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REVIEW

Resistance a major hindrance 
to chemotherapy in hepatocellular carcinoma: 
an insight
K. Lohitesh†, Rajdeep Chowdhury† and Sudeshna Mukherjee* 

Abstract 

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total 
liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously 
followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgi‑
cal treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs 
resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diag‑
nostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We 
have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis 
evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role 
of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowl‑
edge might be exploited for the development of an effective, prospective therapy against HCC.
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Introduction
Hepatocellular carcinoma is currently considered as 
a rapidly evolving disease. According to the Globo-
can report, an estimated 782,451 new liver cancer cases 
and 745,517 cancer deaths have occurred worldwide in 
2012. Also, as per the National Cancer Institute’s Sur-
veillance Epidemiology and End Results (SEER) the 
relative 5-year survival rate of HCC between 2002 and 
2008 has been as low as 15%. The main causative fac-
tors contributing to the disease have been chronic alco-
hol abuse, infection with hepatitis B or hepatitis C virus 
and food contaminations [1]. As a consequence of such 
varied etiologies, HCC is a heterogeneous malignancy 
with complex carcinogenesis. Also despite advances in 
development of early detection methodologies, the inef-
fective and expensive procedures available for treatment 
of HCC pose a challenge for the disease management. 

In fact, 80% of HCC patients are currently diagnosed 
at an advanced stage of the disease with a median sur-
vival of 6–8 months only. Surgical resection followed by 
chemotherapy is the most established curative treatment 
for HCC. However, operating on the liver can be both 
complicated and unachievable due to size and distribu-
tion of the tumor in the liver, blood vessels and other vital 
organs. Also, complete surgical removal is mostly not 
possible for more than two-third of HCC patients where 
the disease have already metastasized and the patients 
are at an advanced stage [2–4]. Current treatment pro-
cedures mainly include cryosurgery, radiofrequency 
ablation and embolization but they are mostly palliative 
approaches without much success rate [5]. Moreover, 
post-surgery recurrence of the tumor has been a major 
issue for more than 90% of HCC patients. This has forced 
to shift the treatment regime towards systemic chemo-
therapy. Drugs that are used in HCC as monotherapy are 
listed in Table 1. But currently the use of single agents in 
therapy is practically non-existent because of their low 
response. For example, in a large study of doxorubicin, 
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no responses were noted among 109 patients; also among 
475 patients who received doxorubicin in various studies, 
only 16% response rate was documented, with a median 
survival of 3–4 months only [6]. This led to the evolution 
of combined regimen drugs. A combination of capecit-
abine + oxaliplatin + cetuximab showed modest activ-
ity only [7]. Among cisplatin-based regimens, the best 
response rate was obtained with the treatment of PIAF 
(cisplatin + adriamycin + 5-FU + INF) [8]. More recently, 
GEMOX (gemcitabine + oxaliplatin) has also been evalu-
ated in a phase-II study, with promising results [9]. Other 
chemotherapeutic drugs like, sorafenib are also often 
used to attenuate HCC tumor [10, 11]. But, acquisition 
of chemoresistance continues to be a major constraint in 
chemotherapy-based treatment of the disease. An alter-
native strategy adopted was the administration of chemo-
drugs like cisplatin, mitomycin C and doxorubicin 
through hepatic artery infusion [12]. However, surgical 
catheter insertion into the hepatic artery and inoperable 
conditions of the tumor owing to HCC’s high metastatic 
potential became a limiting factor. Thus despite recent 
advancements in chemotherapy, HCC still remain a 
fatal disease. Hence, focus should be reoriented more on 
unraveling the molecular mechanisms behind chemore-
sistance with an objective to develop novel therapeutic 
targets and diagnostic biomarkers.

Various mechanism of chemoresistance in HCC 
cells
Reduced drug uptake, efflux of drugs and drug metabolism
A poor response to pharmacological regimens in the 
treatment of liver cancer can be due to complex mecha-
nisms like, reduced drug uptake, enhanced drug efflux, 
intracellular drug metabolism leading to reduced concen-
trations of active agents, changes in the molecular targets 
of the drugs and enhanced repair of drug-induced modi-
fications. In some cases, the conjoint enhanced expres-
sion of drug efflux pumps like, both MDR1 and MRP2 
seems to be a contributing factor towards resistance [13]. 
Thus in patients with non-surgical HCC the response to 

chemotherapy has been found to be inversely propor-
tional to the expression of multi-drug transport system. 
In this context, different transporters with their mode 
of action are listed in Table  2. Hence, recent therapeu-
tic strategies must involve drug pump antagonist against 
the resistant cells. Alternate mechanisms employed 
by the tumor cells to inactivate anti-cancer drugs are 
over-expression of detoxifying enzymes like phase-I 
(cytochrome P450) and phase-II enzymes in conjugation 
with glucuronic acid or with glutathione. Cytochrome 
P450 enzymes and glutathione S-transferases, along with 
other enzymes like epoxide hydrolase, phase II xenobi-
otic metabolizing enzymes are reported to increase cells’ 
resistance to alkylating agents or drugs like, cisplatin in 
HCC [14, 15]. Enhanced drug in-activation by uridine 
glucuronosyltransferase-1A has also been found to be 
associated with drug resistance in HCC [14, 16]. Thus, a 
vivid understanding of the intra-cellular biology of chem-
oresistance is desirable to develop new therapies, which 
would help to override the resistance acquired by the 
conventional cytotoxic drugs.

DNA repair pathway aberrations and chemoresistance 
in HCC
HCC develops in a milieu of underlying chronic inflam-
mation, which promotes DNA damage and chromosomal 
aberration. It has been observed that HCC deploys DNA 
repair mechanisms, like stalled DNA replication fork by 
homologous recombination (HR), base mismatches by 
mismatch repair (MMR), double-strand break (DSB), 
non homologous end joining (NHEJ) to become chem-
oresistant. They can upregulate various enzymes involved 
in DNA repair mechanisms for acquisition of chemore-
sistance [17]. However, it is not necessary that the repair 
pathways are always upregulated in chemoresistant 
models. Defect in MMR pathway genes can also induce 
resistance to certain therapeutic agents. In HCC cells, 
over-expression of MDR-1 is associated with patients 
having defective MMR genes contributing to drug resist-
ance [18]. A better understanding of the role of DDR 

Table 2 List of drug transport systems and their status in HCC

S. No. Transporter Mode of action Up-regulated or down-regulated References

1 MDR1 (ABCB1 or P‑glycoprotein), MRP1 
(ABCC1), MRP2 (ABCC2), MRP3(ABCC3) 
and ABCG2

Extrudes unrelated anti‑tumoral agents 
like anthracyclines, taxanes, vinca 
alkaloids etc. from the cell

Up regulated [18, 100]

2 OATP1B1 and OATP1B3 Transports anti‑tumor drugs inside the 
cells

Down regulated [101, 102]

3 SLC28 and SLC29 Uptake of nucleoside derived anticancer 
drugs

Down regulated [103]

4 Organic cationic transporter‑1 (OCT1) Uptake of tyrosine kinase inhibitors Down regulated; hyper‑methylation of 
the SLC22A1 promoter

[104]
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pathways in HCC may help us to develop novel strate-
gies for treatment or prevention of HCC. Various DNA 
repair enzymes, which are involved in chemoresistance, 
are listed in Table 3; these can be exploited in a judicious 
way to develop novel therapeutic strategies.

Impairment of the apoptotic machinery and associated 
chemoresistance in HCC
Apoptosis is a highly conserved phenomenon contrib-
uting to tissue homeostasis by targeted elimination of 
single cells without disrupting the functionality of the 
respective tissue. Cancer strikes by developing resistance 
against cell death signaling pathways, like apoptosis upon 
failure of immune surveillance. A similar aspect underlies 
the poor responsiveness of HCC towards chemotherapy. 
Upon exposure to cytotoxic agents, HCC cells down reg-
ulate death receptor CD95 and upregulate CD95-ligand 
(FasL) [19–22]. The defect in down-stream Fas-asso-
ciated death domain (FADD) signaling also potentially 
contributes to the chemoresistance in HCC [23, 24]. It 
has further been observed that the anti-apoptotic pro-
tein-brain and reproductive organ-expressed protein 
(BRE), can bind to tumor necrosis factor (TNF) recep-
tor-1 and Fas conferring the ability of chemoresistance to 
HCC cells by inhibiting death receptor induced apopto-
sis [25, 26]. FLICE inhibitory protein (c-FLIP), a recently 
identified intracellular inhibitor of caspase-8 activation 
that can potentially inhibit death signaling mediated by 
various death receptors, like Fas, TNF-receptor (TNF-
R), and TNF-related apoptosis-inducing ligand recep-
tors (TRAIL-Rs) and by NFĸB activation, was found to 
be constitutively expressed in HCC cell lines and over-
expressed in human HCC tissues. An over-expression of 
c-FLIP was associated with shorter recurrence free sur-
vival time in HCC patients [27, 28]. A resistance towards 
TRAIL induced apoptosis is also reported in HCC by 
virtue of loss of TRAIL receptor and over activation of 
NF-κB. Activation of NF-κB, and nuclear localization of 
NF-κB, p65, p50 and p52 subunits is often found to be 
associated with cell proliferation and resistance in HCC 
[29]. Furthermore, Mcl-1, an anti-apoptotic member of 

the Bcl-2 family, is over-expressed in HCC, which con-
tributes to the malignant phenotype and resistance 
towards apoptosis and chemotherapeutics. On a simi-
lar note, over-expression of Bcl-2 and Bcl-xL has been 
found in HCC cell lines and is associated with resistance 
to paclitaxel [30]. An over-expression of a specific set of 
microRNA, like, miR23a that allow the escape from TGF-
β-induced apoptosis has also been observed in HCC 
[31]. Additionally, the presence of abnormally function-
ing p53 is also a common finding in many drug-resistant 
tumor cells and HCC is no exception. It is reported that 
p53 contributes to cell survival and chemoresistance in 
HCC under nutrient-deprived conditions by enhancing 
autophagy [32]. Also, gain of function (GOF) mutations 
in p53 are reported to impart resistance to doxorubicin 
and paclitaxel in HCC cells [33]. Overall apoptosis resist-
ance in HCC is the outcome of varied molecular altera-
tions and further research needs to be channelized in this 
direction to trace the links to individual pathways regu-
lating apoptosis in HCC.

Activation of cell survival signaling and evasion 
of chemoresistance in HCC
In conjunction with de-regulation of apoptosis, HCC 
cells simultaneously trigger multiple survival signaling 
pathways to evade the physicians armory and maintain 
neoplastic progression. For example constitutive activa-
tion of Insulin-like growth factor (IGF) signaling pathway 
is an important contributor to drug resistance in HCC 
against sunitinib [34]. Various other growth receptors 
like epidermal growth factor receptor (EGFR) and con-
nective tissue growth factor (CTGF) are also reported 
to be upregulated and involved in proliferation and drug 
resistance of HCC [35, 36]. Also, over-expression of Fork-
head box M1 (FoxM1) transcription factor that act as a 
master regulator of HCC cell growth through regulation 
of cell cycle, glycolysis and EMT contributes significantly 
to the development of chemoresistance in HCC [37]. The 
multiple proliferation signaling pathways that enhance 
angiogenesis, drug resistance and cell proliferation facili-
tating HCC cell growth are summarized in Table  4. A 

Table 3 List of DNA repair enzymes de-regulated in HCC

S .No. DNA repair enzyme Therapy given Repair mechanism involved Reference

1 ERCC‑1 Platinum based anti‑cancer agents Nucleotide excision repair (NER) [105]

2 Flap endonucleases (FENs) Cisplatin Nucleotide excision repair (NER) and Base exci‑
sion repair (BER)

[106]

3 Chk2 Paclitaxel DNA damage checkpoint [107]

4 ATM signaling Sorafenib DNA damage checkpoint [108]

5 Apurinic/apyrimidinic endonuclease 
(APE1)

Irradiation Base excision repair (BER) [109]
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targeted therapy by specific inhibition of alternated sign-
aling cascades can therefore be thought upon as one of 
the options to decelerate HCC progression.

Autophagy as defense to chemotherapeutic stress
Autophagy is an evolutionarily conserved process 
through which lysosomal degradation of damaged and 
superfluous cell components are achieved and recy-
cled back into basic bio-molecules in the cytosol. HCC 
cells can use autophagy as a cellular defense mechanism 
upon facing stress conditions like, nutrient deprivation, 
hypoxia and drug insult. Reports of autophagy activa-
tion post oxaliplatin treatment and enhanced oxaliplatin 
induced cell-death upon autophagy inhibition in HCC, 
supports the pro-survival role of autophagy in HCC cells 
[38]. Similar to above, the anticancer effects of two other 
drugs, like, bevacizumab and sorafenib were enhanced 
upon autophagy inhibition in HCC [39, 40]. Our study, 
also shows that autophagy plays a pro-tumorigenic 
role facilitating EMT in HCC cells [41]. Inhibition of 
autophagy by late stage autophagy inhibitors like, chlo-
roquine showed a marked suppression of liver tumor 
in vivo studies as well [39]. Furthermore, cisplatin treat-
ment is known to trigger unfolded protein response 
(UPR) in HCC cells which subsequently inhibits cell 
apoptosis through activation of autophagy [42]. Accu-
mulation of phosphorylated p62, a protein that is gener-
ally degraded through autophagy, was found to stimulate 
hepatitis C virus induced tumors in HCC. Concurrently, 
inhibition of p62 phosphorylation suppressed prolifera-
tion and anticancer drug tolerance in HCC [43]. In spite 
of a spur in research articles demonstrating the role 
of autophagy in cancer, the exact role of autophagy on 
tumor cells is still controversial and remains to be further 
elucidated in hepatocellular carcinoma.

Cancer stem cells in HCC chemoresistance
The ‘stem cell model’ of carcinogenesis suggests that 
cancer originates and is maintained by a rare fraction of 
cells called the cancer stem cells (CSCs) [44, 45]. They are 
responsible for the growth of neoplastic tissues and are 

naturally resistant to chemotherapy. In HCC, CSC mark-
ers include epithelial cell adhesion molecule (EpCAM), 
CD133, CD90, CD44, CD24, CD13, and oval cell marker 
OV6, some of which confer chemoresistance property to 
them. CD133+ HCC cells are reported to confer chem-
oresistance via the preferential activation of the Akt and 
Bcl-2 survival pathway [46]. The EpCAM+ CSCs in HCC 
also show chemo-resistance against genotoxic agents like, 
5-FU [47]. HCC tumor growth and metastasis are thus 
undoubtedly driven by CSCs leading to transient effects 
of the current chemotherapies against HCC.

Evidences for epigenetic regulation of chemoresistance 
in HCC
The role of epigenetics, has surfaced as an emerging 
topic in regulation of chemoresistance in the last dec-
ade. Amongst the epigenetic modifications, DNA meth-
ylation has garnered a great deal of attention recently in 
terms of development of chemoresistance. HCC tumors 
exhibit specific DNA methylation signatures that can be 
associated with tumor progression implying the poten-
tial benefit for their identification and subsequent target-
ing. Hernandez-Vargas et  al. were able to identify a set 
of hypermethylated gene promoters (APC, RASSFIA, 
CDKN2A and FZD7) which could differentiate HCC 
tumors from paired surrounding control liver tissues. 
Specifically, promoter methylation of DNMT1was also 
found to be significantly associated with poor prognosis 
[48]. Song et al. further analyzed DNA methylation pat-
tern in HCC tissues from 27 HCC patients, and observed 
significant enrichment of promoter methylation in vari-
ous genes involved in cell death and cancer; the top five 
of them were genes like, BMP4, CDKN2A, GSTP1, and 
NFATC1 [49]. Also, another study showed that tran-
scriptional repression of miR-193a-3p promoter through 
hyper methylation is involved in 5-FU resistance in HCC 
cells [50]. Hence, suppression of DNA methylation was 
capable of enhancing the sensitivity of HCC cells to 
5-fluorouracil (5-FU). Though, 5-aza-2′-deoxycytidine 
(5-aza-dC), a specific DNA methylation inhibitor alone, 
did not induce cell death in vitro; however, a combination 

Table 4 Molecular signaling pathways altered in HCC

S. No. Altered signaling pathways Relevant molecule Alteration Targeted therapies References

1 Hedgehog SMO Activating overexpression GDC‑0449, cyclopomine 2006 [110]

7 Hippo MST1/2 Down‑regulated – 2009 [111]

8 Hippo pYAP Down‑regulated – 2009 [111]

3 Notch NOTCH1 Overexpression Gamma secretase 2009 [112]

2 Wnt/beta‑catenin APC Inactivating mutation – 2012 [113]

6 PI3K/AKT/mTOR MTORC1 Up‑regulated Everolimus, rapamycin 2012 [114]
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of 5-aza-dC with 5-FU showed a reduction in cell viabil-
ity and induction of apoptosis to a greater degree than 
with 5-FU only [51]. However, in a clinical study with 
low dose decitabine (5-Aza-2′-deoxycytidine), substantial 
remission and favorable toxicity profiles were obtained in 
patients with advanced HCC [52]. Evaluation of another 
epigenetic aspect- histone methylation has been less 
explored and correlated with clinico-pathlogical features 
in HCC. However, high levels of trimethylated histone 
H3 lysine 4 (H3K4me3), a transcriptional suppressive 
signature was found to be associated with poor sur-
vival, prognosis and aggressive tumor features in HCC 
[53]. Also, subunits of polycomb repressive complexes-2 
(PRC-2)-SUZ12 and EZH2 were found to impart dis-
tinct roles during HCC pathogenesis. Over-expression 
of EZH2 was consistently observed in advanced HCC 
[54] while in, chronic HBV infection, the HBx protein 
was found to modulate SUZ12 protein levels, that main-
tained “stemness” of a sub-population of hepatocyte cells 
thus contributing to drug refractoriness [55]. Similar 
to altered DNA methylation and histone modification 
patterns, aberrant miRNA expression profiles are also 
linked to drug resistance and liver progression. A list of 
miRNAs commonly de-regulated in HCC is shown in 
Table  5. Another sub-population of non-coding RNAs 
(ncRNAs), the long non-coding RNAs (lncRNAs) have 
emerged as critical regulators of HCC drug sensitivity 
thus offering a novel exciting opportunity to treat HCC. 
LncRNA HOTAIR (HOX antisense intergenic RNA) 
and MALAT-1 (metastasis-associated lung adenocarci-
noma transcript 1) were found to be upregulated in large 
cohorts of HCC patients and their suppression increased 
the chemotherapeutic sensitivity of HCC cells to cisplatin 
and doxorubicin [56, 57]. Alongside DNA methylation 
inhibitors, HDAC inhibitors have also been investigated 

in preclinical and clinical studies in HCC. Belinostat, a 
deacetylase inhibitor was found to stabilize un-resectable 
advanced HCC [58, 59]. However, more in-depth under-
standing of epigenetic alterations is required to gain 
more insights into the in vivo determinants of responses 
to epigenetic drugs in HCC.

Ribosome biogenesis as HCC resistance mechanism
The cancer cells for prolonged survival can employ 
excessive ribosome biogenesis and translation initiation. 
Recently, RACK1, the receptor for activated C-kinase 1, 
a component of the 40S subunit of ribosome, was found 
to be upregulated in HCC and contribute to chemoresist-
ance in vitro and in vivo as well. The preferential trans-
lation involved in growth and survival was promoted by 
ribosomal RACK1 coupled with PKCβII by phosphoryl-
ating eIF4E. Inhibition of PKCβII or depletion of eIF4E 
abolished RACK1-mediated resistance in HCC [60]. 
These results imply that RACK1 may function as a fac-
tor promoting chemoresistance in HCC and targeting 
RACK1 can be an efficacious strategy for HCC cure.

Role of telomerase in HCC chemoresistance
The enzyme telomerase is activated in many malignant 
tumors; i It is known to bestow anti-apoptotic and chem-
oresistant properties to cancer cells. In accordance to 
above, it was observed that siRNA against human telom-
erase reverse transcriptase (hTERT) and cisplatin therapy 
act synergistically in suppression of HCC progression 
compared to individual therapy [61]. Low-dose of cis-
platin also activated telomerase activity in SMMC7721 
human HCC cell line. NF-κB has been reported to be 
responsible for cisplatin-induced activation of the telom-
erase in a dose dependent manner. It was thus observed 
that upregulation of hTERT expression by cisplatin is 

Table 5 List of miRNAs de-regulated in HCC

S. No. MiRNAs deregulated 
in HCC

Mechanism Expression Level Reference

1 miR‑21 Potential biomarker for early stage HCC diagnosis Up‑regulated [115]

2 miR‑338‑3p Suppresses HCC cell invasion by inhibiting metalloproteinase (MMP‑9) Down‑regulated [116]

3 miR‑122 Inhibits cycle cyclins & reduces MDR expression Down‑regulated [117]

4 miR‑181& let‑7 IL‑6 and twist‑regulated miRNA expression Up‑regulated [118]

5 miR‑193a‑3p Affects DNA methylation state Up‑regulated [119]

6 miR‑199a/b‑3p Targets mTOR and c‑met Down‑regulated [120]

7 miR‑210 Targets apoptosis‑inducing factor, mitochondrion‑associated, 3 (AIFM3) in 
hypoxic HCC

Down‑regulated [121]

8 miR‑494 Reduces the expression of PTEN but increases PI3 K and p‑Akt expression Up‑regulated [122]

9 miR‑1180 Activates NF‑κB pathway by downregulating its negative regulators Up‑regulated [123]

10 miR‑122 Up‑regulates IGF‑1R that contribute to activation of RAS/RAF/ERK signaling 
which is associated with drug resistance

Down‑regulated [124]
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NF-κB-dependent which contributes to chemotherapy 
resistance in HCC cells [62]. Additionally, translocation 
of telomerase into mitochondria can prevent intrinsic 
pathway of apoptosis under chemotherapeutic stress. 
Cisplatin-resistant SK-Hep1 cells showed increased 
translocation of hTERT to mitochondria resulting in 
decrease of apoptosis. Mitochondrial translocation of 
hTERT reduced mtDNA damage though the telomere 
length of chemoresistant cells was shortened. Drug-
resistant HCC cells can thus escape from apoptosis 
through hTERT-mediated mitochondrial protection [63].

Topoisomerases and HCC chemoresistance
Human DNA topoisomerases are essential enzymes 
that play a central role in DNA duplex maintenance. In 
many cancers, aberrant expression of topoisomerase2A 
(TOP2A) has been reported and is considered to be a val-
uable prognostic marker for tumor advancements, recur-
rences and predictor of poor survival [64, 65]. Elevated 
protein score of TOP2A has also been correlated with 
non-responsiveness to chemotherapy in in vitro doxoru-
bicin resistant HCC models [66]. Another report further 
shows a copy number gain in TOP2A locus in doxoru-
bicin resistant HCC cells [67]. Strikingly, the topoisomer-
ase transfected cell lines were around five–tenfold more 
resistant to cisplatin and other alkylating drugs endorsing 
its role in drug resistance. As expected, hence combina-
tion of Tirapazamine (TPZ), a new anti-cancer drug with 
Topoisomerase I inhibitors exhibited synergistic cytotox-
icity and induced significant apoptosis in several HCC 
cell types [68]. Targeting topoisomerases can thus be an 
appropriate strategy for HCC patients who are resistant 
to conventional cytotoxic therapy.

Altered lipid metabolism
Cancer cells are able to synthesize lipids in a manner 
similar to embryonic tissues, and an altered lipid metab-
olism has often been linked to cancer pathogenesis. For 
example, stearoyl-coA de-saturase (SCD), a rate limiting 
enzyme and an essential regulator of lipid homeostasis in 
the liver is strongly over expressed in HCC. Interestingly, 
administration of 5-FU also resulted in a time dependent, 
upregulation of SCD through PI3K and JNK-mediated 
pathways [69]. While, suppression of SCD by genetic or 
pharmacologic strategies resulted in increased sensitivity 
to chemotherapy-induced apoptosis suggesting that SCD 
play a pro-survival role in HCC [69]. Similarly, another 
enzyme involved in lipid metabolism- carbonyl reduc-
tase1 (CBR1), known to protect cells against lipid per-
oxidation, promoted chemoresistance in HCC through 
induction of the master transcription regulator and 
angiogenesis promoter-HIF-1α [70]. Furthermore, iso-
lated mitochondria from HCC with increased cholesterol 

levels were resistant to release of cytochrome c or Smac/
DIABLO in response to various apoptotic stimuli [71]. 
Thus, altered lipid metabolism can emerge as a novel 
therapeutic niche in HCC therapy.

Tumor microenvironment
Tumor microenvironment (TME) plays a crucial role in 
HCC development and maintenance. The critical cellu-
lar and non-cellular components of HCC tumor micro-
environment are showed in Fig. 1 and their functions are 
summarized in Table  6 [72]. Unlike normal fibroblasts, 
cancer-associated fibroblasts (CAFs) are the most abun-
dant type of connective tissue present in the TME of 
multiple cancer cell types [73, 74]. CAFs play an impor-
tant role in the HCC microenvironment as most liver 
cancers are derived from fibrosis and cirrhosis. Chuang 
et al. in 2012 and 2013 showed that co-culture of CAFs 
with HCC can enhance proliferation, migration, and 
invasion by altering the transcriptome of HCC cells [75, 
76]. The CAF cells can specifically upregulate pro-inflam-
matory cytokines like CCL2, CCL26, IL6, and LOXL2, 
which are correlated with proliferation, invasion and 
angiogenesis of HCC cells [77]. Another key component 
of HCC tumor microenvironment is the hepatic stellate 
cells (HSCs), which are generally involved in the process 
of liver regeneration mostly in case of injuries [78]. How-
ever, in addition to its regenerative property, HSCs can 
exhibit liver carcinogenesis promoting functions as well. 
They can secrete growth factors and cytokines like, HGF 
and IL-6 and can engage in a reciprocal crosstalk with 
HCC cells [79]. Activated HSCs can promote the migra-
tion, proliferation and resistance in HCC cells through 
modulation of TGF-β signaling [80]. Since HSCs are 
actively involved in tumor progression, targeting HSCs 
may represent a prospective therapeutic strategy in HCC. 
Furthermore, immune cells like, CD4 T cells (Treg) and 
myeloid-derived suppressor cells (MDSCs), which are 
also part of TME have been implicated in promoting 
HCC tumorigenesis [81]. Tumor-associated macrophages 
(TAMs) can also affect HCC tumor progression through 
NF-κB, STAT-3, and HIF-1 signaling [81]. Further stud-
ies are however required to better understand the func-
tion of immune cells in HCC TME for enhancement of 
immunotherapeutic strategies. Table 7 shows some of the 
tumor microenvironment targeting drugs that are now 
under investigation for HCC treatment.  

Targeted therapy against HCC
For many years, the foundation of HCC treatment has 
been surgery and non-targeted chemotherapy with 
conventional drugs like, cisplatin, as discussed earlier. 
However, over the last decade, partly because of advance-
ments in genomic technologies, targeted therapies with 
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drugs that home into specific cancer cell types and bring 
about molecular changes have cemented their place as 
standard treatment for many cancers, HCC is no excep-
tion. Sorafenib, a molecular multi-kinase inhibitor has 
currently been the drug of choice for HCC and is the first 
molecular targeted agent that has shown survival bene-
fits in HCC patients. However, use of sorafenib has also 
been hindered by acquisition of resistance [82]; Gao et al. 
found that elevated fibroblast growth factor 19 (FGF19) 
expression or hyper-activation of FGF19/FGFR4 signal-
ing was essential for sorafenib resistance in HCC [83]. 
Hence blocking of FGF19/FGFR4 axis by ponatinib, a 
third-generation tyrosine–kinase inhibitor, could over-
come the resistance of HCC cells to sorafenib [83]. Fur-
ther, anti-angiogenic drugs like, sunitinib, linifanib and 
brivanib were tried as independent therapy in HCC but 
they failed to prove their non-inferiority over sorafenib 
[84]. Also, HCC patients who are intolerant to sorafenib 
or have high expression of cellular mesenchymal–epi-
thelial transition factor (c-MET) were found to benefit 
from Tivantinib therapy, a highly selective inhibitor of 

c-MET receptor tyrosine kinase [85, 86]. Furthermore, 
progress in immunotherapy has provided new dimen-
sions to HCC therapy as well. Immune tolerance in HCC 
is mediated through decreased co-stimulatory signaling 
that results in immuno-suppression. Hence, anti-human 
cytotoxic T-lymphocyte antigen 4 (CTLA-4) and anti-
programmed death 1 (PD-1) monotherapy have been uti-
lized in HCC treatment but with limited success. Some 
of the immunomodulators now under investigation for 
HCC treatment listed in Table 8. Another rapidly emerg-
ing immunotherapy approach has been chimeric antigen 
receptor-engineered (CAR)-T cell therapies that have 
already demonstrated efficacy against hematologic malig-
nancies. CART technology utilizes the antitumor activity 
of “domesticated” T cells that have been engineered to 
express cancer specific antigen-targeted-receptor to treat 
malignant tumors [87]. However, the major challenge 
for CAR-T cell therapy in HCC has been the selection of 
specific antigen to differentiate tumor from normal tissue 
to prevent off-target effects. The antigens that have till 
date been used as targets in CAR-T therapy for HCC are 

Tumor 
microenvironment

Cellular
Components

Hepatic stellate cells

Fibroblasts

Immune cells -regulatory, helper 
and cytotoxic T cells

Tumor-associated macrophages

Non cellular
Components

Extracellular matrix (ECM) proteins

Pro inflammatory and anti-
inflammatory cytokines

Proteolytic enzymes

Growth factors

Fig. 1 The critical cellular and non‑cellular components of HCC tumor microenvironment
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mentioned in Table 9. While therapeutic benefit has been 
achieved in early clinical trials with CAR-T therapy, the 
use of this therapy is still at its infancy and is limited due 
to either unique properties of HCC, off-target effects, 
lack of specific tumor antigens in HCC or cost of produc-
tion [87].

Conclusion
We believe that drug companies are currently fighting a 
losing battle against advanced HCC tumors. The various 
chemotherapeutic drugs currently in use against HCC 
have shown strong chemoresistance providing a massive 
setback to therapeutic regimens targeting HCC. Also, 
liver cancer patients generally have a poor tolerance to 
chemotherapy due to liver dysfunction. Characteriza-
tion of molecular strategies underlying chemoresistance 

is hence essentially needed to identify appropriate tar-
gets to effectively sensitize these resistant cells. However, 
designing such strategies are by no means easy. Till date 
development of targeted drugs has not yet improved the 
outcome much significantly. This might be attributed to 
various factors extending from apoptosis evasion, stem 
cell activation, enhanced DNA repair, topoisomerase 
activation, lack of proper targets for immunotherapy to 
dynamic changes in TME and others, as discussed in this 
literature (Fig.  2). These factors either independently or 
in unison contribute to emergence of refractoriness to 
drug therapy in HCC. To compound the scenario, thera-
peutic effectiveness may also vary depending on patient 
properties and at various stages of tumor development. 
Hence, formulating a unified molecular targeted thera-
peutic strategy for all HCC patients is unlikely to succeed. 

Table 7 Drugs targeting TME in clinical trials for HCC treatment

S. No. Drug Molecular targets Phases of clinical trial Year and references

1 Sibrotuzumab FAPs I 2003 [134]

2 PI‑88 HPR II 2009 [135]

3 Selumetinib MEK II 2011 [136]

4 Brivanib VEGFR, PDGFR III 2013 [137]

5 Lilifanib VEGFR III 2013 [138]

6 Axitinib VEGFR II 2015 [139]

7 Galuniserib TGF‑β I 2015 [140]

Table 8 Immune-modulators in clinical trials for HCC treatment

S. No. Drug Molecular targets Phases of clinical trial Year and references

1 Tremelimumab CTLA‑4 II 2013 [141]

2 Icaritin IL‑6/Jak2/Stat3 II 2015 [142]

3 Lenalidomide TNF‑α, interferon γ, IL‑6, IL‑10, and IL‑12. II 2015 [143]

4 Codrituzumab Glypican‑3 II 2016 [144]

5 Nivolumab PD‑1 I 2016 [145]

6 Ipilimumab CTLA‑4 II 2017 [146]

7 Tasquinimod Protein S100A9 II 2017 [147]

Table 9 Application of CAR-T cells for HCC

S. No. Antigen Gene transfer vehicle Phases of clinical trial Year (Clinicaltrials.gov identifier or reference)

1 Epidermal growth factor receptor Lentivirus I/II 2013 [148]

2 Mucin‑1 – I/II 2015 (NCT02587689)

3 CD133 Retrovirus I 2015 (NCT02541370)

4 Carcinoembryonic antigen Retrovirus Preclinical 2016 [149]

5 Epithelial cell adhesion molecule – I/II 2016 (NCT02729493)

6 Glypican‑3 – I/II 2016 (NCT02723942)
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Therefore, future therapies targeting HCC should be 
based on combination of context and stage dependent 
molecular targeted drugs against resistance with or with-
out conventional drugs to successfully treat HCC.
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