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REVIEW

BORIS: a key regulator of cancer stemness
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Abstract 

BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions 
on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have 
classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are 
expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of 
some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. 
In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increas-
ing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some 
believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation 
of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological 
function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression 
of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in 
the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-
forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways 
including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling 
proteins to induce tumorigenesis is discussed.
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Background
Brother Of the Regulator of Imprinted Sites (BORIS) or 
CTCFL (CCCTC-binding factor like) protein is recog-
nized as a paralog of CTCF (CCCTC-binding factor). 
CTCF is a DNA binding protein that is involved in chro-
matin insulation, genomic imprinting, intra/interchro-
mosomal interactions, and global three-dimensional 
genome organization [1–6]. BORIS and CTCF have 
identical 11 Zinc finger DNA-binding domains, and 
both seem to bind to similar DNA target sequences [7]. 
However, a study by Pugacheva et  al. showed that only 
a subset of CTCF binding regions in cancer is occupied 
by BORIS [7, 8]. In spite of the very similar DNA binding 
domain in these two proteins, their amino and carboxyl 
domains have very little sequence homology, leading 
them to interact with different partners. Therefore, it may 

be the protein partners of these two proteins that deter-
mine their different chromatin regulating abilities and 
functional outcomes [1, 9–12]. The human BORIS gene 
is located at 20q13 and is comprised of 11 exons, 10 of 
which are coding [1]. Pugacheva el al. characterized 23 
transcript variants of BORIS resulting in 17 protein iso-
forms. Different isoforms contain different zinc-fingers 
in their DNA-binding domain, have different amino and 
carboxyl termini, and have distinct expression profiles in 
various normal and cancer cells [13].

Many studies have attempted to explain the roles of 
BORIS in different cell types. Problems in understand-
ing the biological roles of BORIS can be attributed to the 
lack of knowledge about the expression patterns of its 
isoforms in diverse cell types, the unknown identity of 
its potential interacting partners, and the experimental, 
analytical, and biological variability of the experiments 
performed [14]. According to many reports, BORIS is 
generally classified as a member of cancer testis (CT) 
genes, a group of genes which are normally expressed in 
germ cells, notably in testis, and also in a wide range of 
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cancer types [15–18]. High expression of BORIS in testis 
suggests its involvement in the regulation of specific tes-
tis genes and meiosis of sperm [7–9, 19–22]. Abnormal 
expression of BORIS in a variety of cancer cells/tissues 
has been the main reason to categorize it as an oncogene 
with pathogenic roles in cell proliferation and tumorigen-
esis [7, 11, 13, 15–18, 21, 23–38]. Specific expression of 
BORIS in cancer stem cell (CSC) population and its role 
in the induction and maintenance of some important 
CSC properties suggest an association with severe malig-
nancy and advanced stages of cancer [14, 32, 34, 39–50]. 
Several researchers reinforce the view that the expression 
of BORIS might not be limited to cancer cells/tissues and 
it might also be expressed in normal tissues and cells, and 
have a universal function [16, 17, 25, 27, 30, 51–53].

In this review, we explain in detail the reports that are 
related to the expression and general function of BORIS 
in normal tissues/cells such as testis/male germ cells. 
Subsequently, the expression of BORIS in various can-
cer/cancer stem cells, and its role in cell proliferation, 
tumorigenesis, and maintenance of CSC properties will 
be discussed. Finally, a mechanism  for  BORIS-medi-
ated function in cancer and CSCs to regulate the expres-
sion of target genes and to induce tumorigenesis will be 
discussed.

Expression pattern and role of BORIS in normal 
cells/tissues
The first reports demonstrated that in contrast to the 
ubiquitous expression of CTCF in all somatic cell types, 
BORIS expression is restricted to testis. They also 
showed that during male germ cell development, BORIS 
and CTCF are expressed in a mutually exclusive man-
ner. While CTCF expression was detected in post-mei-
otic round spermatids and spermatozoa, the expression 
of BORIS was only detected in primary spermatocytes, 
a cell type without CTCF expression. This finding indi-
cated that the activation of BORIS expression is linked 
with the final round of mitosis of male germ-line cells [1, 
18]. However, in subsequent studies, it was shown that 
BORIS is also expressed in pre-meiotic spermatogonia 
and pre-leptotene spermatocytes, where the expression 
of CTCF was also detected [21].

Thus far, some functions have been attributed to BORIS 
in testis. In fact, an extensive overlap has been recorded 
between the genome-wide erasure of methylation, re-set-
ting of paternal DNA methylation patterns, and BORIS 
expression/silencing of CTCF [18], indicating that in tes-
tis, BORIS may play a role in the reprogramming of the 
paternal DNA [4, 18]. BORIS has also been implicated 
to be involved in the resetting of imprinting at the Igf2/
H19 imprinting control region (ICR) in male germ cells 
[10]. In contrast, in somatic cells, CTCF is recognized as 

reader and protector of Igf2/H19 imprinting marks [11–
13, 18, 21]. In addition, during spermatogenesis, BORIS 
has been detected as an inducer of multiple testis-specific 
genes which are suppressed by CTCF in somatic cells [7–
9]. For example, important roles of BORIS in the induc-
tion of expression of some male germ cell/testis specific 
genes including ALF, SPANX-N, Gal3st1, and Prss50 
which play crucial roles in meiosis and spermatogenesis 
have been reported [19–22]. This is consistent with the 
findings in BORIS knockout male mice which show sub-
fertility and multiple defects in spermatogenesis, includ-
ing a reduction in testis size, defective sperm production 
and a significant delay in the production of sperm [21, 
22]. Overall, these studies show that in testis tissue, 
BORIS regulates gene expression, and exerts an impor-
tant role in meiosis and production of the haploid sperm.

Although according to some reports, repres-
sive  effects  of CTCF, p53, and promoter DNA methyla-
tion has restricted the expression of BORIS to testicular 
germ cells [1, 7, 11, 13, 15, 24, 25, 28], a few other studies 
have shown that in addition to male germ cells, BORIS 
transcripts are also expressed in other normal tissues 
such as human oocyte and ovary, and in various fetal tis-
sues [13], indicating a role in meiosis during oogenesis 
[13, 44, 54], and early stages of preimplantation develop-
ment [44] (Table 1). Significant levels of BORIS were also 
found in normal human skin and freshly isolated whole 
dermis, epidermis, or disaggregated primary keratino-
cytes [52] (Table 1).

Several general regulatory functions have been pro-
posed for BORIS in normal cells. Rosa-Garrido et  al. 
exhibited that BORIS is involved in RNA transcrip-
tion, cell cycle progression, and genome instability [52]. 
Experiments using the ectopic expression or inactivation 
of BORIS demonstrated that optimal levels of BORIS 
is needed to support normal cell division. In addition, 
BORIS knock-down caused a reduction in the synthesis 
of rRNA and global RNA, suggesting a role for BORIS in 
the licensing of RNA transcription [52]. BORIS has also 
been recognized as a RNA binding protein which is asso-
ciated with actively translating ribosomes. These prop-
erties display its role in the regulation of genes at both 
the transcriptional and post-transcriptional levels [55]. 
Moreover, localization of BORIS within the nucleolus of 
cancer and normal cells suggested a role for this protein 
in nucleolar function [51].

Expression pattern of BORIS in cancer cells/tissues
In many tumors and cancer cell lines, hypomethylation 
of BORIS promoter leads to overexpression of BORIS 
[11, 13, 15–17, 23–33]. For instance, Vatolin et  al. and 
Hong et  al. demonstrated that the suppressed expres-
sion of BORIS (observed in normal somatic tissues and 
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cell lines), is abrogated in various breast, neuroblas-
toma, prostate, melanoma, colon, and lung cancers [11]. 
In other studies, the comparative expression analysis of 
several cancer/testis genes revealed a high incidence of 
BORIS expression in uterine/endometrial, ovarian and 
cervical cancers in comparison with their normal tissues 
[17, 24, 32, 56]. In similar reports, analysis of BORIS in 
esophageal squamous cancers, pancreatic and hepatocel-
lular carcinoma indicated that the expression of BORIS 
was significantly higher in these cancers than that in the 
adjacent non-cancerous tissues and normal cells [46, 47, 
49, 57]. Some reports on prostate cancer, glioblastoma, 
and laryngeal squamous cell carcinoma indicate that 
BORIS protein is absent or present at low levels in non-
tumorigenic cells and tissues, but it is present at variable 
higher levels in all cancer cell lines and tumors, indicat-
ing that BORIS might be used as a cancer biomarker [48, 
50, 58]. D’Arcy and colleagues also showed that BORIS is 
expressed in all types of breast cancer cell lines, whereas 
primary normal breast cells and normal breast tissues 
do not express this protein [15]. The other evidence in 
support of BORIS as a tumor marker was obtained by 
detecting significantly higher level of BORIS in the leu-
kocyte fraction in patients with different types of breast 
tumors compared to the control group [23]. Although, 
there is no report about BORIS expression in leukemic 
patients, some isoforms of BORIS are detected at high 
levels in leukemic cell lines [13]. Overall, the expression 
of BORIS in testis and many cancers (Table 2) led to its 
classification as a CT gene [15–18].

In contrast to numerous reports indicating the 
expression of BORIS in cancers, some researchers 
report different findings. For instance, although BORIS 
is activated in a substantial fraction of melanoma sam-
ples, it does not appear to be present in all tumors 
of this kind [16]. Another research indicated that 
immortalized human ovarian surface epithelial cells 

(IOSE121) and four ovarian cancer cell lines (OVCAR3, 
SKOV3, A2780, and OVCAR429) do not express 
BORIS or other CT genes at significantly higher levels 
[17]. In a research by Hines et al., it was revealed that 
neither mature BORIS transcripts nor spliced variants 
are commonly expressed at detectable levels in human 
breast cancer cell lines and high grade breast carci-
nomas. There are also reports that show the absence 
of a significant difference in BORIS  transcript  levels 
in cancer and non-cancer cells. For example, expres-
sion of BORIS mRNA showed no significant difference 
between normal and cancerous prostate and blad-
der tissues [30], and also between some mouse cancer 
and non-cancer cell lines [59]. Similarly, according to 
the findings of Sheer and colleagues, the expression of 
BORIS was not restricted to the germ/cancer cells and 

Table 1  Cells/tissues that normally express BORIS

Normal cell line or tissues mRNA/protein level References

Male germ cells, human and mouse testis mRNA and protein [1, 18, 51]

Oocyte mRNA [44]

Primary keratinocytes mRNA and protein [52]

Mouse fibroblast cell line (STO-3T3) mRNA [56]

Human lung fibroblasts cell line (MRC5) mRNA and protein [51]

Human ovary mRNA [13, 51, 54]

Human skin mRNA and protein [13, 52]

Human prostate and bladder tissues mRNA and protein [30, 51]

Human adipose, brain, cervix, colon, esophagus, kidney, liver, placenta, muscle, 
spleen, thymus, thyroid, trachea

mRNA and protein [51]

Mouse cerebellum, gut, kidney, liver, ovary, spleen mRNA and protein [51]

Table 2  Expression of  BORIS in  different cancer cells/
tissues

Cancer cell line or tumor tissue mRNA/protein level References

Neuroblastoma mRNA [60]

Breast cancer mRNA and protein [15, 60]

Leukemic cell lines mRNA [13]

Ovarian cancer mRNA [17]

Colon cancer mRNA [60]

Prostate cancer mRNA and protein [48, 60]

Uterine cancer mRNA [24]

Cervical cancer mRNA [32]

Endometrial cancer mRNA [57]

Esophageal squamous cancer mRNA and protein [49]

Pancreatic cancer Protein [58]

Hepatocellular carcinoma mRNA and protein [31, 47]

Glioblastoma mRNA and protein [59]

Laryngeal squamous carcinoma mRNA and protein [50]

Melanoma mRNA [60]
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its expression was also detected within the nucleolus of 
normal and cancer cells [51, 53].

Therefore, the above findings demonstrate the wide-
spread expression of BORIS in normal and cancer cells. 
In reality, one reason for detection of BORIS in a variety 
of cell lines can be related to loss of the q arm of chromo-
some 16 (the locus of CTCF as a suppressor of BORIS) 
and gain of chromosome 20q13 (the locus of BORIS) 
during prolonged growth of normal and cancer cell lines 
in culture, a phenomenon that occur throughout adapta-
tion of hES cells to growth in culture for a long time [60, 
61]. Moreover, the use of different techniques to measure 
the expression of BORIS, isolated detection of its vari-
ous isoforms, and various invalid commercial antibod-
ies against BORIS or its specific isoforms have resulted 
in incomplete/contradictory findings on the expression 
pattern of BORIS in cancer cells/tissues. On the other 
hand, tumors are composed of heterogeneous combi-
nation of cells that exhibit distinct phenotypic charac-
teristics and proliferative potentials, with having only a 

fraction of cells expressing BORIS. Accordingly, the level 
of BORIS transcript/protein might also depend on the 
grade  of  malignancy/benignity of tissues, leading to the 
detection of various expression levels for BORIS in differ-
ent samples of the same type of tumor.

Function of BORIS in cancer cells/tissues
Expression of BORIS in cancer cells likely leads to its 
interference with CTCF function by competition for 
binding to CTCF DNA binding target sites. Due to 
their distinct amino- and carboxy-termini and differ-
ent interacting proteins, the two proteins of BORIS 
and CTCF have opposite effects on gene expression [1]. 
While CTCF represses gene expression and blocks cell 
proliferation by arresting cells in a senescence-like state 
throughout the cell cycle [18, 62], BORIS associates with 
relatively open chromatin of active genes, and appears 
to activate a unique class of genes like oncogenes and 
CT genes (Fig. 1). Furthermore, the enforced expression 
of BORIS in fibroblasts leads to a significant decrease in 

Fig. 1  Role of BORIS in tumorigenesis. Increased expression of BORIS, shifts the competition between CTCF and BORIS for binding to CTCF 
DNA-binding site in favor of BORIS. This leads to the replacement of CTCF by BORIS at promoters of some cancer-testis (CT) genes including 
MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-B1, MAGE-B4, GAGE-3-8, RAGE-2, NY-ESO-1 (CTAG1B), LAGE-1 (CTAG2), FerT and TSP50, and some 
non-CT genes such as BRCA1, Oct-3/4 (POU5F1), MYC, Rb2/p130, SBSN, and hTERT, and androgen, progesterone and estrogen receptors. Expression 
of target genes leads to cancer progression via activation of the network of CT genes, inhibition of apoptosis, induced cell growth, and increased 
proliferation and invasiveness of cancer cells



Page 5 of 13Soltanian and Dehghani ﻿Cancer Cell Int  (2018) 18:154 

apoptosis induction, increased anchorage-independent 
cell growth, and extended lifespan [7, 11, 18, 21, 25, 26, 
34]. In contrast, the down-regulation of BORIS with spe-
cific siRNAs results in decreased cell proliferation/viabil-
ity and induced cell death/apoptosis [49, 63] (Fig. 1).

The results of some studies seem to support this theory 
that the ectopic expression of BORIS in normal human 
fibroblasts or low expressing cell lines would induce the 
replacement of CTCF by BORIS at promoters of several 
CT genes including MAGE-A1, MAGE-A2, MAGE-A3, 
MAGE-A4, MAGE-B1, MAGE-B4, GAGE-3-8, RAGE-
2, NY-ESO-1 (CTAG1B), LAGE-1 (CTAG2), FerT and 
TSP50, resulting in the de-repression of the target CT 
genes [11, 18, 25, 26, 29, 64–67]. In addition to CT genes, 
BORIS participates in regulation of some non-CT genes 
such as BRCA1, Oct-3/4 (POU5F1), MYC, Rb2/p130, 
SBSN and hTERT (human telomerase reverse tran-
scriptase) which are known to be involved in cancer pro-
gression [30, 34, 68, 69] (Figs. 1, 2).

Maintenance of telomeres is necessary to inhibit repli-
cative senescence. Telomerase activity which is required 
to stabilize telomere length has not been detected in dif-
ferentiated somatic cells, but is detected in proliferative 
immortal cells, such as germ cells, stem cells, and cancer 
cells [70–72]. In the majority of telomerase-positive cells 
such as cancer cell lines and tumors, hypermethylation of 
hTERT exon 1 region prevents the binding and prevents 
the repressive effects of CTCF [73–76]. Although meth-
ylation of exon 1 region is the most prevalent mecha-
nism to regulate hTERT in tumor cells and tissues, it is 

found that in some cancer cells, the expression of BORIS 
prevents the repressive effects of CTCF on hTERT gene, 
and permits its transcription [34]. Therefore, the expres-
sion of BORIS could be an alternative mechanism for the 
induction of hTERT in cancer cells. This indicates that 
BORIS might have important regulatory roles in tumor 
immortalization during tumorigenesis. In breast tumors, 
estrogen and progesterone have been demonstrated 
to promote tumorigenesis [35, 36]. It is accepted that 
BORIS activates the promoters of genes for progesterone 
and estrogen receptors, suggesting a role for BORIS in 
the progression of breast tumors [15]. In a similar role, 
in prostate cancer, androgen receptor (AR) mediates 
various functions of androgens essential for cell viabil-
ity, development and invasion in both androgen depend-
ent and independent prostate cancers [37, 38]. BORIS 
is capable to activate the expression of endogenous AR 
gene in prostate cell lines. This indicates that BORIS 
might be involved in the growth and proliferation of 
prostate tumors [48]. Taken together, these results show 
the involvement of BORIS in tumorigenesis, cell prolif-
eration and invasiveness of cancer cells and could point 
to an oncogenic role for BORIS in cancer (Fig. 1).

On the other hand, there are also opposite viewpoints 
on the role of BORIS in cancer. Several findings dis-
cuss that BORIS is not a leading CT gene and its pres-
ence is not necessary for the expression of CT genes [11, 
16, 25, 66, 77–79]. For example; it has been shown that 
the expression of some MAGE-A family and of other 
CT genes in melanoma, glioma stem cells and head and 

Fig. 2  BORIS function in sustaining cancer stem cell (CSC) properties. BORIS induces the expression of some important CSC markers such as 
ALDH1, ABCG2, hTERT, NANOG, OCT4 and SOX2 in cancer cells. BORIS is also recognized as an inducer of Wnt and Notch signaling pathways that 
play important roles in the maintenance of CSC properties such as self-renewal, tumor-sphere formation, chemoresistance, anchorage independent 
growth, and migration/invasion capacity
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neck squamous cell carcinoma (HNSCC) is observed in 
the absence of BORIS, suggesting that BORIS might not 
be an obligatory factor for the activation of CT genes. 
Accordingly, BORIS positive tumors do not necessarily 
express high levels of other CT genes and the exogenous 
expression of BORIS does not always lead to the hypo-
methylation of promoter in CT genes [16, 27, 64, 78, 80]. 
Furthermore, in contrast to the previous findings that 
show opposing roles for BORIS and CTCF, in one study it 
has been detected that BORIS similar to CTCF caused a 
significant reduction in cell proliferation and clonogenic 
capacity. Thus, against previous hypothesis that consid-
ers an oncogenic property for BORIS, these data indicate 
that BORIS and CTCF might act as a tumor suppres-
sor. Accordingly, expression of BORIS in many cancers 
implies that genetic and epigenetic dysregulation in can-
cer might result in BORIS induction. Therefore, BORIS 
can be an effect rather than a cause of transformation [6, 
7].

Opposite results in the overexpression of BORIS in 
different cell types might be a cell context-dependent 
phenomenon. For example, it is possible that along with 
BORIS, other transcription or epigenomic regulatory fac-
tors be effective to induce CT gene expression and these 
factors may be expressed in specific cell types. It is also 
likely that a particular isoform of BORIS is necessary for 
the regulation of some CT genes. Furthermore, some of 
the differential effects of BORIS may be attributable to a 
dose-dependent effect of BORIS on activation of down-
stream targets and the number of CTCF sites occupied 
by BORIS. For instance, Gaykalova et  al. showed that 
only lower BORIS concentrations stimulate the high-
est expression of suprabasin gene as a non-CT target of 
BORIS, while higher concentrations of BORIS has less 
inducer effects [79].

In conclusion, according to some reports, BORIS is rec-
ognized as a main participator in the induction of some 
important CT and non-CT genes in cancer, and thus has 
a role in growth, proliferation, invasion and tumorigen-
esis of cancer cells. However, the epigenetic state of the 
cell, the level of expression of genes in CT gene network, 
and the level of expression of BORIS itself may affect pro-
liferation and tumorigenesis of cancer cells (Fig. 1).

BORIS in cancer stem cells
In addition to cancer cells, BORIS expression has been 
detected in some pluripotent cells including human 
embryonic stem (ES) [13, 44] and embryonal carci-
noma  (EC)  cells (TERA-1, TERA-2, NT2 and NCCIT) 
[30, 43]. Pluripotent cells and undifferentiated tumor cells 
share several hallmark traits including self-renewal and 
differentiation ability, which provide the basis of unlim-
ited proliferative capacity, immortality, and capacity to 

produce progenitors that differentiate into other cell 
types [81–84]. Furthermore, expression of some impor-
tant pluripotent markers including OCT4, SOX2, KIF4 
and c-MYC genes which are essential for the mainte-
nance of pluripotency, have been found in many cancer 
cells and tumors [85–96], indicating that transformation 
to a cancerous state requires some characteristics found 
in stem cells [97]. As a result, BORIS might be involved 
in the establishment of a state of pluripotency, which is 
also present in a subpopulation of cancer cells called can-
cer stem cells (CSCs). This hypothesis has been proved to 
be true by detection of BORIS expression in cancer stem 
cells (CSCs) and identification of its role in the induc-
tion of some important CSC markers and maintenance of 
CSC properties (Fig. 2).

Cancer stem cells are a group of pluripotent cells that 
have been detected in most types of solid and hemato-
logic cancers. Similar to normal stem cells,  CSCs have 
uncontrolled proliferation ability, enhanced potential 
to self-renew, and differentiation capacity into non-CSC 
progeny [83, 98, 99]. Moreover CSCs, have a higher 
intrinsic resistance to conventional therapies, such as 
chemotherapy and radiotherapy through a variety of 
mechanisms such as increased expression of detoxifying 
ALDH enzymes, enhanced DNA repair activity, reduced 
drug activation via quiescence, and increased drug efflux 
by up regulation of ATP-binding cassette (ABC) trans-
porters [100–104]. Indeed, enhanced activation of one 
or more signal transduction pathways including the 
Notch, Hedgehog (HH), and Wnt pathways has been 
observed in CSCs of many different cancer types. These 
pathways play an important role in the maintenance of 
self-renewal potential and ability to avoid being affected 
by  chemo  and  radio therapy in CSCs [83, 105–112] 
(Fig.  2). Accordingly, this sub-population of tumor cells 
plays an important role in tumor growth, recurrence, 
metastasis, and resistance to treatment. There are vari-
ous methods for the identification and isolation of CSCs 
including cell sorting by fluorescence-activated cell sort-
ing (FACS) or magnetic activated cell sorting (MACS) 
based on the expression of specific surface biomarkers 
[113–115], sphere-forming assay which is an in  vitro 
method to evaluate the ability of CSCs to form spheres in 
serum-free medium by anchorage independent growth in 
suspension [116–119], and finally, functional cell sorting 
based on biological characteristics of the cells (side popu-
lation (SP) cell sorting). SP phenotype is a CSC property 
that defines the cells that express ABC drug transporters, 
such as MDR1 (P-glycoprotein) and ABCG2. SP cells are 
characterized by the efflux of fluorescence dyes such as 
Hoechst 33342 and Rhodamin 123 [120–122].

There is some evidence that support a potential 
relationship between BORIS expression and CSCs. 
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Expression of BORIS has been found in some EC   [30, 
43], and CSCs from neuroblastoma, cervical, colon and 
breast cancers [39–42]. In addition, expression of BORIS 
shows a positive correlation with specific stemness and 
CSC markers [40, 43, 44]. Thus, BORIS is considered to 
be a positive regulator of cancer/stem cell markers, and 
to have a role in the maintenance of CSC population in 
tumors [34, 39, 40, 44].

Related to the presence of BORIS in CSC-enriched 
population of cancer cells, BORIS mRNA was detected at 
significantly higher levels in SP cells and tumor spheres 
compared to non-SP and parental cells [39]. Further-
more, Garikapati et  al. showed that CD44/CD133 posi-
tive cells that are recognized as CSCs in neuroblastoma 
have higher levels of BORIS in comparison with CD44/
CD133 negative cells [40]. In other studies, BORIS was 
found to be expressed in cervical and colon CSCs [41, 
42]. These findings are in accordance with the findings 
of Yamada and colleagues indicating that considerable 
numbers of CT genes including BORIS are expressed 
in cancer stem like cells. They classified these CT genes 
in a sub-category called cancer/testis/stem (CTS) genes 
which define a class of genes expressed in the testis and 
CSCs [42]. In another research by Pugacheva el al. it was 
observed that BORIS expression in hES cells disappears 
upon differentiation, indicating an association with pluri-
potency [13].

In addition to detecting BORIS in pluripotent and 
CSCs population, a mutual relationship was found 
between the expression of BORIS and some fundamen-
tal CSC markers and traits. As a noteworthy example, 
BORIS positive cells express ABCG2 and do not take up 
Hoechst, so are defined as SP cells [39]. More investiga-
tions showed higher level of stem cell (NANOG, OCT4, 
SOX2) and cancer stem cell (CD44 and ALDH1) markers 
in BORIS-positive cells in comparition to BORIS-neg-
ative cancer cells [40, 43]. In hepatocellular carcinoma 
tissues, correlation of BORIS expression with liver CSC 
marker CD90 is another reason for its correlation with 
CSC markers [46]. Association of BORIS and CSC mark-
ers were reinforced when it was observed that some 
CSC markers such as ALDH1, NANOG, OCT4, SOX2 
and ABCG2 were generally down-regulated in all tumor 
cells after BORIS silencing. In addition, overexpression 
of BORIS also significantly increased the expression of 
previously  mentioned CSC markers [39–42, 123]. As 
it was previously implied, one of the cancer/stem cell 
markers that is inducible by BORIS is hTERT telomerase 
gene [34]. It is shown that the expression of telomerase 
is essential for self-renewal of CSCs [124–126]. There-
fore, BORIS might be an important factor in self-renewal 
and immortal capacity of CSCs by induction of hTERT. 
BORIS has also been recognized as an essential factor 

for maintaining CSC properties. For example, correla-
tion of BORIS with sphere formation, tumor-initiating 
ability and maintenance of CSCs in cervical, colon, and 
breast cancer has been shown in separate reports [39, 
41]. Moreover, Garikapati et al. Showed that the expres-
sion of BORIS effectively controlled tumurosphere 
formation and anchorage independent growth in neu-
roblastoma CSCs [40]. A recent study has reported that 
BORIS affects the CSC-like traits of human liver cancer 
cells such as self-renewal, tumor sphere-forming ability, 
tumorigenicity, chemo resistance and migration/inva-
sion capacity through regulating of OCT4 gene expres-
sion [123]. The POU domain transcription factor OCT4 
by regulating target genes such as NANOG and SOX2 
has been recognized as the most important pluripotency 
factor and master regulator in the maintenance of CSC-
like phenotypes such as self-renewal, chemo-resistance 
migration and invasion [127–130]. Consequently, in 
accordance with these findings, BORIS may serve as 
a biomarker of CSCs and has a probable role in sustain-
ing the stemness properties of CSCs (Fig. 2).

In a research by Soltanian et  al. retinoic acid induced 
differentiation of P19 (as a pluripotent embryonal carci-
noma cell line), was concomitant by significant depres-
sion of some important pluripotency markers such as 
OCT4, NANOG and SSEA1, and was not accompanied 
with significant variations of BORIS expression. In fact, 
P19 cell line is a heterogeneous population of cells com-
prising a small population of BORIS-expressing cancer 
stem cells. Therefore, in order to investigate the changes 
in the expression level of BORIS during retinoic acid 
induced differentiation of CSCs, stem-like cells must be 
first isolated according to their markers and properties 
[39, 40].

Association of BORIS with advanced stages 
of cancers
According to CSC hypothesis, CSCs typically represent 
a small proportion of total cells of a given tumor that 
involve in tumor growth, recurrence, metastasis, and 
treatment resistance. Therefore, it has been shown that 
CSCs are more frequent in highly aggressive and refrac-
tory tumors [118, 131]. Applying this hypothesis to 
many studies that highlighted the correlation of BORIS 
expression with poor overall survival of different cancer 
patients/poorer differentiation grade and recurrence of 
cancer emphasize that BORIS has a decisive role in main-
taining CSCs.

Furthermore, function of BORIS as an inducer of CSC 
markers and CSC-like traits is consistent with a lot of 
reports that show expression of BORIS to be associated 
with poor overall survival/more severe malignancy and 
advanced stages in different cancers [14]. For instance, in 
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epithelial ovarian cancer and cervical cancer, high level of 
BORIS is associated with poorer prognosis/less median 
survival times of patients and advanced cancer stages [41, 
45]. BORIS expression was also correlated with tumor 
size, differentiation grade and tumor recurrences in hepa-
tocellular carcinoma. In this kind of cancer, patients with 
high BORIS expression had reduced overall survival rate 
which suggests that BORIS could be used as a diagnostic 
index of liver cancer [46, 47]. In prostate cancer a positive 
correlation has also been detected between higher lev-
els of BORIS and higher Gleason score (which measures 
prostate tumor differentiation and predicts the aggres-
siveness of the disease), higher T-stage (which reflects 
the progression of the cancer, e.g., tumor size, metastatic 
potential, invasiveness), and increased androgen recep-
tor protein levels [48]. Moreover, in prostate cancer, 
greater BORIS/CTCF ratio was detected in cancer and 
metastases compared to benign tissue, and an increase 
in this ratio correlated with higher Gleason’s grade, posi-
tive surgical margins, and increased tumor volume [132]. 
In another report, BORIS expression was significantly 
associated with lymph node metastasis in esophageal 
squamous cell cancer (ESCC), and patients with BORIS-
positive tumors had a poor overall survival in this can-
cer, suggesting that BORIS is associated with metastatic 
activity of ESCC cells in the early stage and BORIS can 
be considered as a potential biomarker for esophageal 
cancer patients with a poor prognosis [49]. A research on 
endometrial cancer showed that increased BORIS mRNA 
expression level associates with cancer progression and 
poor survival, so that all the clinically established mark-
ers for aggressive endometrial carcinoma including high 
age, non-endometroid histology, high grade, and hor-
mone receptor loss were significantly associated with 
high BORIS mRNA levels [32]. In addition, Schwarzen-
bach el al. indicated that serum levels of cell-free BORIS 
mRNA were significantly higher in patients with invasive 
carcinomas than in patients with benign breast diseases 
or healthy women [133]. Another study on laryngeal 
squamous cell carcinomas revealed that patients having 
BORIS 7+ (BORIS transcript variants containing exon 
7)/BORIS 7− (BORIS transcript variants lacking exon 7) 
ratio ≥ 1 had a higher rate of disease relapse than patients 
with BORIS 7+/BORIS 7− ratio < 1 [50].

BORIS and its mechanistic connections 
to tumorigenesis
The mechanism of BORIS function in regulating cancer 
stemness as well as tumorigenesis has been shown by 
its involvement in modulating two important signaling 
pathways in CSCs including Wnt/β-catenin and Notch 
(Fig.  2). It has been confirmed that abnormal Wnt/β-
catenin signaling pathway plays an important role  in 

the maintenance of CSC properties and epithelial–mes-
enchymal transition  (EMT) in various cancers [134–
139]. EMT is a process by which  epithelial cells gain 
migratory and invasive properties to acquire features 
similar to  mesenchymal stem cells. This process plays 
a critical role in cancer metastasis [140]. It is proved 
that EMT produces CSC like cells with self-renewal 
and migratory capability [96, 141, 142]. In this regard, 
it has been shown that BORIS can modulate the levels 
of Wnt5a, β-catenin, TCF, and pLRP as key players of 
Wnt/β-catenin signaling pathway. Hence, by regula-
tion of metastasis/EMT through Wnt/β-catenin path-
way, BORIS is responsible for cancer stemness [40]. 
A relationship between BORIS and EMT phenotype 
has also been confirmed in BCM1 cells as micrometa-
static breast cancer cells gathered from bone marrow of 
breast cancer patients. Interestingly, these cells which 
express high level of BORIS have some cancer stem cell 
characteristics and EMT like invasive phenotype [133, 
143, 144]. Additionally, BORIS has also been recog-
nized as an inducer of Notch pathway and its expres-
sion has been detected in cell lines derived from several 
solid tumors overexpressing NOTCH3 [110, 145–149]. 
All together, these results  indicate that BORIS plays a 
principle role in the maintenance of cancer stemness by 
interacting with WNT/ß-catenin and Notch signaling 
pathway.

It has been reported that BORIS is an epigenetic modi-
fier, and its binding to promoters of target genes leads 
to the recruitment of additional transcription factors 
or chromatin-remodeling proteins that alter the epige-
netic status, chromatin conformation, and transcription 
of these genes (Fig. 3). For example, it has been demon-
strated that BORIS/CTCF expression ratio is associated 
with DNA hypomethylation [45]. Moreover, the over-
expression of BORIS is correlated with aberrant expres-
sion of multiple proto-oncogenes and CT genes such as 
NY-ESO-1, MAGE-A1 and MAGE-A3 via induction of 
promoter demethylation [11, 25, 26, 69, 79, 150]. Fur-
thermore, in  vitro studies show recruitment of PRMT7 
and SET1A to chromatin induced by BORIS [12]. SET1A 
and PRMT7 have been recognized as a H3K4 methyl-
transferase and arginine methyltransferase, respectively 
[68, 151]. Therefore, BORIS induces the expression of 
MAGEA1-A4, BAG1, BRCA1, SBSN, NY-ESO-1 and 
MYC genes via recruitment of histone modifiers onto 
the promoters of target genes which results in permis-
sive/active histone modifications such as trimethylation 
of lysine 4 of histone H3 tail (H3K4me3) and acetylation 
of lysine 14 of histone H3 tail (H3K14Ac) [25, 66, 68, 79, 
152, 153]. The role of BORIS as a chromatin regulator 
protein was confirmed by its ability to bind in NOTCH3 
promoter and increasing the H3K4me3/H3K27me3 ratio 



Page 9 of 13Soltanian and Dehghani ﻿Cancer Cell Int  (2018) 18:154 

leading to abnormal upregulation of NOTCH3 in can-
cer cells [145]. A recent study by Liu el al. showed that 
BORIS promotes CSC-like traits of human liver cancer 
cells by epigenetic up-regulating of OCT4. In fact, BORIS 
regulates OCT4 gene expression via histone methylation 
modification as reflected by increasing the H3K4me2/
H3K27me3 ratio and creates a permissive/active chroma-
tin conformation [123] (Fig. 3). Another mechanism for 
BORIS-mediated activation of genes has been reported 
for NY-ESO-1. Kang et al. provided evidence that recruit-
ment of Sp1 to NY-ESO-1 promoter is a mechanism by 
which BORIS induces NY-ESO-1 in lung cancer [29]. 
Sp1 is a transcription factor that activates promoters via 
recruitment of additional regulatory proteins, leading to 
the formation of a functional transcriptional machinery 
[154, 155]. Altogether, the results of these studies suggest 
that BORIS acts as a type of genomic recruiter/chroma-
tin scaffold that recruits many interacting partners and 
induces open chromatin conformation in the promoter 
of target genes. This conclusion was further supported by 
the finding that BORIS is co localized with H3K4me3 and 
Pol II at transcriptionally active promoters [21].

Conclusion
In this review we describe the expression pattern and 
functions of BORIS or CTCF-like protein which has 
been identified as a paralog of CTCF, an old protein with 
known functions and pattern of expression. Although 
there are contradictory reports on the expression pat-
tern and function of BORIS, but it has been recognized 
as a CT gene that is normally expressed in male germ line 

cells in testis, and is frequently deregulated in many can-
cers. In cancer cells, BORIS appears to regulate the acti-
vation of other CT genes and oncogenes, affecting cell 
proliferation and invasive ability of cancer cells. Recent 
reports show a correlation between BORIS and CSCs. 
According to these finding, BORIS has also been rec-
ognized as an inducer of some important CSC markers 
and as a probable player in the maintenance of CSCs in 
advanced cancers. However, further studies are needed 
to clarify the role of BORIS in sustaining CSC proper-
ties, and in advanced stage/poorer differentiation grade 
cancers.
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