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Natural agents mediated autophagic 
signal networks in cancer
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Abstract 

Recent studies suggested that natural compounds are important in finding targets for cancer treatments. Autophagy 
(“self-eating”) plays important roles in multiple diseases and acts as a tumor suppressor in cancer. Here, we exam-
ined the molecular mechanism by which natural agents regulate autophagic signals. Understanding the relation-
ship between natural agents and cellular autophagy may provide more information for cancer diagnosis and 
chemoprevention.
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Background
Autophagy, also called type II programmed cell death, 
is a catabolic process that leads to degradation of tar-
geted organelles or cellular proteins. The first stage of the 
autophagic process is the formation of autophagosomes 
arising from intracellular membrane structures, such as 
the endoplasmic reticulum (ER), plasma membrane [1, 
2], Golgi or endosome [1], and the ER‒mitochondrial 
contact site called the mitochondrion-associated ER 
membrane [2, 3].

The serine/threonine protein kinase target of rapamycin 
(TOR) acts as a central inhibitor of autophagy. In yeast, 
TOR inhibition mediates the kinase activity of autophagy-
related gene (Atg) 1 and enhances the Atg1 binding 
affinity to Atg13 and Atg17 to initiate autophagosome for-
mation [4]. The mammalian Atg13/focal adhesion kinase 
(FAK) family interacting protein of 200 kD (FIP200)/
UNC-51-like kinase complex mediates mechanistic tar-
get of rapamycin (mTOR)-mediated autophagy induc-
tion [5, 6]. Multiple Atg proteins are required to form the 
phagophore in autophagosome formation. To initiate the 
phagophore, the membrane recruits PtdIns3K vacuolar 
protein sorting 34, the myristoylated serine/threonine 
kinase Vps15 (p150), Beclin 1, and Atg14 [6–9]. Next, the 

elongation and expansion stages require a ubiquitin-like 
system such as the ATG5/ATG12/ATG16L multimeric 
complex and microtubule-associated protein light chain 3 
(LC3) processing [10]. Finally, when the autophagosome is 
mature, it fuses with the lysosome to form the ‘autolyso-
some’ to degrade organelles or cellular proteins.

Autophagy plays a role in several biological processes, 
such as aging, development, and differentiation [11, 12], 
and it is regulated by 5′ AMP-activated protein kinase 
(AMPK) and mTOR downstream of PI3 kinase/AKT, 
which control cell growth and protein synthesis [13]. 
When growth factors are withdrawn, the autophagosome 
forms to induce autophagy [14].

Autophagy and cancer: anti‑tumorigenic effects 
of autophagy
Autophagy is both inhibitory and beneficial to malig-
nant transformation [15, 16]. Mukubou et  al. showed 
that enhanced sensitivity of pancreatic cancer cells to 
gemcitabine or ionizing radiation treatment activated 
autophagic flux [17]. Interference in the autophagic 
machinery in heterozygous or homozygous knockout 
mouse models resulted in oncogenesis [18]. Beclin 1, 
which regulates the initiation stages of autophagosome 
formation, plays a role as a tumor suppressor. Beclin 
 1−/− mice displayed tumorigenesis and altered early 
embryonic development [19]. Beclin  1+/− immortalized 
baby mouse kidney (iBMK) epithelial cells promoted 
tumorigenesis.
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There is evidence that disruption of Atgs promotes 
tumor cell death induced by anti-cancer drugs, such 
as histone deacetylase inhibitors, temozolomide, and 
etoposide [20, 21]. Guo et al. showed that Atg7-deficient 
lung tumors with p53 deletion resulted in lipid accumu-
lation [22]. Pyo et  al. [23] reported that Atg5 regulates 
interferon-γ-induced autophagic cell death by interacting 
with Fas-associated protein with death domain, which is 
a key signaling molecule involved in cell death.

Autophagy and cancer: pro‑tumorigenic effects 
of autophagy
Autophagy is constitutively activated in cancer cells, 
especially RAS-driven tumor cells [24, 25], and transcrip-
tional control of autophagy- and lysosome-related genes 
induces pancreatic cancer metabolism [18]. Wei et  al. 
[26] demonstrated that deletion of FIP200, which plays 
a role in autophagy, inhibits mammary tumorigenesis 
by impairing tumor cell proliferation in vivo in an onco-
gene-driven tumor model. There are several reports that 
accumulation of p62, which is a marker of autophagic 
flux, affects tumorigenesis and/or tumor progression. 
For instance, expression of p62 is highly induced in non-
small-cell lung cancer [27] and breast cancer [28], and 
p62/SQSTM1-knockout mice showed inhibition of RAS-
induced tumorigenesis compared with wild-type animals 
[29].

Autophagy and apoptosis
Beclin 1/Atg six is an essential component involved in 
formation of autophagic vesicles [30]. As shown in Fig. 1, 
Beclin 1 interacts with Bcl-2, which is an anti-apoptotic 
protein [31, 32], and inhibits autophagy. The interaction 
between Beclin 1 and Bcl-2 is via a BH3 domain in Beclin 
1 [32, 33], and interference of this interaction was found 
to enhance autophagy [32].

There is evidence that caspases play important roles in 
autophagy and apoptosis [34]. Oral et  al. [35] reported 
that caspase-8 overexpression resulted in Atg3 cleavage 
and thereby its degradation. Caspase 9 interacts with 
Atg7, and Caspase9–Atg7 complexes enhanced LC3II 
activity [35]. Zhu et al. [36] reported that caspase-3 plays 
an important role in autophagy via cleavage of Beclin-1 
at positions 124 and 149. Therefore, crosstalk between 
autophagy and apoptosis may provide important infor-
mation for cancer therapy.

Natural agents as modulators of autophagic 
signals
Several studies have revealed the therapeutic effective-
ness of drug re-positioning of existing drugs and the use 
of newly developed drugs for the treatment of disease and 
tumors [37–39]. Natural agents have emerged as novel 

therapeutic agents of drug-repositioning to influence 
autophagic activity [3]. As shown in Fig. 2, several natural 
agents modulate autophagy. For example, tanshinone IIA 
[40], ursolic acid [41], quercerin [42], fisetin [43], resvera-
trol [44], and honokiol [45] act as inhibitors of the AKT/
mTOR pathway. Tanshinone IIA modulates the initiation 
of phagophore formation. Ginsensoside [46] and ursolic 
acid [47] affect the formation of autophagosomes. Gin-
senoside RO inhibits autophagosome–lysosome fusion 
[48].

Resveratrol
Resveratrol, a polyphenol phytoalexin found in grapes, 
possesses anti-cancer [49, 50] and antioxidant func-
tions [51]. Resveratrol induced apoptosis and autophagy 
in ovarian cancer cells via inactivation of signal trans-
ducer and activator of transcription signaling [52] and 
induced autophagic cell death in prostate cancer cells 
via regulation of stromal interaction molecule 1 [53]. 
It also induced autophagy via downregulation of the 
Wnt/β-catenin signaling pathway in breast cancer 
stem-like cells [54]. Ge et al. [44] reported that resvera-
trol induced autophagy and apoptosis via repression of 
AKT/mTOR/p70S6K/4E-BP1 and enhancement of p38 
MAPK signaling in T cell acute lymphoblastic leukemia 
cells.

Apigenin
Apigenin (4′,5,7-trihydroxyflavone), a naturally occurring 
flavone found in many fruits (apples, grapes), vegetables 
(onions, parsley), and tea, was shown to have chemo-
preventive effects in vitro and in vivo [55, 56]. Lee et al. 
[57] showed that apigenin induced autophagy in HCT116 
human colon cancer cells, and when combined with 
3MA, which inhibits autophagy, it increased apigenin-
induced apoptosis in HCT116 cells. Autophagy inhi-
bition enhanced apigenin-induced apoptosis in breast 
cancer T47D cells [58]. Apigenin induced autophagic cell 
death via reactive oxygen species (ROS) production and 
accumulation of G2/M cell cycle arrest in human papil-
lary thyroid carcinoma cells [59].

Fig. 1 The scheme of Beclin 1 and Bcl2 interaction. Beclin 1 forms a 
protein complex with VPS34. When Beclin 1 interacts with Bcl-2, Bec-
lin1–Bcl-2 complex inhibits autophagy. However, when Beclin1–Bcl-2 
complex dissociate, autophagy initiates
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Ursolic acid
Ursolic acid, a pentacyclic triterpenoid known for 
its anti-tumor effects [60, 61], increased the expres-
sion of LC3-II, an autophagosome marker, and induced 
autophagy via the Beclin-1 and AKT/mTOR pathways. 
In addition, treatment with 3-methyladeninet or Bec-
lin-1/Atg5 siRNAs enhanced ursolic acid-mediated cell 
cytotoxicity in prostate cancer cells [62]. Xavier et  al. 
[47] reported that ursolic acid induced accumulation of 
both LC3-II and p62 by activation of JNK in HCT15 cells. 
Zhao et al. [63] demonstrated that ursolic acid treatment 
induced autophagy via eukaryotic translation initiation 
factor 2-α kinase 3 activity, implying that ER stress is 
an important factor in autophagy. Leng et  al. also dem-
onstrated that ursolic acid treatment led to apoptosis in 
cervical cancer TC-1 cells and, according to transmis-
sion electron microscopy, resulted in autophagic vacu-
oles. siRNA-mediated knockdown of Atg5 combined 
with ursolic acid treatment in TC-1 tumor cells attenu-
ated LC3 II accumulation, as shown by Western blotting, 
implying that the ursolic acid-induced autophagy relies 
on Atg5 [64].

Tanshinone
Tanshinones (tanshinone I and IIA) are derived from 
a traditional Chinese herb and are well-known bioac-
tive herbal compounds with chemopreventive proper-
ties [65]. Tanshinone IIA activated LC3 II expression in 
various cancer cells, such as prostate and gastric cells 
[66, 67]. It also induced apoptosis and autophagy via 

the mTOR/p70S6K/AMPK pathway in KBM-5 leukemia 
cells [68]. Gao et al. [40] reported that treatment of 95D 
cells with total tanshinones upregulated the expression 
of autophagic proteins, such as Atg3, Atg5, Atg7, Atg12, 
Beclin-1, and LC3II, in a dose-dependent manner. Jing 
et  al. demonstrated that tanshinone treatment of gas-
tric cancer cells, such as BGC823 and SGC7901 cells, 
induced autophagy and attenuated tumor proliferation in 
nude mice bearing BGC823 tumor xenografts [66]. Tan-
shinone II treatment in human osteosarcoma MG63 cells 
upregulated Beclin, which is involved in the formation of 
autophagic vesicles, inducing autophagy and apoptosis 
via ROS [69].

Curcumin
Curcumin, a hydrophobic polyphenol, possesses anti-
cancer functions in various human cancer cells, such 
as pancreatic and prostate cancer cells [70, 71]. Zhang 
et  al. [72] reported that curcumin treatment of colon 
cancer HCT116 cells induces autophagy via inhibition 
of the AKT/mTOR signaling pathway and upregula-
tion of the transcriptional activity of the transcription 
factor EB. Guan et  al. [73] also demonstrated that cur-
cumin treatment induced autophagy via activation of 
AMPK and suppressed the proliferation and migra-
tion of MDA-MB-231 breast cancer cells. Curcumin 
induced autophagy by upregulating the AMPK pathway 
in A549 lung adenocarcinoma cells as well [74]. Zhao 
et  al. [75] showed that curcumin treatment induced 
autophagy and suppressed invasion and proliferation in 
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Fig. 2 The autophagic signal by natural agents. Curcumin, Tanshinone IIA, ursolic acid, quercetin, fisetin, resveratrol, and honokiol inhibit AKT/mTOR 
pathway. Tanshinone IIA and curcumin also enhance activation of AMPK which inhibits AKT/mTOR pathway. Tanshinone IIA modulates the initiation 
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human melanoma cells via inhibition of the AKT/mTOR 
pathway.

Ginsenoside
Kim et  al. reported that ginsenoside Rg3 treatment of 
hepatocellular carcinoma, using a GFP-mRFP-LC3 con-
struct, suppressed autophagic flux. Combined treatment 
with doxorubicin and ginsenoside Rg3 sensitized cells to 
death via inhibition of autophagic flux [76]. Ginsenoside 
20(S)-Rg3 treatment of ovarian cancer cells inhibited 
cell growth and invasion while upregulating autophagic 
related molecules, such as LC3II, ATG5, and ATG7. Gin-
senoside 20(S)-Rg3 treatment suppressed tumor growth 
while upregulating LC3II, ATG5, and ATG7 levels [46]. 
Zheng et  al. [48] showed that ginsenoside RO (RO) 
treatment combined with chloroquine diphosphate did 
not enhance LC3 II accumulation in esophageal cancer, 
implying that RO inhibits autophagosome–lysosome 
fusion.

Fisetin
Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a flavonoid pre-
sent in fruits and vegetables [77] that possesses anti-
cancer [78], anti-inflammatory [79], and antioxidative 
[80] actions. Suh et al. [43] showed that fisetin treatment 
inhibited the growth of PC3Cap cells and induced LC3II 
autophagic marker expression via inhibition of mTOR1/2 
signaling. Klimaszewska-Wisniewska et al. observed that 
combined treatment of fisetin and paclitaxel induced 
autophagic cell death in A549 non-small-cell lung cancer 
cells [81].

Oridonin
Treatment with oridonin, an active diterpenoid com-
pound isolated from Rabdosia rubescens, simultaneously 
induced apoptosis and autophagy via ROS in HeLa cells 
[82] and human multiple myeloma RPMI8266 cells [83]. 
Oridonin induced apoptosis and autophagy in human 
prostate cancer cells [84]. Treatment with the nitric 
oxide (NO) scavenger DTT and interruption of ERK and 
p53 activation by PD98059, pifithrin-α, or ERK siRNA 
decreased oridonin-induced apoptosis and autophagy. 
This indicates that NO/ERK/p53 inhibited oridonin-
induced apoptosis and autophagy in L929 cells [85].

Piperlonguminine
Piperlonguminine, from the long pepper (Piper longum), 
possesses anti-tumor activity [86] and suppresses the 
phosphorylation of AKT/mTOR, thereby upregulating 
ROS levels in several cancer cells, such as 786-O, PC-3, 

and MCF-7 cell lines [87]. Piperlongumine-induced 
autophagy depends on ROS activation [87]. Xiong et al. 
[88] also reported that piperlonguminine significantly 
induced apoptotic molecules such as Bax, Bcl-2, and cas-
pase-3, autophagic markers such as Beclin-1 and LC3B, 
phosphorylation of p38 and JNK, and ROS levels in bone 
marrow mononuclear cells from patients with myeloid 
leukemia. Piperlonguminine activated p38 protein kinase 
via ROS, and SB203580, a p38 inhibitor, inhibited piper-
longuminine-mediated autophagy [89].

Honokiol
Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-
2-enyl-phenol), a small molecule polyphenol, induced 
both autophagy and apoptosis via inhibition of the PI3K/
AKT/mTOR pathway in neuroblastoma cells [45]. Lu 
et al. showed that honokiol treatment of human thyroid 
cancer cells induced anti-tumorigenic effects in  vitro 
and in vivo. LC3-II activity, a marker of autophagy, was 
increased by honokiol treatment in concentration- and 
time-dependent manners in thyroid cancer cells [90].

Others
Quercetin
Quercetin, a dietary antioxidant present in fruits and 
vegetables, is a chemopreventive compound. Wang et al. 
[42] reported that quercetin induced the appearance of 
autophagic vacuoles and formation of acidic vesicular 
organelles, with conversion of LC3-I to LC3-II via mod-
ulation of AKT/mTOR and hypoxia-induced factor 1α 
signaling in gastric cancer cells.

[6]‑Gingerol
Treatment with gingerol, which has anti-cancer effects, 
blocked autophagic flux, and gingerol combined with 
TRAIL sensitized cell death by blocking autophagic flux 
in A549 lung adenocarcinoma cells [91].

Glabridin
Glabridin, an isoflavone, induced autophagy and apop-
tosis in Huh7 human liver cancer cells via activation of 
JNK1/2. Autophagy inhibitors, such as wortmannin and 
BafA1, enhanced glabridin-mediated apoptosis [92].

Conclusions
The induction of autophagy is regarded as a strategy for 
cancer prevention because of its function as a tumor sup-
pressor. Inhibition of the PI3K/AKT/mTOR signaling 
pathway, which is dysregulated in human tumors, affects 
autophagy. As shown in Fig. 2 and Table 1, natural agents 
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regulate various autophagic signals. Therefore, finding 
natural agents that suppress PI3K/AKT/mTOR signaling 
or induce autophagy may be a good strategy for cancer 
chemoprevention.
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