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Abstract 

Background:  As one of the most common malignant tumors in humans, lung cancer has experienced a gradual 
increase in morbidity and mortality. This study examined prognosis-related methylation-driven genes specific to 
lung adenocarcinoma (LUAD) to provide a basis for prognosis prediction and personalized targeted therapy for LUAD 
patients.

Methods:  The methylation and survival time data from LUAD patients in the TCGA database were downloaded. The 
MethylMix algorithm was used to identify the differential methylation status of LUAD and adjacent tissues based on 
the β-mixture model to obtain disease-related methylation-driven genes. A COX regression model was then used 
to screen for LUAD prognosis-related methylation-driven genes, and a linear risk model based on five methylation-
driven gene expression profiles was constructed. A methylation and gene expression combined survival analysis was 
performed to further explore the prognostic value of 5 genes independently.

Results:  There were 118 differentially expressed methylation-driven genes in the LUAD tissues and adjacent tissues. 
Five of the genes, CCDC181, PLAU, S1PR1, ELF3, and KLHDC9, were used to construct a prognostic risk model. Overall, 
the survival time was significantly lower in the high-risk group compared with that in the low-risk group (P < 0.05). In 
addition, the methylation and gene expression combined survival analysis found that the combined expression levels 
of the genes CCDC181, PLAU, and S1PR1 as well as KLHDC9 alone can be used as independent prognostic markers or 
drug targets.

Conclusion:  Our findings provide an important bioinformatic basis and relevant theoretical basis for guiding subse-
quent LUAD early diagnosis and prognosis assessments.

Keywords:  Lung adenocarcinoma, DNA methylation-driven genes, Biomarkers, Cox proportional hazards regression, 
Survival analysis
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Background
Lung cancer is one of the most malignant tumors in the 
world, with high morbidity and mortality [1]. Epidemio-
logical statistics show that the incidence of lung adeno-
carcinoma (LUAD) in lung cancer is increasing, and it 
is more common among women and non-smokers [2, 
3]. Due to the existence of tumor heterogeneity factors 

and the different pathological and molecular types of 
patients, the personalized treatment of LUAD faces 
large challenges [4]. In recent years, with the advance-
ment of molecular biology, several LUAD driving genes 
such as EGFR, KARS, and TP53 have been discovered 
one after the other [5], and some targeted therapeutic 
drugs have been developed, which has greatly improved 
the treatment of some patients with LUAD [6, 7]. How-
ever, not all patients have benefited from these drugs, 
such as those who cannot tolerate the therapeutic side 
effects of targeted drugs or those who are resistant to 
drugs in the short term. Therefore, identification of new 
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LUAD-associated driver genes by bioinformatics analy-
sis and construction of risk model are necessary for the 
prognosis evaluation and post-treatment of patients.

Molecular mechanism research based on bioinformatic 
analysis is an important method for cancer research. Not 
only can this research explore the molecular pathogen-
esis of tumors but also it can identify biomarkers for early 
diagnosis, treatment and prognosis of tumors [8]. As one 
of the core elements in epigenetic modification, DNA 
methylation is an important signaling tool that regulates 
genomic function and is one of the important features 
mediating carcinogenesis [9]. DNA methylation can par-
ticipate in many cellular processes such as cell differen-
tiation, genome stability, and gene imprinting [10, 11]. 
Biological processes, specifically, changes in DNA meth-
ylation, can provide an important basis for early diagno-
sis and prognosis of cancer and a new ideas for further 
clinical applications.

In recent years, sufficient research evidence has shown 
that the occurrence and development of lung cancer is a 
multi-factor, multi-stage and multi-gene change process 
in which the inactivation of tumor suppressor gene meth-
ylation is one of its important mechanisms [12–15]; con-
sequently, in-depth research on the lung cancer-related 
methylation mechanism has become a focus of great 
concern. A large number of studies have shown that the 
methylation of certain genes can affect their expression, 
and this phenomenon is closely related to the diagnosis 
and prognosis of lung cancer [16]. For example, Feng 
et al. showed that RAR-β methylation levels were abnor-
mally expressed in non-small cell lung cancer (NSCLC) 
patients, while those with positive APC methylation sta-
tus in tumor tissues survived longer than those with neg-
ative APC methylation, indicating that the methylation 
of RAR-β or APC is a promising diagnostic or prognostic 
marker of NSCLC [17]. In addition, Zhang et  al. found 
that the methylation level of PAX6 in non-small cell lung 
cancer tissues was higher than that in normal tissues and 
that the methylation status of PAX6 was associated with 
a poor overall survival rate in cancer tissues. It has been 
suggested that methylated PAX6 may be a useful bio-
marker for the prognosis assessment of NSCLC [18].

The Cancer Genome Atlas (TCGA) database [19] pro-
vides researchers around the world with open data on 
cancer genetic and epigenetic profiles, enabling research-
ers to efficiently capture and analyze relevant data and 
genomic changes. MethylMix, an algorithm implemented 
with R, identifies methylation status based on a β-mixed 
model to identify disease-specific hypomethylated and 
hypermethylated genes to obtain disease-related meth-
ylation-driven genes [20]. At present, related studies on 
methylation-driven genes have been reported [21]; in 
this study, the methylation and mRNA expression data 

of LUAD patients were extracted from the TCGA data-
base, and the methylation-driven genes related to LUAD 
were obtained by use of the MethylMix algorithm. The 
Cox–Kaplan–Meier-survival method was used to con-
struct a survival model, assess the methylation-driven 
genes related to LUAD prognosis, explore the correlation 
between DNA aberrant methylation and LUAD genome 
level, and provide a scientific basis for personalized 
medicine.

Materials and methods
Data processing and analysis
We downloaded methylation and mRNA expression data 
from LUAD patients from the TCGA database. Among 
them were methylation data from 507 samples, includ-
ing 32 normal samples and 475 cancer samples, as well 
as mRNA expression data from 594 samples, including 
59 normal samples and 535 LUAD samples. First, based 
on the LIMMA package, the downloaded data were nor-
malized and analyzed for differences to obtain aberrant 
methylated genes and differentially expressed genes. 
Then, based on the MethylMix algorithm implemented 
by R, we calculated the correlation between gene meth-
ylation level and gene expression. Next, we determined 
genes that were significantly related and identified the 
disease-specific hypomethylation and hypermethylation 
genes by constructing the β-mixed model. Finally, screen-
ing for methylation-driven genes was done. In addition, 
we screened 244 samples with stage I LUAD,which both 
have expression and clinical information for further test-
ing. The data provided by TCGA is public and did not 
require the approval of a local ethics committee.

Functional and pathway enrichment analysis 
of methylation‑driven genes
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) v6.8 (http://david​.abcc.ncifc​
rf.gov/) serves as an open source platform for determin-
ing associations between target molecules [22]. Con-
sensusPathDB (http://cpdb.molge​n.mpg.de/) integrates 
interaction networks in Homo sapiens, including binary 
and complex signaling, gene regulatory and drug-target 
interactions, as well as biochemical pathways [23, 24]. To 
gain insight into the biological functions of these meth-
ylation-driven genes, the genes were subjected to func-
tional and pathway enrichment analyses based on DAVID 
and Consensus PathDB online software, and P < 0.05 was 
set as the cutoff criterion.

Construction of risk assessment model and risk score 
calculation
To further screen for prognosis-related methylation-
driven genes, a linear risk assessment model for LUAD 
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methylation-driven genes was constructed using a sin-
gle-factor, multivariate Cox analysis [25]. The prognostic 
index was defined as follows:

In the formula, Exp is the expression level of each 
methylation-driven gene in the specimen, and β is the 
multi-factor COX regression analysis coefficient of each 
methylation-driven gene in the COX model. The prog-
nostic risk value of each sample was calculated according 
to the formula, and then the median of the index value 
was cut off. The patients were divided into high and low 
risk groups [26, 27] and verified with a time-dependent 
ROC curve. The Kaplan–Meier survival curve method 
was used to evaluate the overall survival rate of patients 
in the high- and low-risk groups. Log-rank test was used 
to determine whether there was any difference in the 
overall survival rate between the high-risk and low-risk 
groups. P < 0.05 was considered statistically significant. In 
addition, we applied the risk prediction model to patients 
with stage I LUAD who had both the expression and 
clinical information provided by the TCGA database to 
further test the validity and practicability of the model to 
predict prognosis.

Mapping of Kaplan–Meier curves of driver genes 
and methylated sites in survival models, joint survival 
analysis
To further explore the prognostic assessment of methyl-
ation-driven genes, we extracted relevant loci for driving 
gene methylation from downloaded LUAD methylation 
data. Then, based on the survival R package, the prog-
nostic survival analysis of the driving genes and related 
methylated sites was performed by combining the clinical 
data and prognostic information of LUAD in TCGA, and 
the Kaplan–Meier curve was produced. In addition, we 
performed a joint survival analysis of methylation levels 
and gene expression levels of driver genes to further iden-
tify key genes associated with prognosis in patients with 
LUAD, and the joint survival curve was also obtained by 
the survival R package.

Results
TCGA data analysis and acquisition of methylation‑driven 
genes
The methylation data from the analysis of this study were 
from 507 sample data, including 475 LUAD samples 
and 32 paracancerous control samples. Gene expres-
sion data were gathered from 594 samples, including 535 
cancer samples and 59 paracancerous control samples. 

Prognostic index =

N∑

i=1

Expi × βi.

Abnormal methylation expression and gene expression 
data of LUAD from the TCGA were extracted and ana-
lyzed based on the LIMMA software package. The rel-
evant data were then integrated under the same sample 
based on the MethylMix package for correlation analy-
sis. A mixed model construction and Wilcoxon rank 
test for differential methylation were calculated, where 
|logFC| > 0, P < 0.05, |Cor| > 0.3. As a screening condi-
tion, 118 methylation-driven genes were obtained (Fig. 1; 
Additional files 1, 2, 3).

Functional enrichment and pathway analyses 
of methylation‑driven genes
To further explore the molecular mechanism of meth-
ylation-driven genes in the development of LUAD, we 
performed a functional enrichment analysis and path-
way analysis of these genes using DAVID and Consen-
susPathDB online software. The results showed that the 
methylation-driven genes were enriched not only in mul-
tiple pathways but also in molecular functions and bio-
logical processes. Pathway analysis showed that these 
genes were mainly enriched in the generic transcription, 
RNA polymerase II transcription, gene expression (tran-
scription) and platinum pathways, as well as pharma-
cokinetics/pharmacodynamics (Fig.  2; Additional file  4). 
Functional analysis revealed that, in the biological pro-
cesses (BP) group, these genes were mainly involved in 
transcriptional regulation, DNA-templates, multicellu-
lar organism development, angiogenesis and blood ves-
sel maturation, among others. The molecular function 
(MF) was mainly enriched in transcription factor activ-
ity, sequence-specific DNA binding, nucleic acid binding, 
and DNA binding. In addition, the cellular component 
(CC) group was mainly involved in tracellularly (Table 1).

Construction and analysis of the prognosis risk assessment 
model of LUAD methylation‑driven genes
We performed univariate and multivariate Cox regres-
sion analyses of the obtained LUAD methylation-
driven genes. The results showed that the assessment 
model constructed by five genes (CCDC181, PLAU, 
S1PR1, ELF3, KLHDC9) can be used as an inde-
pendent indicator to predict the prognosis of the  
disease. The prognostic index = (1.571 * expression level  
of CCDC181) + (− 1.170 * expression level of PLAU)  
+ (3.674 * expression level of S1PR1) + (3.467 * expression 
level of ELF3) + (3.028 * expression level of KLHDC9).  
In addition, with a median PI value (value = 0.928) as a 
group cutoff condition, 488 samples in the methylated 
data sample that matched the clinical follow-up sam-
ple were divided into a high-risk group (n = 244) and a 
low-risk group (n = 244). Kaplan–Meier survival curve 
analysis of patients in the high- and low-risk groups 
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showed that the overall survival rate was lower in the 
high-risk group, and the difference between the two 
groups was statistically significant (Fig.  3a). Using the 
time-dependent ROC curve to estimate the predictive 
performance of the risk scoring model, the AUC of the 
prognostic risk assessment model for the five methyla-
tion-driven genes was 0.66 at 3 years of OS (Fig. 3b). In 

the prognostic assessment test for patients with stage I 
LUAD, the Kaplan–Meier curve showed that the sur-
vival rate of the high-risk group was significantly lower 
than that of the low-risk group (Fig.  4). It can be seen 
that the model based on methylation-driven genes has 
certain reliability and practicability in evaluating the 
prognosis of LUAD patients.

Fig. 1  Heat maps of LUAD-related aberrant methylation-driven genes. The color from green to red shows a trend from hypomethylation to 
hypermethylation
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Survival analysis of driving gene methylated sites and joint 
survival analysis of methylation and expression
Prognostic survival analysis of driver gene-related 
methylated sites in a risk assessment model was per-
formed based on the surviving R package. P < 0.05 was 
used as a meaningful cut-off condition for predicting 

prognosis, and we found specific methylated sites 
associated with the prognosis of these genes (Addi-
tional file  5). Among them, 12 methylated sites of the 
gene CCDC181, 1 methylated site of S1PR1, and 4 
methylated sites of KLHDC9 were significantly associ-
ated with the prognosis of LUAD (Fig.  5). In addition, 

Fig. 2  The significant enriched pathways of methylation-driven genes. Only the pathways which P < 0.01 were shown here. Node size: the number 
of genes; Node color: P-value; Edge width: percentage of shared genes; Edge color: genes from input

Table 1  Functional enrichment analysis of methylation-driven genes associated with LUAD

If there were more than five terms in this category, selected the first five terms based on the P value. Count: the number of enriched genes in each term

Category Term Count P value

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 26 1.49E−08

GO:0006351~transcription, DNA-templated 23 8.28E−05

GO:0001525~angiogenesis 6 0.004235

GO:0072272~proximal/distal pattern formation involved in metanephric nephron 
development

2 0.009506

GO:0032526~response to retinoic acid 3 0.016299

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 17 1.77E−05

GO:0003676~nucleic acid binding 16 9.29E−05

GO:0046872~metal ion binding 21 0.002409

GO:0003677~DNA binding 17 0.007796

GOTERM_CC_DIRECT GO:0005622~intracellular 16 0.001325
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joint survival analysis revealed that the combination 
of methylation and expression of the genes CCDC181, 
S1PR1, KLHDC9, and PLAU had a significant corre-
lation with the prognosis of the patient, including the 
gene CCDC181. The high-methylation low-expression 
survival rate of S1PR1 and KLHDC9 were higher, while 

the low-methylation high-expression survival rate of 
the gene PLAU was higher (Fig. 6).

Discussion
LUAD is the most common type of lung cancer, and it 
is highly invasive and has a poor prognosis [28, 29]. In-
depth studies on the molecular pathogenesis of LUAD 
and the early detection of the prognostic markers of this 
disease as well as specific driving genes are urgent and 
could prove useful for improving patients’ quality of life 
and the prognosis of patients. In recent years, it has been 
found that the decreased expression of genes caused by 
the hypermethylation and the enhanced expression of 
genes caused by hypomethylation play an important role 
in the regulation and development of malignant tumors 
[9, 30]. Gene methylation could lead to transcriptional 
disorders, causing some gene expression disorders and 
cell differentiation disorders [11, 31]. Studies have shown 
that, unlike DNA aberrations, epigenetic changes are 
reversible, making them attractive therapeutic targets 
[32]; thus, detecting and altering DNA methylation can 
provide new insights for the further treatment and risk 
assessment of cancer. For instance, Robles et  al. found 
that methylation of the HOXA9 promoter was associ-
ated with a high risk in patients with stage I LUAD [33], 
whereas Sugimoto et  al. found that the aberrant meth-
ylation of GRWD1 may be a protective factor in tumor 
development. Because the high expression of GRWD1 in 

Fig. 3  Kaplan–Meier and ROC curves for a linear risk model based on five methylation-driven genes. a The differences between the high-risk 
(n = 244) and low-risk (n = 244) groups were determined by the log-rank test. b Time-dependent ROC curves analysis for 3-year survival prediction 
by methylation-driven genes

Fig. 4  Kaplan–Meier curve for patients with stage I LUAD using the 
prognostic risk model
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tumor cells can promote tumor cell growth, the aberrant 
methylation of the GRWD1 gene can inhibit its activ-
ity [34]. From previous studies, the prognosis-related 

methylation genes and specific methylation-driven 
genes could serve as the new markers for further clinical 
applications.

Fig. 5  Kaplan–Meier survival curves of the related methylated sites. a–l Methylated sites of the gene CCDC181; m–p methylated sites of the gene 
KLHDC9; q methylated site of the gene S1PR1
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In the present study, our aim was to screen for methyl-
ation-driven genes by analyzing data on LUAD methyla-
tion in TCGA and to identify new prognostic biomarkers 
associated with methylation. Firstly, we obtained 118 
methylation-driven genes using the LIMMA software 
package. And then, to further investigate the cellu-
lar mechanisms involved in these methylation-driven 
genes, functional enrichment and pathway analyses were 
performed. Functional aggregation analysis revealed 
that these genes are involved intracellularly and that 
major enrichment is associated with the regulation of 
transcription, DNA-templates, multicellular organism 

development, and a variety of other functions, such as 
transcription factor activity and sequence-specific DNA 
binding. Enrichment pathway analyses indicated that the 
methylation-driven genes were mainly involved in the 
generic transcription, RNA polymerase II transcription, 
gene expression (transcription) and platinum pathways. 
These functional enrichment and pathway analyses dem-
onstrate not only the cellular mechanisms by which DNA 
methylation abnormalities lead to disease development 
but also the functional level interaction of these genes.

In addition, according to univariate and multivari-
ate Cox analyses of methylation-driven genes, five 

Fig. 6  Kaplan–Meier survival curves for the joint survival analysis. a The combination of gene CCDC181 methylation and expression; b the 
combination of gene PLAU methylation and expression; c the combination of gene S1PR1 methylation and expression; d the combination of gene 
KLHDC9 methylation and expression
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methylation-driven genes (CCDC181, PLAU, S1PR1, 
ELF3, KLHDC9) were identified and used to construct a 
prognostic risk model for LUAD. Using this risk model, 
we successfully divided the LUAD samples into high-
risk and low-risk groups. Survival analysis showed sig-
nificant differences in overall survival between the two 
groups. The results suggest that the risk model, consist-
ing of five methylation-driven gene profiles, can effec-
tively predict the prognosis of patients with LUAD. The 
results also show that the AUC of the ROC curve predict-
ing 3-year survival by the five-gene feature was 0.66. Our 
study found that the risk assessment models constructed 
by these five gene signatures performed well in survival 
predictions for patients with LUAD, but further studies 
are needed to validate these findings. These methylation-
driven genes can be used as effective biomarkers or drug 
targets for early diagnosis, and prognosis of patients with 
LUAD. C1orf114, also known as CCDC181, is a protein 
of unknown function and encodes a coiled-coil domain 
containing 181. Haldrup et  al. showed that CCDC181 
(C1orf114) and HAPLN3 can be used as novel biomark-
ers for the hypermethylation of prostate cancer (PC), 
proving to be a novel diagnostic and/or prognostic pro-
moter. Moreover, the combination of C1orf114 and two 
other genes in the dichotomy methylation profile (AOX1 
and HAPLN3) can increase the prognostic value of PC 
[35]. Our study found that CCDC181 is one of the meth-
ylation-driven genes of LUAD, and its hypermethylation 
leads to poor prognosis. The molecular mechanism of the 
gene CCDC18 in cancer requires further research to dis-
cover its driving genetic role in LUAD patients.

The gene PLAU is a urokinase plasminogen activa-
tor. Based on the established role of the plasminogen 
system in cancer invasiveness and as a key player in 
cancer metastasis and cancer cell invasion behavior 
(adhesion, migration and invasion) [36, 37], PLAU has 
different expression levels in individual cells of lung 
cancer patients and can be used as a marker to predict 
the prognosis of lung cancer patients [38]. Methylation 
and gene expression combined survival analyses found 
that the gene PLAU were closely associated with poor 
prognosis in patients with LUAD. Sphingosine 1-phos-
phate receptor 1 (S1PR1) is a G protein-coupled recep-
tor involved in the regulation of physiological processes 
such as cell growth, differentiation, and migration as 
well as the immune response [39]. Previous studies have 
shown that S1PR1 can participate in the proliferation 
and invasion of cancer cells by activating the ERK sign-
aling pathway [40]. Moreover, S1PR1 can stably activate 
STAT3 in tumor and bone marrow cells [41, 42], which is 
essential for breast cancer cell proliferation, invasion and 
metastasis. In addition, Yoshida et al. showed that S1PR1 
expression was associated with prognosis in patients with 

glioblastoma and that high expression was positively cor-
related with favorable survival [43]. This study found that 
the high methylation level of S1PR1 was associated with 
a lower survival rate in patients with LUAD and may be 
a new target for the treatment and improvement of the 
prognosis of patients with LUAD.

In addition, as a potential oncogenic transcription fac-
tor, ELF3 promotes tumor cell growth and metastasis by 
modulating the PI3K/Akt and ERK pathways in NSCLC 
and may serve as a promising new target for the treat-
ment of NSCLC patients [44, 45]. Other studies have 
shown that ELF3 overexpression is significantly associ-
ated with poor prognosis in patients with hepatocellular 
carcinoma (HCC) [46]. In our study, the gene KLHDC9 
was used as one of the prognostic-related methylation-
driven genes in LUAD, and the KM curve showed that 
KLHDC9 hypermethylation patients had shorter sur-
vival times and shorter methylation survival times. 
The combined survival analysis also found that hyper-
methylation and low gene expression of KLHDC9 sug-
gested poor prognosis in patients with LUAD. There are 
few studies that have examined the gene KLHDC9, but 
this gene could be used as a new target for the diagno-
sis and prognosis of LUAD. However, based on the fact 
that DNA methylation mainly occurs at the CpG site of 
the gene, this study found that multiple CpG sites were 
closely related to the prognosis of patients with LUAD by 
analyzing the correlation of CpG site survival in methyl-
ation-driven genes. These results are based on bioinfor-
matic analysis and provide a theoretical basis for further 
experimental validation.

Conclusion
In this study, based on the genomic methylation data 
provided by TCGA for LUAD patients, we obtained 118 
methylation-driven genes associated with LUAD using 
the MethylMix algorithm. Univariate and multivari-
ate Cox regression analyses showed that the prognostic 
survival model constructed from five aberrant methyla-
tion-driven genes, CCDC181, PLAU, S1PR1, ELF3, and 
KLHDC9, was an independent predictor of disease 
prognosis including. Based on the risk model of these 
five methylation-driven genes, LUAD patients can be 
divided into a high-risk group and low-risk group, and 
this approach provides a basis for prognosis prediction 
and personalized treatment plans for LUAD patients. 
And the predictive ability of the model was further dem-
onstrated in the test of stage I LUAD samples. Since DNA 
methylation is one of the most important modifications 
in epigenetics, gene expression can be controlled in a 
variety of ways. Joint survival analysis revealed that the 
expression levels of the genes CCDC181, PLAU, S1PR1 
and KLHDC9 can be used as independent prognostic 
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markers or drug targets for early diagnosis and progno-
sis assessment of LUAD. Although further experimental 
verification is needed, our findings provide an impor-
tant bioinformatic basis and relevant theoretical basis for 
guiding the subsequent in-depth study of LUAD.
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Additional file 1. Methylation levels of 118 driver genes.

Additional file 2. Expression levels of 118 methylation-driven genes.

Additional file 3. The protein–protein interaction network of 118 meth-
ylation-driven genes and the related genes. Red: the methylation-driven 
genes; Green: the related genes. The methylation-driven genes which not 
associated with other genes are not shown here.

Additional file 4. Pathway analysis of methylation-driven genes associ-
ated with LUAD (P < 0.05).

Additional file 5. All relevant methylated sites of the five methylation-
driven genes obtained from the TCGA database. (1–16) methylated sites 
of the gene CCDC181; (17–33) methylated sites of the gene ELF3; (34–47) 
methylated sites of the gene KLHDC9; (48) methylated site of the gene 
PLAU; (49–57) methylated sites of the gene S1PR1.
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