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MicroRNA-10b regulates epithelial–
mesenchymal transition by modulating KLF4/
KLF11/Smads in hepatocellular carcinoma
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Abstract 

Background: Our previous work showed that miR‑10b was overexpressed in hepatocellular carcinoma (HCC) and 
promoted HCC cell migration and invasion. Epithelial–mesenchymal transition (EMT) is involved in HCC metastasis. So, 
we suspected that miR‑10b might participate in the HCC EMT.

Methods: We performed morphological analysis and immunofluorescence to observe the roles of miR‑10b in HCC 
EMT. The expression of KLF11 and EMT markers were detected by real‑time RT‑PCR and western blot. The regulation 
roles of miR‑10b on KLF11 and KLF4 were determined by luciferase reporter assay. The chromatin immunoprecipita‑
tion revealed the binding relationship between KLF4 and KLF11.

Results: We found that overexpression of miR‑10b could promote HCC EMT. miR‑10b could upregulated KLF11 
expression. The upregulation of KLF11 reduced the downstream molecular Smad7 expression, which upregulated the 
Smad3 expression to promote EMT development. Furthermore, the induction role of miR‑10b in HCC EMT could be 
blocked by KLF11 siRNA. But our results showed that there was no direct regulation of miR‑10b in KLF11 expression. 
Specifically, miR‑10b could bind to the 3′UTR of KLF4 and inhibit KLF4 expression. KLF4 could directly bind to KLF11 
promoter and downregulate KLF11 transcription.

Conclusion: Our results reveal that miR‑10b downregulates KLF4, the inhibitory transcriptional factor of KLF11, which 
induces Smads signaling activity to promote HCC EMT. Our study presents the regulation mechanism of miR‑10b in 
EMT through the KLF4/KLF11/Smads pathway for the first time and implicates miR‑10b as a potential target for HCC 
therapies.
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Background
Hepatocellular carcinoma (HCC), the most com-
mon primary malignant liver cancer, is a global public 
health problem that accounts for approximately 500,000 
deaths annually [1]. The high recurrence and low 5-year 

survival rate of HCC are mainly due to the intrahepatic 
and extrahepatic metastases [2], and the rate of recur-
rence is 86.5% for intrahepatic metastasis and 13.5% for 
extrahepatic metastasis [3]. The epithelial–mesenchymal 
transition (EMT) plays a pivotal role in local invasion and 
distant metastasis during HCC progression [4]. However, 
the mechanism underlying the EMT of HCC is largely 
unknown.

Current studies have shown that microRNAs (miRNAs) 
could act as activators or inhibitors of tumor metasta-
sis by targeting multiple signaling pathways involved 
in metastasis [5]. Moreover, miRNAs have been impli-
cated in the process of EMT through the modulation of 
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EMT-related genes [6]. Our previous results suggested 
that miR-10b was overexpressed in HCC and promoted 
HCC cell migration and invasion through the HOXD10/
RhoC/uPAR/MMPs pathway [7]. MMPs help cancer cells 
spread by breaking down the extracellular matrix (ECM) 
and other barriers which play an important role in the 
EMT progress [8]. So, we speculate that miR-10b may 
involve in EMT development.

Krüppel-like factor 11 (KLF11) belongs to the family 
of Sp1/Krüppel-like transcription factors and has been 
initially characterized as a TGF-β inducible early gene 
in the EMT progress [9]. KLF11 promotes the EMT 
through binding to the Smad7 promoter and suppress-
ing the transcription of Smad7, which interrupts the 
Smad7-driven negative feedback loop [10]. Additionally, 
KLF11 can directly upregulate the Smad2/3 expression to 
promote EMT development [11]. In this study, we deter-
mined whether miR-10b was involved in KLF11 regula-
tion and whether it participated in HCC EMT progress.

In this study, we first found that miR-10b could pro-
mote EMT in HCC cells. Then, we identified the regula-
tion mechanism of miR-10b in EMT through the KLF4/
KLF11/Smads pathway. Thus, our data suggested impor-
tant roles for miR-10b in HCC EMT and implicated miR-
10b as a potential target for HCC therapies.

Methods
Cell lines and culture conditions
The two HCC cell lines were used in this study: MHCC-
97H (HCC cells with high metastatic potential) and 
MHCC-97L (HCC cells with low metastatic potential) 
[12]. All cell lines were purchased from Shanghai Insti-
tute for Biological Sciences (Shanghai, China). All cell 
lines were routinely cultured in RPMI-1640 medium 
(Hyclone Laboratories, Logan, UT) supplemented with 
10% fetal calf serum (Gibco BRL, Rockville, MD, USA) at 
37 °C in a humidified atmosphere of 5%  CO2.

Immunofluorescence
Cells were seeded in 4-well 35-mm dishes (Greiner Bio-
One North America Inc., Monroe, NC, USA) at a density 
of 1000 cells/well and grown for 48 h in culture medium. 
Then cells were fixed in 4% paraformaldehyde for 20 min 
and permeabilized in phosphate-buffered saline (PBS) 
supplemented with 0.5% Triton X-100. After blocking, 
cells were incubated with the indicated antibodies for 
2 h. Cells were washed in PBS, incubated with their cor-
responding FITC-labeled or TRITC-labeled secondary 
antibodies (Pierce, Rockford, IL, USA) for 1  h at room 
temperature and stained with DAPI (Vector Labs, Burl-
ingame, CA, USA). Finally, the cells were mounted using 
glycerol and observed using a Nikon A1 laser scanning 
confocal microscope (Japan).

Western blot
Cell samples were lysed with RIPA buffer (Beyotime, 
China). Equal amounts (10  μg) of total protein were 
loaded, and then subsequently immunoblotted with the 
primary antibodies, including anti E-cadherin (BD Bio-
sciences, Franklin Lakes, USA), Vimentin (Invitrogen, 
Carlsbad, CA, USA), KLF4, KLF11, Smad7, Smad3 and 
tubulin (Santa Cruz, CA, USA). Proteins were detected 
using the Amersham enhanced chemiluminescence sys-
tem (Pierce, Rockford, IL, USA) according to the manu-
facturer’s instructions.

Real‑time RT‑PCR
Real-time RT-PCR was performed as described previ-
ously [13]. Expression data were uniformly normalized 
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
as an internal control, and the relative expression levels 
were evaluated using the ΔΔCt method [14, 15]. Primers 
were used as described previously [16, 17].

Vector construction, siRNA, and luciferase reporter assay
The miR-10b expression plasmid was constructed by our 
laboratory previously [7]. Cultured cells were transfected 
with miR-10b expression vector, antisense miR-10b (anti-
miR-10b), scramble miRNA using Lipofectamine 2000 
(Invitrogen) according to the manufacturer’s protocol. 
The sequence were described as before [7, 18].

The 3′UTR segment of KLF4 and KLF11 were sub-
cloned into the pmirGLO vector (Promega, Madison, 
WI, USA), respectively [11, 19]. The coding sequences of 
KLF4 was amplified and cloned into pcDNA3.1 (Invitro-
gen) [20]. The promoter of the KLF11 gene (about − 2000 
upstream to the Exon1, containing the KLF4 binding sites 
CACCC) was amplified by PCR and inserted into the 
pGL3-basic vector (Promega). The mutant constructs 
were generated using a QuickChange mutagenesis kit 
(Stratagene, La Jolla, CA, USA). All constructs were fur-
ther confirmed by sequencing. siRNAs targeting KLF4, 
KLF11 and negative control siRNA were purchased from 
Ambion. Cell transfection and dual luciferase reporter 
assay were performed as described previously.

Chromatin immunoprecipitation (ChIP)
ChIP assays were performed using a EZ ChIP assay kit 
(Millipore Corporation, Billerica, MA, USA). Immuno-
precipitation was carried out with anti-KLF4 antibody or 
rabbit IgG at 4 °C overnight with rotation. The immuno-
precipitated DNA was amplified by the promoter-specific 
primers: forward 5′-ACG CTG AGT ACA GTG GGA 
GCC AC-3′; reverse 5′-TCC TCG AGC CTG CAT T-3′. 
The PCR products were analyzed on 1% agarose gel.
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Statistical analysis
All statistical analyses were performed using the SPSS 
statistical software package (SPSS, Chicago, IL, USA). 
The significance of the data was determined using Stu-
dent’s t test or one-way ANOVA. All the statistical tests 
were two-sided, and a P value <  0.05 was considered 
significant.

Results
miR‑10b promotes EMT in HCC cells
Morphological analysis showed that MHCC-97L cells 
transfected with miR-10b expression plasmid exhibited 
a greater number of mesenchymal cells. The MHCC-
97L cells lost their cobblestone pattern and acquired 
a spindle-shaped morphology. As shown in Fig.  1a, 
the cells showed a spindle-shaped, fibroblast-like 

morphology. In contrast, inhibition of miR-10b expres-
sion reversed the EMT phenotype of MHCC-97H cells 
(Fig. 1a). Then, the epithelial and mesenchymal markers 
were detected. We performed an immunofluorescence 
using E-cadherin and vimentin as epithelial and mesen-
chymal markers, respectively. As shown in Fig.  1b, the 
expression of E-cadherin was downregulated, and the 
mesenchymal marker vimentin was upregulated after 
transfection of miR-10b compared with that of control. 
Furthermore, we observed a decrease of E-cadherin 
at both the protein and mRNA levels transfected with 
miR-10b in response to negative control (Fig.  1c, d). 
On the contrary, vimentin was increased in protein 
and mRNA (Fig.  1c, d). Altogether, these results dem-
onstrated that miR-10b played an important role in the 
regulation of EMT in HCC cells.

Fig. 1 miR‑10b promotes EMT in HCC cells. a In MHCC‑97L cells transfected with miR‑10b overexpression plasmid and in MHCC‑97H cells trans‑
fected with anti‑miR‑10b, morphological changes were observed under a light microscope. b Expression of E‑cadherin and Vimentin in MHCC‑97L 
cells with miR‑10b overexpression were examined by immunofluorescence. Fluorescence was observed by confocal laser‑scanning microscopy. 
Scale bars, 20 μm. c, d The E‑cadherin, Vimentin protein and mRNA levels were detected by western blot and real‑time RT‑PCR after overexpression 
of miR‑10b in MHCC‑97L cells. *P < 0.05
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miR‑10b induces upregulation of KLF11 and Smads 
signaling activity to promote EMT
Because previous studies have shown that KLF11 poten-
tiates TGF-β/Smads signaling activity by suppressing 
the expression of Smad7, we explored whether miR-10b 
affects EMT progress by modulating the expression of 
KLF11 and Smad7. As shown in Fig. 2a, b, KLF11 protein 
and mRNA expression levels increased after transfected 
with miR-10b. Consequently, the Smad7 expression was 
decreased. Since the inhibition of Smad7 was reduced, 
the Smad3 protein and mRNA expression levels were 
increased. Our results indicated that the levels of KLF11 
were increased by miR-10b, which induced Smads signal-
ing activity to promote EMT.

KLF4 but not KLF11 is a direct target of miR‑10b
Using the target prediction analysis, we found that a 
conserved sequence in the 3′UTR of KLF11 mRNA has 
a perfect match to the seed sequence of miR-10b. To 
verify whether miR-10b directly targeted KLF11 in HCC 
cell lines, luciferase reporter assays were carried out. 

We constructed KLF11-3′UTR/pmirGLO and mKLF11-
3′UTR /pmirGLO with the miR-10b binding site (Fig. 3a). 
Cotransfection of MHCC-97L cells with KLF11-3′UTR/
pmirGLO and miR-10b/pcDNA3.1 caused no decrease in 
the luciferase activity compared with the negative control 
(P > 0.05, Fig. 3b). The similar result was found in trans-
fection with mutation plasmid (P > 0.05, Fig. 3b). So, we 
found that there was no direct regulation of miR-10b in 
KLF11 expression. Our results showed that overexpres-
sion of miR-10b could significantly increase the KLF11 
expression. We speculated that there was a regulation 
mediator factor between miR-10b and KLF11.

KLF4 has been reported to be regulated by miR-10b 
in gastric carcinoma [19]. To verify whether miR-10b 
directly targeted KLF4 in HCC cell lines, we constructed 
the KLF4 3′UTR luciferase reporter plasmid (Fig.  3c). 
There was a 63% decrease in the luciferase activity after 
co-transfection of KLF4-3′UTR/pmirGLO and miR-10b/
pcDNA3.1 compared with the negative control (P < 0.05, 
Fig. 3d). This suppression was rescued by the five-nucle-
otide substitution in the core binding sites. All these 

Fig. 2 miR‑10b regulates KLF11, Smad7 and Smad3 expression in HCC cells. a The protein expression levels of KLF11, KLF4, Smad7 and Smad3 were 
measured in MHCC‑97L cells transfected with miR‑10b plasmid by western blot. b mRNA expression levels of KLF11, KLF4, Smad7 and Smad3 as 
above were detected by real‑time RT‑PCR. *P < 0.05
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results indicated that miR-10b exerts inhibitory effects 
on KLF4 expression via interaction with the 3′UTR of 
KLF4.

KLF4 directly binds to the KLF11 promoters and negatively 
regulates its expression
To determine the role of KLF4 in KLF11 transcription, 
we cloned the human KLF11 promoter fragment into 
the pGL3 luciferase vector for a luciferase activity assay. 
The transcriptional activity of KLF11 was reduced by 
KLF4 overexpression (Fig. 4a, b). These results suggested 
that KLF4 participated in the regulation of KLF11 tran-
scriptional activity. To validate this notion, we mutated 
these binding sites individually and used them in a 
reporter assay. The results showed that the mutations in 
KLF4 binding sites in the KLF11 promoter significantly 
impaired the effect of KLF4 on KLF11 transcription acti-
vation (Fig. 4b), suggesting that KLF4 can bind to its spe-
cial binding motifs on KLF11 promoter to down-regulate 
their transcription.

Furthermore, we performed in  vivo ChIP assays to 
investigate whether KLF4 binds to KLF11 promoter 
regions. The ChIP assays revealed that endogenous KLF4 
directly bound to KLF11 promoters (Fig. 4c). To further 
assess the biological roles of KLF4 in KLF11 expres-
sion, we applied loss- and gain-of-function approaches. 
Western-blot showed that KLF11 protein expression 
was downregulated or upregulated after overexpression 
or siRNA knockdown of KLF4, respectively (Fig.  4d). 
Together, these results suggested that KLF4 served as a 
transcription factor that inactivated KLF11 transcription 
and down-regulated their expression. So, we concluded 
that miR-10b downregulated KLF4, the inhibitory tran-
scriptional factor of KLF11, which induced Smads signal-
ing activity to promote HCC EMT.

miR‑10b promotes EMT in HCC cells via upregulation 
of KLF11
To confirm the role of miR-10b in HCC EMT via its reg-
ulation on KLF11 expression, we downregulated KLF11 

Fig. 3 The KLF4 3′UTR is a target of miR‑10b. a, c Upper panel, predicted duplex formation between miR‑10b and 3′UTR of KLF11 or KLF4. Lower 
panel, diagram of the luciferase reporter plasmids: plasmid with the full length KLF11 and KLF4 3′UTR insert and plasmid with a mutant KLF11 and 
KLF4 3′UTR which carried a substitution of five or six nucleotides within the miR‑10b binding site, respectively. b, d The relative luciferase activity in 
MHCC‑97L cells were determined after the KLF11 and KLF4 3′UTR or mutant plasmids were co‑transfected with miR‑10b overexpression vector or 
negative control, respectively. *P < 0.05
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expression through transfecting siRNA to block miR-
10b regulation. As expected, transfection of the miR-10b 
expression plasmid resulted in increased KLF11 expression. 
By contrast, si-KLF11 transfection eliminated the upregu-
lation induced by miR-10b. The EMT markers E-cadherin 
and vimentin were also detected. Our results showed that 
the induction of miR-10b was blocked by KLF11 siRNA 
(Fig. 5a). The realtime-RT PCR also confirmed the western 
blot results (Fig.  5b). The immunofluorescence assay also 
displayed the same change (Fig. 5c). We further observed 
the morphological change. Our results showed that the 
HCC cells exhibited a greater number of mesenchymal cells 
transfected with miR-10b expression plasmid, which was 
restored by si-KLF11 (Fig.  5d). Our results indicated that 
miR-10b significantly induced HCC EMT by up-regulating 
KLF11 expression. Altogether, we identified the regulation 
mechanism of miR-10b in EMT through the KLF4/KLF11/
Smads pathway. A summary diagram that outlines the 
above-described regulatory network is shown in Fig. 6. 

Discussion
In our study, we found that overexpression of miR-10b 
could promote HCC EMT. miR-10b induces upregulation 
of KLF11 and Smads signaling activity to promote EMT. 

Specifically, there was no direct regulation of miR-10b in 
KLF11 expression. Our results showed that miR-10b down-
regulates KLF4, the inhibitory transcriptional factor of 
KLF11 to upregulate KLF11 expression. Our study presents 
the regulation mechanism of miR-10b in EMT through the 
KLF4/KLF11/Smads pathway for the first time.

HCC is the third leading cause of cancer-related death 
worldwide. Since clinical symptoms are not easily observed 
during the early stage, the prognosis is poor at the time of 
diagnosis, which, in most cases, is during the advanced 
stage [21]. Thus, it is of much significance to explore new 
diagnostic and therapeutic molecular targets for HCC. 
miRNAs have been demonstrated to have close relation-
ship with HCC. miR-10b locates in the HOX gene cluster 
on chromosome 2, suggesting that it is closely related to 
tumor invasion and metastasis. Previous studies showed 
that miR-10b was overexpressed in a variety of human can-
cers, such as breast cancer, malignant glioma, nasopharyn-
geal carcinoma, pancreatic cancer, and HCC [22].

EMT is a key process driving cancer metastasis and the 
loss of E-cadherin and increase in vimentin expression are 
considered to be the most important molecular markers 
of EMT. Recent studies have revealed that miRNAs act 
as crucial modulators of EMT through the regulation of 

Fig. 4 KLF4 regulates KLF11 expression in HCC cells. a Dual‑luciferase reporter assay was performed by cotransfection of the KLF11 promoter 
wildtype fragment or mutated fragment with overexpression of KLF4. b Reporter assay in HCC cells transfected with KLF11 promoter constructs 
with mutations in potential binding elements for KLF4. wt, wild type; mu, mutation type. Luciferase activity was expressed as relative to that of the 
pGL3‑basic vector (a promoter‑less vector). *P < 0.05, by one‑way ANOVA. c ChIP assay demonstrated KLF4 binding to the KLF11 gene promoter. d 
KLF4 and KLF11 protein expression in cells transfected with KLF4 overexpression vector or siRNAs
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E-cadherin and other molecules such as vimentin and 
ZEB [23]. Our previous work has demonstrated that miR-
10b was overexpressed in HCC and promoted HCC cell 
migration and invasion [7]. In this study, we found that 
transfected with miR-10b expression plasmid exhibited 
a greater number of mesenchymal cells. The expression 
of E-cadherin was downregulated, and the mesenchymal 
marker vimentin was upregulated after transfection of 
miR-10b compared with that of control. These findings 
demonstrated that miR-10b promoted EMT in HCC cells.

Next, we explored the underlying mechanisms involved 
in the regulation of EMT by miR-10b. We found that 
KLF11 protein and mRNA expression levels increased 
after transfected with miR-10b. Consequently, the Smad7 

expression was decreased. Subsequently, the Smad3 pro-
tein and mRNA expression levels were increased. So, our 
results indicated that the levels of KLF11 were increased 
by miR-10b, which induced Smads signaling activity to 
promote EMT. We speculated that miR-10b could bind 
to the KLF11 3′UTR and regulate its expression. We 
constructed KLF11-3′UTR luciferase reporter plasmid. 
Cotransfection of KLF11-3′UTR and miR-10b caused no 
decrease in the luciferase activity compared with the neg-
ative control. The similar result was found in transfection 
with mutation plasmid. These results indicated that there 
was no direct regulation of miR-10b in KLF11 expression. 
Thus, we speculated that there was a regulation mediator 
factor between miR-10b and KLF11.

Fig. 5 miR‑10b promotes EMT in HCC cells via upregulation of KLF11. a KLF11, E‑cadherin and Vimentin expression in HCC cells treated with 
miR‑10b or rescued with si‑KLF11 by western blotting. b Real‑time RT‑PCR analyses of KLF11, E‑cadherin and Vimentin mRNA levels as above were 
transfected. c The expression levels of KLF11, E‑cadherin and Vimentin were examined in HCC cells treated with miR‑10b or si‑KLF11 by immunoflu‑
orescence. Fluorescence was observed by confocal laser‑scanning microscopy. d Morphological changes were observed under a light microscope. 
*P < 0.05
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Bioinformatic prediction tools indicated that KLF4 is 
a putative target of miR-10b [24]. Zhang has identified 
that miR-10b targeted KLF4 levels in human NPC cells 
[25]. Consistently, we found that miR-10b exerts inhibi-
tory effects on KLF4 expression via interaction with the 
3′UTR of KLF4. KLF4 is a transcription factor involved 
in cell cycle regulation, apoptosis, and differentiation. Its 
expression increases in response to DNA damage, serum 
deprivation, and contact inhibition [26]. Specifically, 
KLF4 has been shown to negatively regulate EMT in 
cancers. Down-regulation of KLF4 is required for EMT, 
cell migration, and for the induction of apoptosis [27]. 
Together, our results indicate that KLF4 may take part in 
the EMT progress induced by miR-10b in HCC.

Emerging evidence suggests that the Sp/KLF family 
member could regulate each other [28, 29]. We found 
that the transcriptional activity of KLF11 was reduced 
by KLF4 overexpression. The ChIP assays revealed that 
endogenous KLF4 directly bound to KLF11 promoter. 
Western-blot showed that KLF11 protein expression 
was downregulated or upregulated after overexpression 
or siRNA knockdown of KLF4, respectively. Altogether, 
KLF4 can bind to its special binding motifs on KLF11 
promoter to down-regulate their transcription. Further-
more, the induction role of miR-10b in HCC EMT could 
be blocked by KLF11 siRNA. miR-10b promotes EMT in 
HCC cells via upregulation of KLF11.

Conclusions
We first found that miR-10b could promote EMT in HCC 
cells. miR-10b downregulates KLF4, the inhibitory tran-
scriptional factor of KLF11, which induces Smads signal-
ing activity to promote HCC EMT. This newly identified 
miR-10b KLF4/KLF11/Smads pathway provides a new, 
potential therapeutic target to treat HCC.
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