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After the publication of the original article [1], it was 
noted that the pre-revision version of this manuscript 
was mistakenly published. This erratum contains the cor-
rect, revised edition of this manuscript.

Abstract
Hypoxia, which arises in tumor cells that have been 
deprived of oxygen, has been shown to play a role 
in tumor development in hepatocellular carcinoma. 
Hypoxia-inducible factors (HIFs) are transcription fac-
tors that regulate cellular homeostatic responses to 
oxidative stress and have been identified as key tran-
scriptional activators of tumor angiogenesis, survival, 
and metabolism. Cytokines, such as IL-8, also influence 
survival and angiogenesis in endothelial cells. IL-8 is 
overexpressed under hypoxic conditions and has been 
demonstrated to induce tumor angiogenesis and growth. 
Regulation of these oncological factors using RNA inter-
ference-based tools, small interfering RNA (siRNA) and 
short hairpin RNA (shRNA), were investigated in  vitro 
and in vivo. The conclusion based on multiple studies is 
that regulation of HIFs and IL-8 by si/shRNA results in 
modulation of tumor angiogenesis and apoptosis in the 
tumor microenvironment. This review summarizes the 
results of studies investigating regulation of the hypoxic 
tumor environment.
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Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon, and the second most lethal, cancer in the world [1]. 
Approximately 80–90% of cirrhotic liver disease cases 
resulting from chronic viral hepatitis B or C develop into 
HCC [1]. Moreover, hypoxic induction of angiogenesis 
and tumor growth is observed in most cases of advanced 
HCC [2].

The most important factors that influence HCC pro-
gression are oxygen and nutrients [3]. The liver is an 
organ with a specific blood supply. Approximately 25 and 
75% of the total blood volume entering the liver does so 
via the hepatic artery and the portal vein, respectively. 
The latter drains into structures of smaller diameter 
called sinusoids. Vascular resistance is very low in these 
structures, and portal venous blood, which is loaded with 
food and large numbers of microbial antigens from the 
intestine, flows extremely slowly into the sinusoids. Thus, 
large amounts of nutrients and oxygen are required for 
HCC cell proliferation, resulting in localized hypoxia 
[3, 4]. This hypoxic environment causes tumor angio-
genesis, i.e., the generation of new blood vessels from 
existing ones [3, 5]. Tumor angiogenesis overcomes oxi-
dative stress [6] and the deficiency in oxygen-depend-
ent energy production caused by hypoxia [3, 7]. The 
key factors responsible for regulation of angiogenesis 
during hypoxia are hypoxia-inducible factor (HIF)-1α 
and vascular endothelial growth factor (VEGF) [5, 8]. 
However, various studies have reported that angiogen-
esis is induced even during inhibition of HIF-1α during 
hypoxia [9], demonstrating that tumor angiogenesis is 
partially affected by various other factors [9]. Increased 
expression of various factors, such as growth factors 
and tumor-stimulating factors, can induce angiogen-
esis during hypoxia, as they increase proliferation and 
ensure stabilization of endothelial cells. These factors are 
induced not only by HIF-1α, but also by cytokines such 
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as interleukin (IL)-8 or by growth factors such as platelet-
derived growth factor [10, 11]. In addition, these factors 
increase VEGF expression, as well as help increase and 
stabilize angiogenesis, by upregulating VEGF receptor 
on the surface of endothelial cells [12]. Moreover, various 
solid tumors pass through the following three stages dur-
ing their reproductive cycle: cell proliferation, hypoxia, 
and recovery tumor survival by angiogenesis [3, 13, 14].

Main text
Roles of HIF and IL‑8 under hypoxic conditions
The hypoxia inducible factors (HIFs) are a family of het-
erodimeric transcription factors that act as master regu-
lators of the homeostatic transcriptional response to 
hypoxia in virtually all cells and tissues [3]. Active HIF 
consists of alpha and beta subunits [2, 15, 16]. Three 
alpha subunits, termed HIF-1α, HIF-2α, and HIF-3α, 
have been described in humans, mice, and rats; all bind 
to the common beta subunit HIF-1β, also known as aryl 
–hydrocarbon receptor nuclear translocator (ARNT) [17, 
18]. Active HIF is named according to its alpha subunit; 
hence, HIF-1 consists of HIF-1α and ARNT, HIF-2 of 
HIF-2α and ARNT, and so forth [19]. HIF-1 and HIF-2 
are the major hypoxia-inducible factors in humans, mice, 
and rats [17].

Under conditions of normoxia, HIF-1α subunits are 
hydroxylated at proline residues by hydroxylases [3, 20]. 
Hydroxylation of HIF-1α and assembly of a protein scaf-
fold consisting of the von Hippel–Lindau (VHL) tumor 
suppressor [21–24], along with other co-factors, result in 
rapid ubiquitination of the alpha subunit and subsequent 
degradation by the proteasome. Conversely, under condi-
tions of hypoxia, HIFα subunits escape degradation and 
are free to dimerize with their binding partner, ARNT 
[3, 17]. HIF translocates to the nucleus where it affects 
the transcription of target genes, typically by binding to 
a hypoxia response element (HRE) in the upstream pro-
moter region of such target genes, which include genes 
related to angiogenesis, apoptosis, metabolism, and sur-
vival [2, 3, 18].

Tumor cells have the ability to exploit the expression of 
various cytokines and their receptors for their own use. 
Cytokines secreted by tumor cells can act on the sur-
rounding normal stroma, such as blood vessels, recruit-
ing them to aid in tumor growth, survival, and metastasis. 
IL-8/CXCL-8 is a pro-inflammatory cytokine [25] and 
a key molecule influencing endothelial cell survival and 
angiogenesis [26]. IL-8, which is a novel leukocyte chem-
otactic-activating cytokine [27, 28], is produced by vari-
ous types of cells upon contact with inflammatory stimuli 
and exerts a variety of functions on leukocytes [29, 30], 
particularly neutrophils. IL-8 is also associated with sev-
eral types of acute inflammatory reactions [25], including 

lipopolysaccharide (LPS)-induced dermatitis, LPS/IL-
1-induced arthritis, and lung reperfusion injury [29]. IL-8 
can promote resolution of infection by inducing phago-
cytosis, oxidative burst, and the release of DNA webs 
known as neutrophil extracellular traps that trap and kill 
invading microbes [27]. Conversely, IL-8 is also regulated 
under hypoxic conditions and directly regulates endothe-
lial cells [31–34]. IL-8 has been shown to regulate patho-
logical angiogenesis, tumor growth, and metastasis [33]. 
The mechanism(s) regulating IL-8-mediated endothelial 
cell survival are not well understood. Recent reports sug-
gest that in addition to cell proliferation and migration, 
endothelial cell survival and death are also important 
factors for tumor survival and development [34]. Other 
studies have shown that a cell cycle-regulated apopto-
sis inhibitor, survivin, and the cell death-related gene 
products, Bcl-xL and Bcl-2 [19, 35], are associated with 
VEGF-induced angiogenesis [12, 34]. IL-8 and its recep-
tors CXCR1 and CXCR2 have been shown to play a role 
in endothelial cell proliferation [34]. Liver cancers, such 
as HCC, are dependent on angiogenesis; therefore, inhi-
bition of angiogenesis could be a potential treatment 
modality to prevent the proliferation and growth of solid 
tumors [36, 37]. Thus far, efforts to treat solid tumors 
using angiogenesis inhibitors have yielded good results 
[37, 38]. However, these therapies affect not only solid 
tumors but also normal cells, which is an area of concern 
in cancer treatment [36]. Furthermore, cancer therapies 
such as transarterial chemoembolization (TACE) deliv-
ered via blood vessels may not produce the desired effect 
and may even increase vascular proliferation and growth 
of malignant tumors by incomplete responses of TACE 
therapy [39]. Correlations among hypoxia, cancer prolif-
eration, angiogenesis, and tumor growth or development 
have been observed [40]. Elucidation of the relationships 
among these processes may ascertain the basis for inhi-
bition of tumor growth and metastasis. Management of 
the tumor can be achieved by dual control of HIF-1α and 
angiogenic factors [8]. Innovative and more effective can-
cer therapies can be developed by regulating the expres-
sion of HIF-1α, which is the key factor in hypoxia, and 
by controlling the expression of IL-8 and other angio-
genic stimulators, which restore the angiogenic processes 
caused by inhibition of HIF-1α expression [9].

HIF-1α knockdown directly represses tumor growth, 
whereas IL-8 knockdown indirectly represses tumor 
growth [1, 9, 36]. Combined knockdown of HIF-1α and 
IL-8 increased survival rates in mice [9]. Conditioned 
media collected from HCC cells subjected to combined 
knockdown also decreased microvessel density and 
tumor volume in  vivo [9]. Similarly, combined knock-
down of HIF-1α and IL-8 inhibited the angiogenic effects 
of HCC cell-conditioned media on tube formation and 
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invasion by endothelial cells in  vitro [9]. Inhibition of 
HIF-1α and IL-8 upregulated the expression of apop-
totic factors while simultaneously downregulating the 
expression of anti-apoptotic factors [9]. Knockdown of 
HIF-1α and IL-8 increased the concentration of cyto-
solic cytochrome C and enhanced DNA fragmentation 
in HCC cell lines and human umbilical vein endothelial 
cells (HUVECs) [41]. Moreover, apoptosis was induced in 
HUVECs treated with culture supernatant collected from 
HCC cell lines with silenced HIF-1α and IL-8 expression, 
under conditions of hypoxia [41]. Silencing of HIF-1β 
expression suppressed tumor cell growth and inhibited 
the expression of tumor growth-related factors [42], such 
as VEGF, epidermal growth factor (EGF), and hepato-
cyte growth factor. Suppression of tumor cell invasion 
and migration was also demonstrated in HIF-1β-silenced 
HCC cell lines [42].

Comparing various RNA silencing methods
The ability of RNA interference (RNAi) or transient gene 
‘knockdown’ to silence target genes with high efficiency 
and specificity has stimulated efforts to develop these 
molecules into therapeutic agents [43]. RNAi can be clas-
sified into three types [44, 45], all of which have similar 
mechanisms of action. Firstly, long double-stranded 
RNAs (dsRNAs), approximately 500–1000 nucleotides 
in length, have been employed to evaluate gene func-
tions [46]. Following introduction of exogenous dsRNA 
into the cytoplasm of cells [47], it gets cleaved by the 
RNase III enzyme Dicer to produce a short dsRNA called 
small interfering RNA (siRNA) [48]. The siRNA, which is 
21–23 nucleotides in length, is loaded into a protein com-
plex called the RNA-induced silencing complex (RISC) 
[47, 49]. The siRNA is then unwound and its sense strand 
degraded, while the surviving antisense strand guides the 
activated RISC to the target mRNA through full com-
plementary binding [50]. The mRNA is then cleaved by 
RISC, leading to silencing of the target gene [51]. Since 
long dsRNA triggers an immunostimulatory response 
through the activation of Dicer-related antiviral path-
ways and induction of type 1 interferon [46, 52], it is less 
suitable for therapeutic use. In contrast, synthetic siRNA 
is a more promising gene silencing mediator, because 
it poses less risk of an immune reaction [53]. Based on 
this principle, siRNA therapies have been investigated 
extensively in preclinical studies [43, 44, 48], and some 
siRNA agents have already been investigated in clinical 
trials for the treatment of cancer and several other dis-
eases [43]. To date, eight clinical trials of siRNA/dsRNA 
therapies for cancer have been reported [52, 54]. Various 
siRNA targets or pathways were evaluated in these trials, 
including polo-like kinase 1 [55, 56], KRAS (G12D) [57], 
protein kinase N3 [58], and VEGF [59, 60]. In addition, 

preliminary results have been released from a phase I 
trial of the first siRNA-based therapy targeting the onco-
gene MYC in patients with advanced solid tumors [43, 
52].

Short hairpin RNAs (shRNAs) are delivered into cells 
using a DNA vector and then transcribed by either RNA 
polymerase II or III in the nucleus [45]. The primary tran-
script is called primary shRNA (pri-shRNA), which con-
tains a hairpin-like stem-loop structure [47]. Pri-shRNA 
is processed into a 50–70-nucleotide-long loop-stem pre-
cursor shRNA (pre-shRNA) by a protein complex con-
taining the RNase III nuclease Drosha and the dsRNA 
binding domain protein DGCR8 [49]. It is then trans-
ported to the cytoplasm by a specialized nuclear mem-
brane protein, exportin 5 (Exp5) [47]. The loop sequence 
of the pre-shRNA is cleaved by Dicer to form a double-
stranded siRNA [44, 47]. This endogenously produced 
siRNA is loaded into RISC and can induce RNAi through 
a similar process as the synthetic siRNA [47, 51]. Since 
shRNA expression units can be incorporated into viral 
vectors and continuously synthesized by host cells, shR-
NAs can induce long-lasting gene silencing effects [45, 
47]. The RISC-loading process of shRNA is approximately 
5- to 10-fold more efficient than that of siRNA, indicating 
that a lower dose of shRNA is required to maintain thera-
peutic efficacy with less off-target effects [45]. However, 
the shRNA approach is a DNA-based strategy depending 
on the expression of shRNA-encoding genes, which often 
require viral vectors (such as adenoviral or lentiviral vec-
tors) [47, 51, 61]. From a delivery perspective, the intro-
duction of synthetic siRNA into the cytoplasm is a more 
straightforward method to induce RNAi [61]. The use of 
viral vectors for delivery poses safety concerns in thera-
peutic applications [47, 61].

MicroRNAs (miRNAs) is a naturally occurring non-
coding RNA molecules that play a key role in regulating 
gene expression [50]. Primary miRNAs (pri-miRNAs) 
are transcribed by RNA polymerase II from endogenous 
miRNA genes in the nucleus [62]. The hairpin-contain-
ing pri-miRNA is structurally similar to the pri-shRNA; 
therefore, miRNAs also have a similar function to shR-
NAs [45, 50]. The pri-mRNA is converted by the Drosha/
DCGR8 complex into precursor miRNA (pre-miRNA), 
which consists of 70–100 nucleotides with interspersed 
mismatches, and adopts a loop structure [45, 63]. Pre-
miRNA is subsequently transported to the cytoplasm by 
Exp5 and processed by Dicer into a mature miRNA of 
18–25 nucleotides in length [62]. In contrast to siRNA, 
the antisense strand of miRNA is only partially comple-
mentary to the target mRNA, leading to gene silencing 
via translational repression and/or mRNA deadenylation 
[50]. Positions 2–7 at the 5′ end of miRNA is an essential 
sequence for target recognition, and the miRNA-binding 
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sites of mRNA are located in the 3′ untranslated region 
[50, 63]. There are two major approaches in miRNA-
based therapeutics: miRNA inhibition [64–66] and 
miRNA replacement [44, 67]. The former suppresses the 
activity of endogenous miRNA using an antisense oligo-
nucleotide (anti-miR), and the latter introduces a syn-
thetic miRNA (miRNA mimic) to restore the functions of 
endogenous miRNA [44, 49, 53, 67].

Inhibition of HIF‑1α and IL‑8 expression as a strategy 
for suppression of angiogenesis
Angiogenesis is essential for tumor growth and metasta-
sis, and attempts to control tumor-associated angiogen-
esis may prove to be promising tactics for limiting tumor 
progression [36]. Angiogenesis occurs during develop-
ment and vascular remodeling as a controlled series of 
events leading to neovascularization, which supports 
changes in tissue requirements [68]. Blood vessels and 
stromal components are responsive to pro- and anti-
angiogenic factors that allow vascular remodeling dur-
ing development, wound healing, and pregnancy [69, 
70]. However, in pathological situations, such as cancer, 
the same angiogenic signaling pathways are induced and 
exploited.

Although an oncogenic event may allow tumor cells to 
evade surveillance or may enhance their survival, large-
scale growth of a tumor ultimately requires a blood sup-
ply [36]. To obtain this blood supply, tumor cells can tilt 
the balance toward the production of stimulatory angio-
genic factors to drive vascular growth by attracting and 
activating cells from within the microenvironment of 
the tumor [71]. The magnitude and quality of the angio-
genic response are ultimately determined by the sum of 
pro- and anti-angiogenic signals (Table 1) and, more spe-
cifically, their unique effects on multiple cell types [72]. 
Understanding how these various components are regu-
lated is required for the design and development of effec-
tive anti-angiogenic therapies for cancer [36].

In cancer, multiple sources and modes of vascular 
remodeling contribute to disease progression [37]. Tar-
geting one aspect of this remodeling process may pro-
duce a short-term effect; nevertheless, suppression of 
a particular pathway could result in the promotion of 
another [9]. The redundancy and diversity by which 
blood vessels can remodel might account for the poor 
efficacy or acquired resistance often observed in response 
to antiangiogenic therapies [3]. Improving therapeutic 
responses thus requires consideration of the signaling 
pathways that regulate the multiple cell types comprising 
the vascular components of cancer [73]. Once a tumor 
lesion exceeds a few millimeters in diameter, hypoxia and 
nutrient deprivation triggers an “angiogenic switch” to 
allow tumor progression [3, 19, 36]. Tumor cells exploit 

their microenvironment by releasing cytokines and 
growth factors to activate surrounding normal, quiescent 
cells, initiating a cascade of events that quickly becomes 
dysregulated [74].

Therefore, simultaneous inhibition of HIF-1α and IL-8 
expression has proven to be more effective for hinder-
ing angiogenesis than has inhibition of a single factor 
[9, 41, 42]. With regard to molecular expression, stud-
ies have demonstrated that liver cancer under hypoxia is 
more highly regulated by HIF-1α; however, in vascular 
endothelial cells, such as HUVECs, the level of IL-8 regu-
lation of angiogenesis is similar to that of HIF-1α [2, 75, 
76]. In cancer cells, both VEGF expression, which con-
trols angiogenesis, and cell growth appear to be regulated 
by HIF-1α, whereas IL-8 does not affect tumor growth 
or VEGF expression [9]. Alternatively, in HUVECs, IL-8 
expression inhibition induced a similar level of angio-
genic inhibition as that induced by HIF-1α inhibition 
(Fig. 1).

Similar results have been obtained through animal 
studies; inhibition of HIF-1α expression rarely results in 
tumor reproduction in animal models. Moreover, apop-
tosis was not detected in existing tumors in these ani-
mals. However, in other animal models in which IL-8 

Table 1 Up regulation of  tumor angiogenic factors 
under hypoxia

Factors Functions References

VEGF Increased vascular permeability [5]

Endothelial sprouting [36]

EC proliferation and migration [10, 35]

EC assembly [40]

iNO Increased vascular permeability [35]

Angiopoietin‑2 Endothelial sprouting [36]

PDGF Pericyte recruiting [9, 56]

EC proliferation and migration [3, 40]

MMPs Degradation of extracellular matrix [5]

Tie2 Form the blood vessels [40]

TGF‑beta Increased EC differentiation formation 
of vascular structure

[35, 40]

Formed vascular structure [10, 40]

VEGFR2 Stimulate endothelial cell mitogenesis 
and cell migration

[3, 10]

Enhances microvascular permeability [5, 56]

Endothelin Regulates local vascular tone and 
integrity

[10, 40]

Influences EC growth and survival [5]

IL‑8 Increased vascular permeability [5]

EC proliferation and migration [25]

Endothelial sprouting [36]

Thrombospondin Antiangiogenic, inhibiting the prolifera‑
tion and migration of endothelial cells

[95, 96]
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expression was inhibited, tumor volumes were similar 
to those in other experiments, in which a shRNA tar-
geting IL-8 was injected into tumors. These findings did 
not reveal any direct correlation between IL-8 function 
and tumor growth; however, IL-8 plays an important 
role in angiogenesis [33, 75, 77]. In addition, the results 
of experiments investigating angiogenesis, such as inva-
sion, tube formation, and aorta sprouting assays, con-
firmed that simultaneous inhibition of two factors yields 
more favorable responses than does inhibition of a sin-
gle factor [9]. Experiments in animal models have also 
demonstrated apoptosis of existing tumors as well as 
high survival rates in the majority of animals in which 
both factors were inhibited. Moreover, various markers 
of blood vessel formation, such as CD31, CD34, and vas-
cular endothelial-cadherin, were not observed [9]. These 
findings suggest that in addition to controlling hypoxia, 
targeting the expression of angiogenesis-associated fac-
tors that act via different pathways can help inhibit 
angiogenesis.

Improved cancer therapies have been developed by 
overcoming the limitations of existing therapies. We 
hypothesize that if the symptoms associated with can-
cer treatment can be monitored and controlled, certain 
obstacles currently encountered during treatment can be 
eliminated. If it were possible to regulate tumor develop-
ment, hypoxia, and angiogenesis simultaneously, cancer 
cells could be treated easily without peripheral damage. 
In other words, delivery of therapies that simultaneously 
inhibit factors controlling hypoxia and angiogenesis, 
while concurrently inducing apoptosis, may represent 

a more innovative anticancer treatment modality than 
those currently available.

Tumor escape from apoptosis under hypoxic conditions
The relationship between cancer and hypoxia is para-
doxical; while hypoxia during tumor development can 
destroy cancer cells, it also acts to regulate excessive can-
cer proliferation [40, 78, 79]. Induction of hypoxia has 
been reported to be a highly effective anticancer therapy 
[2, 68, 80]. Several studies have been performed to assess 
the effects of inducing apoptosis in various tumors [2, 68, 
78, 81]. One potential treatment option reduces angio-
genesis, typically by inhibiting VEGF, EGF, or basic fibro-
blast growth factor, while an alternative option involves 
activating the intracellular intrinsic apoptosis pathway by 
inducing the expression of apoptotic factors and inhibit-
ing the expression of anti-apoptotic factors [40]. An addi-
tional approach could be stimulation of an extracellular 
death signal to induce apoptosis. Apoptosis, also referred 
to as programmed cell death, is one of the most impor-
tant functions of a cell [82]. In normal cells, a decrease 
in telomere length normally occurs with age; however, 
DNA damage, toxin exposure, and deprivation of growth 
factors also generate death signals resulting in apoptosis 
[83, 84]. Hypoxic stimulation is also a crucial death sig-
nal; apoptosis is induced when the oxygen supply, which 
is required for the production of ATP, an important cel-
lular metabolite, is suppressed [40]. However, tumors 
can develop mechanisms to avoid responding to apop-
tosis-inducing signals [85]. Upon reduction of telomere 
length, telomerase production is promoted to restore 

Fig. 1 Inhibition of tumor angiogenesis by silencing of HIF‑1α and IL‑8. HIF‑1α directly regulates HCC development and IL‑8 assists tumor growth 
through regulation of angiogenesis in the vascular endothelial systems. shRNA‑induced HIF‑1α and IL‑8 knockdown inhibit angiogenesis and tumor 
growth in HCC. And, variable si/shRNA used regulation of target gene, such as siVEGF, siMMPs, siEGFR, et al.
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telomere length, and when DNA damage is induced, it 
can be repaired by mutation [40, 68, 86]. Under hypoxic 
conditions, apoptosis can be avoided by inducing angio-
genesis while increasing the expression of growth fac-
tors, thereby restoring oxygen supply, or by stimulating 
the production of intracellular nitric oxide synthase via 
hematopoiesis and local vasodilation (Table 2) [8, 15, 87]. 
Apoptosis can be also be avoided by increasing anaerobic 
ATP production via glycolysis, by promoting GLUT1 or 
pyruvate dehydrogenase kinase activity [15].

HIF-1α, which is generated under hypoxic conditions, 
is an important anti-apoptotic factor [40, 79]. HIF-1, 
like tumor necrosis factor-α, activates the expression of 
FoxM1, which induces cancer cell growth in the liver and 
increases resistance to apoptosis [84]. The expression 
of HIF-1 in liver cancer inhibits the expression of vari-
ous caspases and reduces the expression of Bax and Bak, 
thereby leading to a higher intracellular concentration of 
cytochrome C [41]. Increased expression of survivin and 
Bcl family members, which are important factors causing 
DNA fragmentation, can prevent hypoxia-induced apop-
tosis [88].

Apoptosis in tumors is important because it can inhibit 
tumor angiogenesis, which is increased by tumor prolif-
eration [68], and can induce apoptosis in newly formed 
peripheral blood vessels, thereby preventing relapsed 
growth of cancer cells or cancer stem cells at an early 
stage [1, 36, 37]. The immunofluorescence terminal 
deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL) technique has been used to demonstrate that 
tumors in which HIF-1α expression has been inhibited 
display increased DNA fragmentation [41]. Interest-
ingly, although IL-8 does not exert a direct influence on 
tumor apoptosis, it regulates apoptosis in blood vessels 
[41]. Cultured tumor cell lines in which both of these 
factors, such as HIF and IL-8, were inhibited simultane-
ously demonstrated an increase in tumor apoptosis via 
the Fluorescence-activated cell sorting(FACS)-TUNEL 
technique. It was also observed that cell culture medium 

from tumor cells induced to undergo apoptosis promoted 
apoptosis in vascular endothelial cell cultures without 
the need for any stimulation (Fig. 2) [3, 41]. Apoptosis in 
tumors affects surrounding tissues because of constant 
communication and signal transmission between cells. 
Blood vessels, which are essential for tumor growth, com-
municate via various factors present in the tumor vicin-
ity. Therefore, if anticancer drugs could induce apoptosis 
in tumors while simultaneously regulating the expression 
of certain activated factors in vascular endothelial cells, a 
superior therapeutic efficacy could be achieved in tumors 
[3, 41, 71]. In addition, more targeted tumor treatments 
could be developed by eliminating factors that support 
the growth of malignant tumors, which can relapse fol-
lowing treatment [36, 41].

Tumors can be treated by various methods and several 
drugs [1]; the efficacy of these treatments has been con-
firmed via different experiments. Moreover, various stud-
ies have been conducted to develop potential anti-tumor 
treatments that regulate the tumor microenvironment or 
modulate various tumor growth factors as well as target 
the tumor itself [1, 31, 37, 73, 74]. Methods that inhibit 
the hypoxic mediator HIF-1α and the vascular endothe-
lial cell activation factor IL-8, which have been impli-
cated in tumor development, could potentially be used 
to develop a treatment that could directly regulate both 
tumor development and the tumor microenvironment [9, 
18, 24, 41].

Conclusions
Although newly developed treatments for HCC employ 
various approaches to combat this disease, all are asso-
ciated with significant side effects and complications [1]. 
For example, TACE, which embolizes vessels to induce 
cancer tissue necrosis, also causes damage to surround-
ing tissues [39]. Furthermore, any remaining emboliza-
tion- or radiotherapy-resistant cancer tissue tends to be 
more malignant and can metastasize [89, 90]. Addition-
ally, hypoxia induced by medical or surgical treatment 
induces the accumulation of HIF-1α inside tumor cells 
and its subsequent translocation into the nucleus, where 
it promotes the expression of angiogenesis-related genes 
and increases oxygen supply to the tumor [91]. It also 
activates the expression of metastasis-related genes [16, 
21, 40]. These hypoxia-induced processes reduce cellular 
injury and enable continuous tumor growth by ensuring 
that the tumor receives an adequate supply of oxygen 
[40].

In recent studies, inhibition of HIF-1α expression failed 
to block tumor-induced angiogenesis, allowing the tumor 
to survive and proliferate [9, 36]. The key factor involved 
in this process is IL-8, which is upregulated in response 
to hypoxic conditions during tumor proliferation [16, 

Table 2 Role of anti‑apoptosis under hypoxia

Factors Functions References

Bcl family Block BAX and BAD activity [11, 51]

Inhibited caspase activation [5, 44]

Inhibited cytochrome c release [31, 48]

BNIP Apoptotic protector [15]

TGF‑alpha Induces epithelial development [26]

Initiate multiple cell proliferation [5, 44]

Caspase family Downregulation of caspase‑3 and 9 [31, 48]

JNK Regulates cell growth, differentiation, 
survival

[18, 51]

Up‑regulated STAT3 [44]
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90, 92]. IL-8 induces angiogenesis by activating vascu-
lar endothelial cells [93]. HIF-1α directly regulates HCC 
development and IL-8-assisted tumor growth via regu-
lation of angiogenesis in the vascular endothelial system 
[37]. These findings might aid the development of effec-
tive treatments that do not harm normal cells. However, 
further studies must be conducted before any clinical 
applications can be performed. Although inhibition of 
HIF-1α and IL-8 had a significant effect on tumor angi-
ogenesis in animal studies, this effect was restricted to 
specific hypoxic conditions. Since hypoxia destroys both 

tumor and normal cells, the expression of HIF-1α must 
be maintained in normal tissues.

Regarding tumor proliferation, hypoxia is an impor-
tant condition for the initial growth of a tumor. It is 
thought that HIF-1α and HIF-1β expression regulates 
the initiation of tumor growth and induces more malig-
nant growth under hypoxic conditions. Further studies 
will be required to determine other possible functions of 
HIF-1β, which are comparatively less known than those 
of HIF-1α, which has been the focus of most investiga-
tions at this point.

Fig. 2 Regulation of hypoxic apoptosis in hepatocellular carcinoma. Apoptosis is an important mechanism for the development of organisms. 
Organisms survive and proliferate in the cyclic structure of cell creation and death. However, apoptosis is critical for inhibiting the growth of cancer 
cells. One of the significant survival mechanisms of cancer cells is the suppression or prevention of apoptosis. Adenovirus‑mediated knockdown of 
HIF‑1α and IL‑8 induced apoptosis in HCC and triggered apoptosis of vascular endothelial cells
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A local hypoxic microenvironment is one of the most 
important characteristics of solid tumors. Apoptosis is 
a critical mechanism in the development of organisms. 
However, apoptosis is also critical for inhibition of cancer 
cell growth. A significant survival mechanism in cancer 
cells is the suppression or prevention of apoptosis. Once 
apoptosis is induced, cancer cells induce expression of 
various anti-apoptotic factors, thereby suppressing apop-
tosis and promoting increased growth of cancer cells and 
tissues. Various anticancer agents or therapies have been 
rapidly developed to address this characteristic. TACE, 
which is widely utilized for the treatment of liver cancer 
currently, induces hypoxia and hypoglycemia in liver can-
cer cells, reducing the number of cancer cells. Radiation 
therapies also induce extended hypoxia in radiated areas, 
thereby promoting hypoxia-induced apoptosis of cancer 
tissues. Among the various treatments for liver cancer, 
most kill cancer cells via apoptosis.

The present study investigated the effects of induc-
tion or prevention of apoptosis in peripheral vascular 
cells, rather than the direct treatment of cancer cells 
[68, 74, 82]. Apoptosis of cancer cells was confirmed to 
influence apoptosis or growth of peripheral tissues in 
various experiments investigating apoptosis. Moreover, 
RNA expression was found to be regulated by various 
knockdown mechanisms when employing RNAi tools 
in vitro and in vivo [47]. In vivo analyses used adenovi-
rus-mediated shRNA directly injected into tumor tissues 
for effective knockdown of target genes. In vivo analyses 
also used lentivirus-mediated siRNA for effective knock-
down of target genes in a rapid-growth cell-based assay 
[47, 94].

Improved cancer therapies have been developed by 
overcoming certain limitations associated with exist-
ing treatments. We hypothesized that if symptoms that 
occur during tumor treatment could be studied and con-
trolled, obstacles that are currently encountered during 
cancer treatment could be eliminated. If simultaneous 
regulation of tumor development, hypoxia, and angio-
genesis is possible, cancer cells could be easily treated 
without peripheral damage. In other words, a method 
that employs simultaneous inhibition of factors that 
potentially regulate hypoxia and angiogenesis while also 
inducing tumor apoptosis may represent a more innova-
tive anticancer treatment modality than those currently 
available.
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