMV-infected fibroblasts (96 h post infection) 
in a total volume of 235 μl. After 5 h at 37  °C, cells that 
traversed the filter and entered the lower chamber were 
quantified by the addition of Cell Titer Glo (Promega, 
Madison, WI) using a Turner Veritas luminometer. For 
invasion, 96-well matrigel-coated BD Fluoroblock tran-
swell invasion plates (Corning) were used. Invasion plates 
were re-hydrated with warm media at 37  °C for 3 h and 
then 75 μl cell suspension loaded onto the hydrated filters 
as described above. Where indicated, 10 μM Stat3 inhibi-
tor was included with cells in the top chamber; cmvIL-10, 
hIL-10 or conditioned medium was present in both cham-
bers. The bottom plates received the indicated EGF con-
centrations, and then transwell system was incubated for 
22 h at 37 °C with atmospheric CO2. At harvest, cells that 
had degraded the matrigel and entered the lower chamber 
were quantified by the addition of Cell Titer Glo as above.

Quantitative PCR arrays
RNA was harvested from 10 ×  106 MDA-MB-231 cells 
that were mock treated or treated with 100 ng/ml cmvIL-
10 or hIL-10 for 5  h using the RNeasy Midi Kit and 
RNAse-Free DNase set (Qiagen, Valencia, CA). From the 
isolated RNA, cDNA was prepared using the RT2 First 
Strand Kit (SA Biosciences, Frederick, MD) and subse-
quently loaded into a 96-well breast cancer metastasis 
profiler PCR array (PAHS-028ZD) with system RT2 SYBR 
Green Mastermix (SA Biosciences). The plates were run 
using the CFX96 Real-Time system cycler (BioRad, Her-
cules, CA) with the following amplification program: 
95 °C for 10 min, 95 °C for 15 min with a slow ramp rate 
for 1.0 c/s and 60 °C for 1 min. The data from three bio-
logical replicates for each treatment was analyzed by the 
ΔΔCT method according to manufacturer’s instructions 
using the RT2 profiler PCR array data analysis program 
located on the SABiosciences web portal and is reported 
as fold change relative to control.

Enzyme‑linked immunosorbent assay (ELISA)
DuoSet ELISA kits (R&D Systems) were used to quantify 
uPAR, PAI-1, and MMP-3. For uPAR and PAI-1 meas-
urement, MDA cells were seeded in triplicate in 96-well 
plate at 5.0  ×  104 cell/ml density with complete L-15 
media and treated with 10  ng/ml of either cmvIL-10 or 
hIL-10 for the indicated times and supernatants were 
collected daily. The ELISA was carried out on superna-
tants according to manufacturer’s instructions using and 
following the addition of substrate and stop solution, 
absorbance of the plate was measured at 450  nm using 
a Dynex Opsys MR microplate reader. Sample concen-
trations were interpolated from a standard curve using 
linear regression analysis. For cell-associated MMP-
3, MDA cells were seeded in 96-well plates and treated 
with cmvIL-10 as above. Cells were treated with cell 
lysis buffer (150 mM NaCl, 20 mM HEPES, 0.5% Triton-
X-100, 1.0 mM NaOV4, 1.0 mM EDTA, 0.1% NaN3) sup-
plemented with 1× protease inhibitors (Calbiochem, 
EMD Chemicals, San Diego CA) and were collected daily 
for the indicated time points. The lysates were evaluated 
for MMP-3 according to the manufacturer’s instructions 
(R&D Systems).

Western blotting and zymography
Confluent T-75 flasks of MDA-MB-231 cells were treated 
with 10 ng/ml cmvIL-10 (R&D systems) for the indicated 
times, then scraped and harvested into cell lysis buffer 
(150  mM NaCl, 20  mM HEPES, 0.5% Triton-X-100, 
1.0  mM NaOV4, 1.0  mM EDTA, 0.1% NaN3) contain-
ing 1× protease inhibitors (Calbiochem). Cell lysates 
were clarified via centrifugation, heated at 70  °C for 
10  min in reducing buffer, and the proteins separated 
on a 4–12% Tris-Base SDS-PAGE gel (Life Technolo-
gies, Grand Island, NY). After transfer to nitrocellulose, 
the membrane was incubated in blocking solution (5% 
milk + TBS) for 1 h at room and then probed with pri-
mary antibody: 1:1000 dilution for MMP-3 or MTSS-1 
antibodies (Santa Cruz), or MAPK antiserum (Cell Sign-
aling Tech, Danvers, MA), in blocking solution over-
night, oscillating on a platform rocker at 4.0  °C. After 
three washes, the membranes were incubated with a 
1:2000 dilution of appropriate AP-conjugated second-
ary antibody on a platform rocker at room temperature 
for 1 h. Protein bands were detected using western blue 
stabilized AP substrate (Promega, Madison, WI). For 
zymography, cell lysates were denatured in SDS buffer 
under non-reducing conditions without heat, and run on 
a 4–16% Zymogram gel using Tris–Glycine SDS running 
buffer according to manufacturer’s instructions. After 
electrophoresis, the enzyme was renatured by incubat-
ing the gel in Zymogram Renaturing Buffer containing 
a non-ionic detergent, then equilibrated in Zymogram 
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Developing Buffer (to add divalent metal cations required 
for enzymatic activity), and then stained and destained 
to reveal digested (clear) areas corresponding to active 
enzyme.

Immunofluorescence microscopy
MDA-MB-231 cells were seeded onto FBS-coated glass 
coverslips at a density of 2.0 × 105 cells/well and cultured 
for 48  h at 37  °C. Cells were treated with 100  ng/ml of 
purified recombinant cmvIL-10 for 96 h, then fixed with 
2% paraformaldehyde in DPBS for 20 min, washed, per-
meabilized with 0.2% Triton-X-100 in PBS for 15  min. 
The cells were washed and blocked with 10% FBS for 
1 h at 37 °C, then incubated with anti-MTSS-1 antibody 
at a 1:100 dilution for 1 h at 37 °C followed by the addi-
tion of goat anti-mouse TRITC secondary antibody at a 
1:150 dilution for 30 min (Life Technologies) and Alexa 
Fluor 488 phalloidin (Molecular Probes, Eugene, OR). 
Coverslips were washed and excess fluid was removed 
before inverting the coverslip onto a glass slide contain-
ing 20  μl of DAPI-containing Prolong Gold mounting 
medium (Life Technologies, Grand Island, NY). Images 
were taken on a Zeiss AX10 Imager.A1 microscope (Carl 
Zeiss Inc., Oberkochen, Germany) using AxioVision 4.7.2 
imaging software.

Statistical analysis
Statistical analyses was performed using the paired, two-
tailed Student’s t test.

Results and discussion
The tumor microenvironment is a complex milieu that 
includes not only malignant cells, but immune cells, 
fibroblasts, signaling molecules, the extracellular matrix 
(ECM), and blood vessels. We have previously found that 
cmvIL-10 enhances migration of MDA-MB-231 breast 
cancer cells in vitro toward epidermal growth factor (EGF) 
[57]. In order to more faithfully replicate conditions under 
which cmvIL-10 might be found in the tumor microenvi-
ronment, we examined the ability of cmvIL-10 secreted 
from virus-infected cells to stimulate movement of MDA 
cells. Monolayer cultures of human foreskin fibroblasts 
were mock-infected or infected with HCMV strain AD169 
at a range of multiplicities of infection (MOI). After 96 h, 
supernatants were harvested and placed in the lower 
chamber of a transwell migration plate in the presence or 
absence of EGF. MDA cells were placed in the upper cham-
ber, separated from the EGF and conditioned medium by a 
porous filter. After five hours, cells that traversed the filter 
were quantified. MDA cells did not exhibit any significant 
movement toward conditioned medium from mock or 
infected cells, which is consistent with our previous find-
ing that cmvIL-10 is not a chemoattractant for tumor cells 

[57]. However, when conditioned medium from mock 
infected cells was supplemented with EGF, cell migration 
was observed (Fig.  1a). When EGF was added to condi-
tioned medium from HCMV-infected cells, the amount 
of cell migration increased, suggesting that substances 
released from virus-infected cells amplified chemotaxis 
to EGF. Moreover, the enhanced MDA cell movement 
was greater when EGF was provided in supernatants from 
higher MOI infections, and thus greater concentrations of 
cmvIL-10, indicating a dose-dependent effect. To confirm 
that cmvIL-10 was the virally produced substance mediat-
ing this increase in cell movement, MDA cells were pre-
incubated for 30 min with a neutralizing antibody (NAb) 
directed at the cellular IL-10R. The NAb was also included 
in the top chamber with MDA cells during the 5 h incu-
bation, and resulting migration was reduced to levels 
seen when only EGF was present in medium from mock 
infected cells. These results demonstrate that cmvIL-10 
secreted from virally infected cells has the ability to inter-
act with the cellular IL-10R on tumor cells to enhance 
directed movement.

To further recapitulate the tumor microenvironment, 
we examined whether cmvIL-10 could also promote 
invasion through matrigel, a gelatinous protein mixture 
derived from mouse sarcoma cells widely used to simu-
late the ECM in vitro [59]. MDA cells were place atop a 
matrigel-coated transwell system with EGF placed in 
the lower chambers. Purified recombinant cmvIL-10 or 
hIL-10 was added to both chambers. After incubation 
for 22  h, invasion was assessed by counting cells in the 
lower chamber, which should contain only the cells that 
were able to degrade the matrigel coating to access the 
porous filter. As shown in Fig.  1b, cmvIL-10 was found 
to be a strong enhancer of cell invasion. Surprisingly, 
cmvIL-10 was able to increase invasion of MDA breast 
cancer cells to a significantly greater extent than hIL-10, 
suggesting that the viral cytokine may trigger signaling 
events that are distinct from the cellular cytokine. Since 
activation of the transcription factor Stat3 by cmvIL-10 is 
well-documented [39, 49–51, 53, 60, 61], we next exam-
ined the need for Stat3 in cmvIL-10-enhanced invasion. 
Treatment with a Stat3 inhibitor reduced the cmvIL-
10-induced increase in invasion through matrigel toward 
EGF seen when either recombinant purified protein or 
cytokine produced during virus infection were present 
(Fig.  1c). Taken together, these results demonstrate the 
novel finding that not only does cmvIL-10 produced dur-
ing virus infection stimulate enhanced migration and 
invasion of breast cancer cells, but it does so more effec-
tively than hIL-10.

Given the impact of cmvIL-10 on MDA cell invasion, 
we wanted to investigate whether the viral cytokine 
brought about changes in the expression of genes 
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associated with tumor metastasis. Transcriptional profil-
ing was performed using a tumor metastasis qPCR array 
designed to analyze 84 genes known to be involved in 
breast cancer metastasis. MDA cells were mock-treated 
or incubated with either cmvIL-10 or hIL-10 for 5 h, then 
RNA was extracted, cDNA synthesized, and qPCR per-
formed. Additional file  1: Table S1 contains a complete 
list of genes analyzed with fold changes for cmvIL-10 or 
hIL-10 treated cells compared to mock treated control 
cells indicated. Select genes encoding proteins associated 
with either the ECM (Fig.  2a) or cell adhesion (Fig.  2b) 
are shown graphically. Overall, plasminogen activator 
inhibitor (PAI-1) was the most highly upregulated gene 
for both cytokines, with expression increased by 2.68-
fold by cmvIL-10 and 3.12-fold by hIL-10. Interestingly, 
increased expression of urokinase plasminogen receptor 
(uPAR) was also common to both cmvIL-10 and hIL-10 
(1.59- and 1.87-fold increases, respectively). Matrix met-
alloproteinase-3 (MMP3) was specifically upregulated 
by cmvIL-10 only (2.75-fold increase), while collagen 
type 4 (COL4A) expression was increased by hIL-10 only 
(1.51-fold increase). Changes in cell adhesion genes were 
more modest, with only one gene, metastasis suppressor 
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1 (MTSS1) exhibiting a statistically significant change 
of more than twofold, and this was observed for cmvIL-
10 treatment only (0.305-fold change, or −3.28). Slight 
decreases in integrin alpha 7 (ITGA7, 0.561- or −1.78-
fold change), melanoma cell adhesion factor (MCAM, 
0.768- or −1.32-fold change), and cadherin 6 (CDH6, 
0.811- or −1.23-fold change) were also found with 
cmvIL-10 treatment. Both cmvIL-10 and hIL-10 induced 
a slight decrease in expression of vascular endothelial 
growth factor (VEGFA, 0.554- or −1.80-fold for cmvIL-
10; 0.5987- or 1.67-fold change for hIL-10). Chemokine 
receptor CXCR2 expression was also strongly decreased 
by cmvIL-10 and hIL-10, but those changes were not sta-
tistically significant. Overall, these transcriptional pro-
filing results indicate that cmvIL-10, as well as human 
IL-10, can affect expression of genes that are likely to 
promote metastatic spread of tumor cells.

The most significantly upregulated gene by both 
cmvIL-10 and hIL-10 was PAI-1, or plasminogen acti-
vator inhibitor 1. PAI-1 is a 43  kDa glycoprotein that 
inhibits the function of urokinase plasminogen activator 
(uPA), a serine protease that catalyzes the conversion of 
inactive plasminogen to plasmin and has been implicated 
in many aspects of tumor progression [62]. The activity 
of uPA system is regulated by the receptor uPAR and two 
endogenous inhibitors, PAI-1 and PAI-2 [62]. PAI-1 is 
constitutively secreted by many cell types and high lev-
els have been found to inhibit cell adhesion and promote 
migration [63, 64]. In order to confirm that changes in 
gene expression identified by the qPCR array correlated 
with protein expression, MDA cells were treated with 
cmvIL-10 or hIL-10 and PAI-1 levels measured by ELISA. 
As expected, PAI-1 was produced by untreated cells, 
however, the amount of protein secreted was significantly 
increased by cmvIL-10 after 12  h of exposure (Fig.  3a). 
After 24  h, both cmvIL-10 and hIL-10 stimulated a sig-
nificant increase in PAI-1 production, and this was main-
tained over 72 h. In addition, we examined uPAR protein 
levels and found that they were also elevated upon expo-
sure to cmvIL-10 or hIL-10 (Fig. 3b). These results dem-
onstrate that expression of two elements of the uPA 
serine protease system, its receptor uPAR and its serpin 
inhibitor PAI-1, are significantly increased by cmvIL-10 
and hIL-10 in human breast cancer cells.

Next we examined MMP-3, a member of the matrix 
metalloproteinase family that has the ability degrade 
many components of the extracellular matrix, such 
as collagen III-V, and IX-XI, as well as laminins, elas-
tins, fibronectin, vitronectins and proteoglycans [65]. 
Mouse epithelial mammary cells cultured with MMP-3 
had decreased expression of cytokeratin markers and 
increased expression of vimentin, a clear sign of the 
epithelial-to-mesenchymal transition (EMT), in which 

epithelial cells morph into a mesenchymal-type cell to 
eliminate their connection to the basement membrane 
and initiate migration towards subsequent intravasa-
tion into blood vessels [66]. MMP-3 can also activate 
other MMPs, and high levels of MMP-3 correlate with 
poor prognosis in breast cancer patients [67]. MDA cells 
were treated with cmvIL-10 and then total MMP-3 levels 
were measured by ELISA. We were unable to detect any 
MMP-3 in cell supernatants, but cell-associated MMP-3 
was detected by analysis of cell lysates. Relatively low lev-
els of MMP-3 were produced by untreated MDA cells, 
but this amount increased significantly after 48 h of treat-
ment with cmvIL-10 (Fig. 4a). Since MMPs are generally 
secreted as inactive pro-enzymes that require cleavage 
to become activated, we further examined MMP-3 by 
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western blotting and zymography. Consistent with the 
ELISA results, an increase in total MMP-3 protein was 
observed over time with exposure to cmvIL-10 (Fig. 4b). 
The amount of active MMP-3 enzyme was also increased 
by cmvIL-10 treatment, as evidence by increased diges-
tion of casein in the zymogen gel. Taken together, these 
results indicate that cmvIL-10 promotes increased 
expression and activation of MMP-3 by breast cancer 
cells, which is likely to contribute to increased degrada-
tion of the ECM and greater risk of metastasis.
MTSS1 was notable as the gene most strongly down-

regulated by cmvIL-10 treatment. Also known as 
missing-in-metastasis (MIM), MTSS1 was originally 

identified as a tumor suppressor gene whose expression 
was lost in metastatic bladder and prostate cancers [68]. 
The tumor suppressor works as a scaffold to inhibit the 
dissociation of cell junctions and to increase adherens 
junction formation, so when MTSS1 is lost, recruitment 
of F-actin to the cytoskeleton is reduced, enabling tumor 
cells to detach from the basement membrane and from 
neighboring cells. MTSS1 has been found to be inversely 
correlated to the aggressive invasive potential in sev-
eral breast cell lines and with overall survival in breast 
cancer patients [69]. To confirm that the reduced gene 
expression observed on the PCR array correlated with a 
decrease in MTSS1 protein levels, immunoblotting was 
performed on lysates from MDA-MB-231 cells treated 
with 10 ng/ml cmvIL-10. The expected 82 kD band was 
detected for MTSS1 in untreated cells and was still visible 
after 24  h of incubation with cmvIL-10 (Fig.  5a). How-
ever, as time progressed, the cmvIL-10-treated samples 
showed a significant decrease in MTSS1 expression. In 
contrast, the β-actin bands that serve as a loading control 
remained constant. We further examined MTSS1 expres-
sion via immunofluorescence microscopy and found the 
protein to be widely distributed throughout the cyto-
plasm in untreated MDA cells (Fig. 5b), which is consist-
ent with its role in regulating cytoskeletal rearrangement. 
After exposure to cmvIL-10, dramatic reduction in the 
amount of MTSS1 protein was observed. This reduction 
in MTSS1 corresponded to a noticeable change in cel-
lular architecture, as cmvIL-10-treated cells appeared to 
be thinner and have fewer substrate attachment points. 
These results demonstrate that treatment with cmvIL-10 
reduced the expression of MTSS1 in MDA cells, which 
could contribute to the increased migration and invasion 
observed in the presence of cmvIL-10.

Conclusions
The results that we present here characterize a new role 
for cmvIL-10 beyond its well-known function as an 
immune modulator during HCMV infection [42]. The 
viral cytokine conferred MDA-MB-231 cells with height-
ened migration and invasion abilities and is likely to pro-
mote the development of breast cancer metastasis. While 
our studies have been conducted in vitro using cell lines, 
we propose an in vivo scenario in which latently infected 
monocyte/macrophages infiltrate the developing tumor 
and release cmvIL-10 (Fig.  6). Our observations that 
cmvIL-10 reduces expression of MTSS1, while increasing 
expression of uPAR, PAI-1, and MMP-3 suggest that the 
secreted viral cytokine can act directly on breast epithe-
lial cells expressing IL-10R to promote reduced cell–cell 
adhesion and increased movement, ultimately leading to 
invasion into the surrounding stromal tissue and entry 
into bloodstream.
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The evidence linking HCMV to breast cancer contin-
ues to grow, yet there is still considerable controversy in 
field. While some groups have found traces of viral DNA 
or proteins in tumor samples [6, 10, 11], other labs have 
not been able to detect evidence of HCMV [70, 71]. This 
may be due to differences in detection technique, sam-
ple preparation, and even tumor type. El-Shinawi et  al. 
have found evidence for HCMV in inflammatory breast 
cancer (IBC), a highly metastatic and aggressive form 
of breast cancer that is often associated with pregnancy 
and occurs in at higher frequency in women of Northern 
African and Egyptian descent [72]. They reported detec-
tion of more HCMV DNA in IBC tissues compared to 
IDC, and higher HCMV IgG titers in IBC patients com-
pared to IDC patients [72]. In a follow-up study, they 
assessed viral genotypes and found a correlation between 
mixed phenotypes and disease progression, notably lym-
phovascular invasion and formation of lymphatic emboli 

in IBC patients, but not in women with other forms of 
breast cancer [73]. The findings suggest that HCMV 
may be more closely associated with specific subtypes of 
breast cancer.

HCMV can infect a wide range of cell types that may 
be present within the tumor microenvironment, such 
as monocyte/macrophages, fibroblasts, epithelial and 
endothelial cells. While several studies have found evi-
dence for direct infection of tumor cells via IHC stain-
ing [10, 11], detection of viral DNA by PCR from fixed 
tissue samples precludes direct identification of the cell 
type harboring the virus. It may be that the cell type 
infected varies from case to case, just like the combina-
tion of specific mutations that lead to tumor initiation in 
a given individual. We favor the notion that immune cells 
harboring latent HCMV infiltrate the tumor, because 
monocytes are a well-documented reservoir for HCMV 
[74–76] and this scenario could lead to significant 
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variability from tumor to tumor depending on the num-
ber of infected infiltrating cells and whether they reacti-
vate virus that goes on to infect other cells in the tumor 
microenvironment. Transcriptional analysis of HCMV-
infected monocytes revealed a unique M1/M2 polariza-
tion signature that included induction of both M1 type 
inflammatory cytokines like IL-1, IL-6, and TNFα, as 
well as upregulation of M2 type cytokines like IL-10 and 
IL-18 [77]. The presence of these conflicting signals in the 
tumor environment has been associated with neoplastic 
progression, suggesting that HCMV could tip the balance 
in favor of this process [78].

Analysis of the secretome, or proteins produced by 
HCMV-infected cells, has revealed high levels of both 
MMP-3 and PAI-1 [79], which is consistent with our 

observations that cmvIL-10 induces higher expression 
of both of these proteins. The secretome was found to 
promote angiogenesis and wound healing, and con-
tained many growth factors, cytokines, chemokines, and 
enzymes associated with metastasis, including MMP-1, 
MMP-2, MMP-9, and MMP-10 [79]. Somiari and col-
leagues were able to detect elevated levels and activity 
of MMP-2 and MMP-9 in plasma from breast cancer 
patients, as well as in women determined to be high risk 
based on Gail Model predictions [80]. This suggests that 
it may be possible to develop a plasma protein profile 
with a characteristic signature that identifies individuals 
likely to develop breast cancer.

Although cmvIL-10 has not yet been quantified in 
patient serum, measurement of cmvIL-10 and hIL-10 may 

Fig. 6 Model depicting possible role of cmvIL-10 in promoting tumor metastasis. A monocyte that is latently infected with HCMV infiltrates a 
localized tumor, releasing cmvIL-10 that acts on tumor cells expressing the IL-10 receptor. This leads to changes in levels of MTSS1, uPAR and PAI-1, 
which reduce cell adhesion. Increased levels of uPAR and PAI-1 are strongly associated with increased migration and can also help activate MMP-3. 
Active MMP-3 degrades proteins in the extracellular matrix, facilitating access for tumor cells to invade surrounding stromal tissue and enter the 
bloodstream
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also have prognostic value in breast cancer. Elevated lev-
els of hIL-10 (27-2134 pg/ml) have already been detected 
in the serum of some cancer patients and correlate with 
poor prognosis [81–86], suggesting that hIL-10 may 
contribute to immune suppression and tumor progres-
sion. In  vitro, hIL-10 has been found to promote resist-
ance to apoptosis in human breast and lung cancer cell 
lines [87, 88]. Importantly, recent evidence suggests that 
cmvIL-10 induces increased expression of hIL-10, poten-
tially amplifying the immune suppressive environment 
and enabling the invasive spread of tumor cells [60]. Our 
results show that cmvIL-10 increased the migration and 
invasive ability of MDA-MB-231 breast cancer cells and 
affected expression of several metastasis-related genes. 
Taken together, these findings suggest a new mechanism 
for HCMV oncomodulation, as secretion of cmvIL-10 is 
expected to manipulate the tumor microenvironment, 
enhancing the potential of a developing breast tumor to 
invade surrounding tissue, and ultimately establish meta-
static tumors. Ultimately, it may be that a signature profile 
of factors like cmvIL-10, hIL-10, MMPs, and PAI-1 could 
have predictive or prognostic value for breast cancer. If 
HCMV is truly involved in promoting tumor progres-
sion, chemotherapy treatment regimens that include anti-
cmvIL-10 specific antibodies or even anti-viral drugs may 
help improve the overall survival of cancer patients.
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