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Abstract 

Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic 
resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and 
differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically 
disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitina-
tion. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss 
deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs 
microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing 
their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in 
the CSC-targeted therapy.
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Background
The existence of cancer stem cells (CSCs) are consid-
ered to play a pivotal role in tumor recurrence, resist-
ance and progression [1, 2]. There are three main aspects 
to effect CSCs maintenance and differentiation, includ-
ing transcription factor network, CSC-related proteins 
and microenvironment [3, 4]. Conventional cancer ther-
apy can’t kill cancer stem cells, which will cause cancer 
relapse and drug resistance under certain conditions 
(Fig. 1).

Ubiquitination is a post-translational modification 
process that participates in the covalent conjugation of 
small, highly conserved 76 amino acid protein ubiquitin 
with the lysine residues of the substrate protein through 
the cascade of enzyme reactions, including E1-activat-
ing enzymes, E2-conjugating enzymes, and E3 ligases, 
resulting in protein final degradation, relocalization or 
activity change. On the contrary, DUB-mediated deu-
biquitination removes the ubiquitin labels to protect 

substrate proteins from above-mentioned changes caused 
by ubiquitination. It has been reported that the ubiquit-
ination and deubiquitination of the key proteins in stem 
cells may determine the fate of cells (Fig.  2). Recently, 
DUBs have been demonstrated as promising targets 
for cancer therapy [5–7], their functions in cancer cell 
stemness remains elusive. For example, USP54 is over-
expressed in colorectal cancer stem cells and promotes 
intestinal tumorigenesis [8]. USP28 confers stem-cell-like 
traits to breast cancer cells [9].

Finding deubiquitinates of transcription factors and 
key protein can provide better understand of the activa-
tion mechanism on CSCs, and further deubiquitination 
inhibitors can be used to eliminate CSCs in cancer radi-
cal treatment.

DUBs and CSC‑associated transcription factors
Embryonic stem cells (ESCs) self-renewal and differen-
tiation are known to be regulated by a network of tran-
scription factors including Oct3/4, Sox2, c-Myc, Klf4 and 
Nanog [10, 11]. Cancer stem cells share significant simi-
larity with normal stem cells in biological characteristics 
such as quiescence, self-renewal and differentiation [12, 
13].
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Sox2
Sox2 also regulates the differentiation and stemness in 
cancer stem cells [14]. USP22 is located directly on the 
Sox2 promoter and negatively regulates Sox2 transcrip-
tion in ESCs [15]. In brain tumor cells, Usp9x was asso-
ciated with Sox2 and played key roles in the growth of 
tumor cells, but the relationship between them was not 
clear [16]. Sox2 also regulated DUBs activity by binding 
to the promoter region at the transcriptional level, such 
as USP7, USP25, USP37, and USP44 [17].

c‑Myc
c-Myc is a classical CSC-related marker, which can be 
stabilized by many DUBs. USP37 directly deubiquitinates 
and stabilizes c-Myc in lung cancer [18]. USP22 posi-
tively regulates c-Myc stability and tumorigenic activity 
in mammalian and breast cancer cells [19]. In a subset 
of human breast and lung cancers, USP36 interacts with 
and deubiquitinates c-Myc [20]. USP28 is required for 
c-Myc stability in human tumor cells, which binds to 
c-Myc through an interaction with FBW7alpha, an F-box 
protein that is part of an SCF-type ubiquitin ligase [21].

Nanog and ID proteins
Recent studies demonstrated that USP21 maintained the 
stemness of mouse embryonic stem cells via stabilization 
of Nanog by removing K48-linked ubiquitin chains [22]. 
Inhibitor of DNA binding (ID) proteins are transcriptional 
regulators that control the timing of cell fate determina-
tion and differentiation in stem and progenitor cells during 
normal development and adult life [23]. The small mole-
cule inhibitor of USP1 promotes ID1 degradation and has 
cytotoxicity to leukemic cells [24]. USP1 deubiquitinated 
and stabilized ID1, ID2, and ID3 proteins to preserve a 
mesenchymal stem cell program in osteosarcoma [25].

Some pluripotent factors such as Oct3/4, Klf4 and 
Lin28 have not been found their DUBs, but all of them 
are affected by the 26S proteasome, suggesting a poten-
tial role of DUB for their stabilization in CSCs.

DUBs and CSC‑related proteins
Some CSC-related proteins also control the fate of CSC, 
such as SIRT1, P53, PTEN, LSD1, PRC and so on. SIRT1, 
a  NAD+-dependent histone deacetylase, influences stem 
cell aging by controlling mitochondrial biogenesis and 
turnover which may be required for self-renewal [26, 27].

SIRT1
SIRT1 inhibition represents a potential approach to tar-
get leukemia stem cells [28, 29]. USP22 interacts with and 
stabilizes SIRT1 by removing polyubiquitin chains conju-
gated onto SIRT1 in mouse embryonic development [30].

P53
P53, tumor suppresser, demonstrates a role for p53 defi-
ciency in enhancing the formation of tumors arising 
from stem cells (embryonal carcinoma cells) [31, 32]. It 
is reported that USP10 deubiquitinates p53, reversing 
Mdm2-induced p53 nuclear export and degradation [33]. 
Ataxin-3, the machado–joseph disease deubiquitinase, 
interacts with p53 and functions as a novel p53 DUB [34]. 
USP7 deubiquitinates both p53 and MDM2, one of the 
ubiquitin ligases that ubiquitylates p53, thereby stabiliz-
ing both proteins [35, 36]. OTUD1, OTUD5 and USP11 
directly deubiquitinating p53 and functional proteins 
were required for p53 stabilization [37–39].

PTEN
PTEN loss leads to the development of cancer stem cells, 
with the capacity of self-renewal and multi-lineage dif-
ferentiation [40–43]. ATXN3 acts primarily by repress-
ing PTEN transcription, without altering PTEN protein 
stability [44]. However, USP18 overexpression could sta-
bilize PTEN protein, and USP18 repression decreases 
mainly cytoplasmic PTEN [45]. PTEN subcellular com-
partmentalization can be regulated by USP7 [46, 47].

Fig. 1 CSCs cause cancer relapse and resistance after conventional 
cancer therapy. The conventional therapy targeting the tumor bulk 
without targeting the CSCs leads to tumor recurrence

Fig. 2 Regulating CSCs differentiation and pluripotency by ubiq-
uitination and deubiquitination. Ubiquitination of core stem cell 
transcription factors or related key proteins by E3 ligases may drive 
CSCs differentiation, but deubiquitination of those proteins by DUBs 
mediates stem pluripotency
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PRC
The dysfunction of polycomb repressive complex (PRC) 
is closely related to cancer stemness [48, 49]. PRC1 
represses transcription is only in part dependent on its 
ubiquitination activity, and Fbxl10 is reported to recruit 
PRC1 to CpG islands and regulate H2A ubiquityla-
tion [50, 51]. Polycomb gene silencing may require H2A 
ubiquitination by PRC1 and H2A deubiquitination by 
Polycomb repressive deubiquitinase (PR-DUB). In some 
cancer types, PRC1 can be deubiquitinated by USP7, 
USP11 and USP26 [52, 53]. PRC2-mediated histone 
methylation plays an important role in aberrant cancer 
gene silencing and is a potential target for cancer therapy. 
The PRC2 proteins EZH2 is frequently overexpressed in 
mesothelioma with BAP1 mutation [54]. The deubiquit-
ination enzymes of PRC need to be further explored in 
the future.

LSD
Lysine-specific demethylase 1 (LSD1), the first identi-
fied histone demethylase, maintains cell stemness during 
cancer progression [55, 56]. USP7 and USP28 inhibited 
LSD1 ubiquitination and stabilized LSD1 protein level 
[9, 57].

Taken together, CSC-related proteins degradation or 
activity inhibition by targeting DUBs is effective for elim-
inating cancer stem cells.

DUBs and CSC microenvironment
The microenvironment of CSC has also been reported to 
play essential roles in maintenance of cancer stemness. 
Tumor specific microenvironments comprise stromal 
cells, immune cells, networks of cytokines and growth 
factors, hypoxic regions, and the extracellular matrix 
(ECM). We summarize the role of CSC microenviron-
ment from two aspects: hypoxia and inflammation 
[58–60].

Hypoxia
Hypoxia is considered to be a major feature of the tumor 
microenvironment and is a potential contributor to the 
CSC phenotype. Hypoxia-inducible factor (HIF) tran-
scription factors (HIF-1α and HIF-2α) are key mediators 
in cancer hypoxia response and help maintain multiple 
CSC population [61, 62]. In the presence of oxygen, VHL 
tumor suppressor protein interacts with HIF proteins 
and this interaction results in the ubiquitination and deg-
radation of HIF proteins, maintaining low levels of these 
transcription factors [63]. However, HIF proteins stabili-
zation can be regulated by DUBs, such as USP8, USP19 
and USP28 [64–66]. In addition, USP52 is a key compo-
nent of P-bodies required to prevent HIF1α mRNA deg-
radation [67].

Inflammation
The inflammatory cytokines modify the cancer microen-
vironment, CSCs secretion factors attract the necessary 
cells into their areas, enabling them better survive and 
escape chemotherapy [68]. Transforming growth factor 
β (TGFβ) has the ability to regulate immune cell popula-
tions in inhibiting and promoting tumor formation and 
progression active [69]. Cancer cells exposed to IL-6 are 
malignant, such as enhanced invasive ability and drug 
resistance [70, 71]. IL-8 promotes angiogenic activity 
through the activation of VEGFR2 [78]. USP21 binds to 
the promoter region of IL-8 and mediates transcriptional 
initiation in stem-cell like property of human renal cell 
carcinoma [79]. Also, IL-6 and G-CSF levels have been 
elevated in lung CSCs [80]. Most inflammatory cytokines 

Table 1 The effect of deubiquitinating enzymes in the reg‑
ulation of target proteins

Proteins Deubiquitinating 
enzymes

Effect References

Sox2 USP22 Transcription [15]

USP9X Unclear [16]

c-myc USP37 Protein stabilization [18]

USP22 [19]

USP36 [20]

USP28 [21]

Nanog USP21 Protein stabilization [22]

ID proteins USP1 Protein stabilization [24, 25]

SIRT1 USP22 Protein stabilization [30]

p53 USP10 Protein stabilization [33]

Ataxin-3 [34]

USP7 [35, 36]

OTUD1 [37]

OTUD5 [38]

USP11 [39]

PTEN ATXN3 Transcription [44]

USP18 Protein stabilization [45]

USP7 Location [46, 47]

PRC1 USP7 Protein stabilization [52]

USP11 [53]

USP26 [77]

PRC2 BAP1 Unclear [54]

LSD1 USP7 Protein stabilization [57]

USP28 [9]

HIF-1α USP8 Protein stabilization [66]

USP19 [65]

USP28 [64]

USP52 mRNA degradation [67]

IL-8 USP21 Transcription [79]

TRAF6 USP4 Activity [81]

A20 [82]
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are produced by many kinds of signal pathways and the 
deubiquitination of key proteins in the pathway can block 
inflammatory cytokines release. For example, TRAF6, 
a key regulator in toll-like receptor pathway and NF-κB 
pathway, can be regulated by USP4 and A20 [81, 82].

Conclusions
CSCs are difficult to eliminate by conventional treatment, 
mainly due to disorders of signal transduction and epi-
genetics. The control of ubiquitination and deubiquitina-
tion of CSC-related proteins determine the difference in 
CSCs and the maintenance of pluripotency. DUBs can 
protect the stemness of the CSC, thereby maintaining its 
activity and further forming a vicious circle. Therefore, 
DUBs are very important in the CSC specific treatment. 
We summarized the effect of deubiquitinating enzymes 
in the regulation of target proteins in Table  1. The suc-
cessful inhibition of CSC maintenance and radiation 
resistance by USP1 specific inhibitor (pimozide) has been 
provided the basis for further clinical trials [83]. It means 
that DUB inhibitors may boost more advantages in 
CSC-specific therapy than other anti-cancer drugs such 
as proteasome inhibitors. For example, b-AP15, a selec-
tive DUB inhibitor, can overcome bortezomib resistance 
in multiple myeloma [84]. More relevant basic research 
should be carried out to determine the DUBs related to 
the CSCs and to identify the mechanisms between them. 
Currently commercialized DUB inhibitors are summa-
rized in Table  2, showing significant pharmacological 
effects on cancer cells or cancer stem cells. In general, 
strategies involving the use of DUB inhibitors to target 
combination therapy of cancer stem cells and differenti-
ated cancer cells can provide better outcomes for radical 
cancer treatment. 
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