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Markers of MEK inhibitor resistance 
in low-grade serous ovarian cancer: EGFR 
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Abstract 

Background: Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients 
present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these can-
cers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond 
to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed.

Methods: We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi 
sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and 
MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment 
combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signal-
ing, and drug synergism assays.

Results: Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching 
tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: 
KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly 
developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused 
complete cell death in two of four MEKi-resistant cell lines tested.

Conclusions: KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive 
biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may 
represent a promising new therapy for patients with MEKi-resistant LGSC.
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Background
Each year in Canada and the United States, over 25,000 
women are diagnosed with ovarian cancer [1, 2]. Low-
grade serous ovarian cancer (LGSC) accounts for 5–10% 
of these cancers [3, 4], affecting approximately 2000 
women per year. This rare form of ovarian cancer is often 
diagnosed in pre-menopausal women and frequently 

found in advanced stages. Although LGSC is considered 
to be a less aggressive subtype than other ovarian can-
cers, response rates to chemotherapy are low, ranging 
from 4 to 25% [5]. Consequently, long-term fatality rates 
are high with only 10–20% of women surviving 10 years 
after diagnosis [5, 6].

It is now recognized that LGSC has unique clinical, 
pathological, and molecular characteristics compared to 
other types of ovarian cancers, such as the high-grade 
serous ovarian carcinoma (HGSC) [7, 8]. Molecular stud-
ies performed on LGSC tumors revealed that mutations 
in the TP53 gene are rare (8% in LGSC versus 96% in 
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HGSC) [9, 10], and that expression of estrogen (ER) and 
progesterone (PR) receptors is frequently observed [11, 
12]. LGSC is also characterized by activation of the mito-
gen-activated protein kinase (MAPK) pathway. Muta-
tions affecting this pathway are seen in KRAS (20–40%), 
NRAS (7–26%) and BRAF (5–33%) genes [13–20]. Evi-
dence of MAPK pathway activation in LGSC [21] led to a 
key clinical trial evaluating the efficacy of the MEK inhib-
itor (MEKi) selumetinib for the treatment of patients 
with advanced and/or recurrent LGSC (GOG-0239). The 
results from this trial, published in 2013, shown a 15% 
response rate and 65% disease stabilization [22]. A sec-
ond clinical trial of the MEKi binimetinib (MILO trial, 
NCT01849874) was closed at the interim analysis in 
2016, because it did not show the anticipated predefined 
benefits on progression-free survival (PFS). Despite these 
unexpected results, durable responses to binimetinib 
were observed in LGSC with MAPK pathway altera-
tions [23]. Currently, an international randomized phase 
II/III clinical trial using the MEKi trametinib is ongoing 
(NCT02101788) and a translational research component 
to better understand the molecular mechanisms of MEKi 
efficacy is included.

To date, preclinical laboratory research in LGSC has 
been limited to tumor tissues. The low frequency and 
slow growth rate of these tumors have challenged the 
development of cell lines and animal xenograft models. 
In the past 5 years, our laboratory has successfully estab-
lished a collection of patient-derived LGSC cell lines 
that are now available for pre-clinical drug testing. Pre-
viously, we evaluated the effects of four different MEKi 
(selumetinib, trametinib, binimetinib, refametinib) in 
eight advanced/recurrent LGSC cell lines. Our results 
indicated that there were substantial differences in cel-
lular response and on-target drug efficacy between cell 
lines and drugs [24]. Encouraged by promising results 
from MEKi clinical trials in a subset of LGSC patients, we 
sought to identify biomarkers that could predict response 
to treatment using LGSC cell lines, by comparing the 
proteogenomic profiles of MEKi-sensitive (MEKi-Se) and 
MEKi-resistant (MEKi-Re) LGSC cell lines, and subse-
quently evaluating the potential therapeutic value of two 
proteins (EGFR and PKC-alpha) associated with MEKi 
resistance.

Materials and methods
Tumor samples and clinical information
Advanced or recurrent LGSC samples (tumor and ascites) 
were obtained from the OvCaRe gynecologic tumor bank 
(Vancouver General Hospital/British Columbia Cancer 
Agency (BCCA), and the John and Mary Knight Trans-
lational Ovarian Cancer Research Unit (London Regional 
Cancer Program, London, Ontario, Canada). Tumor bank 

protocols, cell line derivation, and all research relating 
to this study was approved by institutional human eth-
ics review boards at BCCA (H14-02859), the University 
of British Columbia (UBC; R05-0119), and the University 
of Western Ontario (HSREB 12668E). Clinical informa-
tion was extracted retrospectively from patient records. 
Tumor histology was confirmed by a gynecological 
pathologist.

Patient‑derived LGSC cell lines
Low-grade serous ovarian cancer patient-derived cell 
lines were established through continuous in  vitro cul-
ture of patient material obtained through OvCaRe or 
the John and Mary Knight Translational Ovarian Cancer 
Research Unit (cell line iOvCa241) tumor banks. Cultures 
were established and maintained in M199:MCDB105 
(1:1) media (Cat. No. M5017 and M6395, Sigma-Aldrich, 
Oakville, Ontario, Canada) supplemented with 10% 
defined fetal bovine serum (dFBS; Cat. No. SH30070.03, 
Hyclone, GE Life Sciences, Logan, UT, USA) maintained 
at 37 °C and 5%  CO2. No immortalization methods were 
used. Doubling time of these cells ranged from 30 to 
80 h, with an average of 47 h, reflecting the clinical slow 
growth rate of LGSC.

Sample authentication (cell line, tumor, buffy coat)
Microsatellite analysis of short tandem repeats (STRs) 
was performed on LGSC cell lines and corresponding 
tumor and buffy coat samples for cell line authentication. 
STR analyses of 10 loci were performed by Genewiz Inc. 
(South Plainfield, NJ) (Data available upon request). STR 
results confirm that all LGSC cell lines and buffy coat 
samples match to corresponding tumor samples.

Genome sequencing
Whole exome sequencing (WES): Agilent SureSelect RNA 
Library All Exons v6 protocol was performed by Beijing 
Genome Institute, per manufacturer’s guidelines. Qual-
ity and quantity of post-capture libraries were assessed 
using an Agilent 2100 Bioanalyzer. Libraries were 
sequenced on an Illumina Hiseq  4000 (PE 100). Copy 
number variation (CNV) analysis: Data analysis was per-
formed using Nexus Copy Number Discovery Edition 
Version 9.0 (BioDiscovery, Inc., El Segundo, CA). Sam-
ples were processed using the Nexus NGS functionality 
(BAM ngCGH) with the FASST2 segmentation. The log 
ratio thresholds for single copy gain and single copy loss 
were set at + 0.18 and − 0.18, respectively. The log ratio 
thresholds for gain of 2 or more copies and for a homozy-
gous loss were set at + 0.6 and − 1.0, respectively. Tumor 
sample BAM files were processed with correspond-
ing normal tissue BAM files. Probes were normalized 
to median. Mutation analysis: Sequence alignment and 
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mutation calling were performed in Partek Flow environ-
ment (© 2017 Partek Inc). Sequence reads were aligned 
to GRCh38/hg38 human genome build using bwa 0.7.2. 
Variants were called using Strelka 1.0.15 for all cell lines 
except for VOA-1312 (lacking buffy coat sample). VOA-
1312 variant calling was performed using LoFreq 2.1.3.a. 
The called variants were annotated using the wAnnovar 
software (reference obtained from: http://jmg.bmj.com/
conte nt/49/7/433.citat ion-tools ). Annotated calls were 
then filtered to show only protein-changing SNVs that 
were present in cell line DNA at allele frequencies (AF) 
greater than 0.1 and coverage higher than 16×. For VOA-
1312, all calls not present in dbSNP (version 138) were 
retained, while of the calls that were present in dbSNP, 
only calls with (average heterozygocity + aveHet standard 
error) < 0.1 were retained. These were additionally filtered 
using the same criteria as for the Strelka calls.

Whole genome sequencing (WGS): Genomic data from 
LGSC tumors T7 and T11 were obtained from the per-
sonalized oncogenomics (POG) program at the BCCA. 
Methodology has been previously described in detail 
[25]. To summarize, genome and transcriptome librar-
ies were sequenced on HiSeq instruments (Illumina, San 
Diego, California) using V3 or V4 chemistry and paired-
end 150 or 125 base reads, respectively. Target depth was 
80× coverage for the tumor genome and 40× for the nor-
mal genome.

Cell proliferation assays
Assessment of MEKi sensitivity using trametinib 
(GSK1120212; Sellekchem, Cat. No. S2673) and selu-
metinib (AZD6244; Cat. No. S1008), were performed as 
previously described [24]. Cell proliferation was moni-
tored using IncuCyte™ real-time imaging technology 
using a non-labeled monolayer confluence approach 
(Essen Biosciences, Ann Arbor, MI, USA). LGSC cell 
lines were plated at 15–20% confluence in 96-well plates. 
After 24  h, cells were treated once with DMSO (con-
trol) or differing drug concentrations [erlotinib alone 
(10  μM and 2.5  μM), in combination (10, 5, 2.5, 1.25, 
and 0.63  μM), high and low doses of MEKi treatment 
(1  μM and 0.5  μM selumetinib; 0.1  μM and 0.05  μM 
trametinib; doses for preclinical MEKi assays as previ-
ously published)] [24]. Trametinib and selumetinib were 
selected as the MEKi for combination treatments. These 
two drugs are most commonly used clinically for treat-
ing LGSC, and binimetinib may lack efficacy based on 
results from the MILO clinical trial (NCT01849874). 
Drug doses of selumetinib and trametinib were chosen 
based on IC50 results from our previous experiments 
[24]. Selected concentrations for these experiments are 
in keeping with steady state serum levels (selumetinib 
2  μM and trametinib 30  nM) reported for these drugs 

in humans [26, 27]. Phase contrast images of cells were 
taken every 6-h for 4–5 days. Each condition was evalu-
ated using four technical replicates and experiments were 
repeated for verification. Data analysis was performed 
using IncuCyte™ software. Statistical analyses using 
the t-test on the final time point values of each assay were 
performed to compare treatment conditions. Differences 
were considered significant at a p-value < 0.05.

Cell viability assay
Cell viability was measured using MTS-Cell Titer 96R 
Aqueous Non-Radioactive Cell Proliferation Assay, fol-
lowing manufacturer recommendations (Cat. No. G5430, 
Promega, Madison, WI, USA) at endpoint of Incucyte™ 
proliferation assays. Treatment media was replaced 
with 100  μL of fresh media and 20  μL of MTS. Plates 
were incubated for 3.5 h at 37 °C in humidified 5%  CO2. 
Absorbance at 490 nm was measured using a microplate 
reader (BioTek Epoch SN257811). Viability for each treat-
ment was compared to DMSO treated cells. Wells were 
subsequently stained with crystal violet (CV) to deter-
mine residual cells after treatment. Statistical analysis 
using t-test were used to compare treatment conditions 
and differences were considered significant at a p-value 
< 0.05.

IC50 determination
Erlotinib (Cat. No. S7786) were purchased from Sell-
eck Chemicals (Houston, TX, USA). Dimethylsulfox-
ide (DMSO; Sigma, Cat. No. D2650) was purchased 
from Sigma-Aldrich (Oakville, Ontario, Canada). Cells 
were seeded in 96-well plates at 40–50% confluence and 
treated after 24  h with DMSO or a range of drug con-
centrations. The inhibitory concentration (IC50, repre-
senting 50% of total cell viability) was determined using 
crystal violet staining after 72 h drug treatment.

Western blot analysis
Cell lysates were prepared according to previously pub-
lished protocols [24], then 20 μg samples were separated 
on an 8% SDS-PAGE gel, transferred to nitrocellulose 
membranes and probed with primary antibodies includ-
ing ERK1/2 (Millipore, Cat. No. 06-182), p-MAPK 
(p-ERK1/2, Cell Signaling, Cat. No. 4376S), MEK1/2 
(Cell Signaling, Cat. No. 9122), p-MEK1/2 (Cell Signal-
ing, Cat. No. 9154), PKC-alpha (Cell Signaling, Cat. No. 
2056), EGFR (Santa Cruz, Cat. No. 71032), p-EGFR (Cell 
Signaling, Cat. No. 2234), PARP (Cell Signaling, Cat. 
No. 9542), and c-PARP (Cell Signaling, Cat. No. 9541S). 
Vinculin (V9131, Sigma) was used as a protein loading 
control. Horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies (goat-anti-mouse or goat-anti-rabbit, 
Sigma Cat. No. A9917 and A0545) were used accordingly. 

http://jmg.bmj.com/content/49/7/433.citation-tools
http://jmg.bmj.com/content/49/7/433.citation-tools
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Western blots were imaged using Immobilon HRP rea-
gent (Cat. No. WBKLS0500, Millipore, Etobicoke, ON, 
Canada) and developed by autoradiograph.

Reverse‑phase protein array (RPPA) analysis
Reverse-phase protein array on whole tumor and cell line 
lysates was performed as previously described [28, 29]. 
Proteomic profiles of 8 LGSC cell lines, 2 MEKi-sensitive 
(VOA-1312, iOvCa241) and 6 MEKi-resistant (VOA-
1056, VOA-3993; VOA-3448, VOA-3723; VOA-4627, 
VOA-4698), were analyzed. LGSC cells were treated for 
24 h with 1 μL/mL DMSO or MEKi (trametinib 0.1 μM, 
selumetinib 1.0 μM) in biological triplicate as previously 
described [24, 30]. Antibodies (n = 91) against cell sur-
face growth factor receptors, common signaling pathway 
proteins, steroid hormone receptors, and other proteins 
involved in proliferation and apoptosis were used (Addi-
tional file  1: Table  S1). Data was analyzed using SPSS 
software (Version 20, Chicago, Illinois). Differentially 
expressed proteins between cell lines and treatment con-
ditions were determined using the t-test [31]. The Mann–
Whitney U test was used for proteins with non-normally 
distributed expression levels. False discovery rates were 
not calculated as putative markers were validated by 
western blot.

shRNA‑mediated knockdown of PKC‑alpha expression 
(PRKCA gene)
shERWOOD-UltramiR shRNA lentiviral target gene 
set containing three PRKCA shRNA sequences and one 
non-target shRNA (Cat. No. TLHVU1401-5578) was 
purchased from transOMIC Technologies (Huntsville, 
AL). VOA-3723 and VOA-6406 were plated at 50% con-
fluence in 6-well tissue culture dishes 24 h prior to len-
tiviral transduction. 199:105 media supplemented with 
1% Hyclone dFBS and polybrene (2  µg/mL for VOA-
3723, 0.5  µg/mL for VOA-6406) and lentivirus express-
ing non-targeting shRNA or PRKCA shRNA (multiplicity 
of infection [MOI] = 26 for VOA-3723, MOI = 1.5 for 
VOA-6406) in a total volume of 1.5 mL was added. After 
24  h, cells were washed with PBS and complete media 
was added. Successful transduction was confirmed using 
confocal microscopy. After an additional 24-h recovery, 
transduced LGSC cells were selected and maintained 
using puromycin (1.0 µg/mL for VOA3723, 0.5 µg/mL for 
VOA6406).

Drug synergy analysis
Cell proliferation, viability and crystal violet results 
from in  vitro drug testing (single drug and drug com-
binations) were used to assess drug synergism using 
CompuSyn software (http://www.combo syn.com). This 
software is based on the median-effect principle and the 

combination index-isobologram theorem (Chou-Talalay) 
[32]. Drug doses (D) and effects (fa) were entered (non-
constant ratios) for single drug doses and combinations, 
and combination indices (CI) were generated. The CI 
values quantitatively defined synergism (CI < 1), additive 
effect (CI = 1), and antagonism (CI > 1).

Results
Development and MEKi treatment evaluation of LGSC cell 
lines
Our laboratory previously established a collection of 
LGSC cell lines derived from patients with advanced/
recurrent disease. Preclinical evaluation of four MEKi in 
eight different LGSC cell lines resulted in the identifica-
tion of two distinct phenotypes: MEKi-sensitive (MEKi-
Se) cell lines (n = 2), and MEKi-resistant (MEKi-Re) cell 
lines (n = 6). In this first study, MEKi drug concentrations 
and IC50 values were reported [24]. Recognizing the 
challenges using IC-50 values to assess drug efficacy in-
vitro, we established a stringent definition of MEKi sen-
sitivity/resistance recognizing that only 15% of patients 
with advanced/recurrent LGSC will show tumor expe-
rience regression when treated with a MEKi. Thus, we 
classified cell lines as MEKi-Se if a single dose of MEKi 
resulted in complete cell death over a period of 5  days. 
Alternatively, cell lines were considered MEKi-Re if they 
continued to proliferate (even despite some degree of 
inhibition) under the same treatment conditions. Contin-
uing our previous work, we established three new LGSC 
cell lines from three independent patients (VOA-6406, 
VOA-8862, VOA-9164). Tumor cells from three other 
LGSC patients were also grown temporarily as primary 
cultures (VOA-6800, VOA-6857, VOA-7604). Using our 
previous classification criteria, two of these new lines 
were classified as MEKi-Se (VOA-9164 and VOA-8862), 
and one as MEKi-Re (VOA-6406—see Additional file 2: 
Figure S1). STR analysis confirmed unique microsatellite 
profiles for each of these lines, matching the profiles of 
the original tumor tissues from which they were derived 
(data available upon request).

Genomic characterization of MEKi‑Se and MEKi‑Re LGSC 
cells
WES was performed to characterize the genomic pro-
files of our LGSC cell lines and primary cultures. First, 
we compared the copy number profiles of two of our 
cell cultures (VOA-4627, VOA-6857) with those of their 
associated tumor samples (from WGS data). As shown 
in Fig. 1, the copy number variation profiles of the paired 
samples showed a very high degree of correlation. Of 
note, VOA-4627 line was derived from an ascites sample 
taken 2 years after the tumor sample collected previously 
at cytoreductive surgery.

http://www.combosyn.com
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Results from the WES analysis in our LGSC cell lines 
and primary cultures (n = 14) show variable levels of 
genomic aberration and non-synonymous mutations 
(NsMs), ranging from 1 to 66% total genome change 
and 24-111 mutation calls per cell line (Additional file 3: 
Table  S2a). Deletion of Chr9p, including loss of MTAP 
and CDKN2A tumor suppressor genes, was found in all 
samples. As expected, KRAS and NRAS non-synonymous 
mutations were both found most frequently. Either muta-
tion was present in 28.6% of all cell lines/cultures, and 
in 36.4% (KRAS) and 27.3% (NRAS) respectively when 
analyzed by patient (some cell lines were derived from 
the same patient at different times). KRAS and NRAS 
mutations co-existed in only one cell line (VOA-8862). 
Only one BRAF mutation was detected (D594G vari-
ant; VOA-6800 culture). Additionally we analyzed gene 
mutations and copy-number changes affecting 61 well-
known MAPK-pathway genes is shown in Additional 
file 3: Table S2b. A summary of all RAS mutations, copy-
number variation (CNV) findings, and MEKi sensitivity 
in each LGSC cell culture (n = 14) is shown in Table 1.

We found that all MEKi-Se cell lines (4/4; iOvCa241, 
VOA-1312, VOA-9164, VOA-8862) carried oncogenic 
mutations in KRAS (G12D or G12V), while MEKi-Re 
cell lines were either NRAS mutant (3/7; VOA-1056/
VOA-3993 and VOA-6406), or KRAS/NRAS wt (4/7; 
VOA-3448/VOA-3723 and VOA-4627/VOA-4698). Of 
interest, the VOA-8862 cell line (mutations in both KRAS 
and NRAS) was found to be sensitive to all four MEKi 
tested. In this line, the KRAS mutation variant detected 
(G12D) is known to be oncogenic, while the NRAS muta-
tion variant detected (C118Y) was not found in the COS-
MIC database, therefore its oncogenic potential remains 
unknown. We did not observe any obvious correlation 
between the degree of CNV in each cell line (copy num-
ber high versus low) and MEKi response.

Proteomic differences between MEKi‑Se and MEKi‑Re LGSC 
cell lines
To identify biomarkers of MEKi response, we compared 
two MEKi-Se (VOA-1312, iOvCa241) and six MEKi-
Re (VOA-1056/VOA-3993, VOA-3448/3723, VOA-
4627/VOA-4698) LGSC cell lines using reverse phase 
protein array (RPPA) analysis. To do so, lines treated 
with DMSO, 1  μM selumetinib, or 0.1  μM trametinib 
were screened using a panel of 91 validated antibodies 

(see “Materials and methods” and Additional file  1: 
Table S1). We found 12 proteins that were differentially 
expressed between MEKi-Se and MEKi-Re cell lines 
(Additional file  4: Table  S3). Among these proteins, 
EGFR and PKC-alpha were found to be overexpressed 
in all MEKi-Re lines independently of the treatment 
status. These two candidates were selected for valida-
tion and further study as they are regulators of MAPK 
signaling and play a role in MEKi and chemotherapy 
resistance in the literature [33–37]. WB analysis con-
firmed these findings (Fig.  2a), and also showed that 
p-EGFR (Y1068) was overexpressed in the MEKi-Re 
lines. Subsequently we subsequently validated the same 
candidates in the three newly established LGSC cell 
lines (VOA-6406, VOA-8862, VOA-9164) (see Fig. 2b). 
In keeping with the discovery cohort results, the MEKi-
Re line (VOA-6406) expressed much higher levels of 
EGFR, p-EGFR and PKC-alpha than the two MEKi-Se 
lines (VOA-9164, VOA-8862) (Fig.  2b). As we previ-
ously described, p-MEK and p-ERK1/2 expression were 
not found to distinguish sensitive and resistant lines by 
WB [24].

We subsequently assessed differential protein expres-
sion by RPPA between MEKi-Se and MEKi-Re cell lines 
after selumetinib and trametinib treatment. Twenty-
one and seventeen proteins were significantly different 
between MEKi-Se and MEKi-Re cells after selumetinib 
and trametinib treatment, respectively (Additional file 4: 
Table S3). Confirmation of the RPPA results was assessed 
by WB in one representative cell line from each indi-
vidual patient (VOA-3993, VOA-4627, VOA-3723). Cell 
lines derived from the same patients at different time 
points in the disease course were not included for this 
analysis (VOA-1056, VOA-4698, VOA-3448). As seen 
in the untreated cells, WB confirmed increased p-EGFR 
levels in the MEKi-Re cell lines (Fig. 2c, d). As expected, 
trametinib more effectively inhibited MAPK phospho-
rylation than selumetinib. Differences in GSK3B and BID 
protein expression were also observed between MEKi-Se 
versus MEKi-Re cells by RPPA, however we were unable 
to validate these results using mass spectrometry (MS) 
analysis (data not shown). Interestingly, a number of the 
differentially expressed proteins (MEK-Se versus MEK-
Re) were found to be drug-specific. These RPPA screen-
ing results are summarized in Additional file 4: Table S3, 
though these findings require further validation.

Fig. 1 Comparison of genomic profiles between two LGSC cell cultures and their associated LGSC tumor samples. Each graph represents the 
copy-number (CN) changes detected per chromosome in each sample. Top graphs correspond to LGSC patient #6; CN changes detected in one 
of her recurrent tumor tissues was compared to the CN changes detected in the primary cell culture derived from this tissue. Bottom graphs 
correspond to the LGSC patient #9; CN changes detected in one of her recurrent tumor tissues was compared to the CN changes detected in the 
cell line established from a later recurrent tissue. High genomic profile correlation was observed between cells and tumors in both cases

(See figure on next page.)
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In vitro evaluation of MEK and EGFR inhibition in MEKi‑Re 
LGSC cell lines
To establish whether EGFR expression played a role 
in mediating MEKi resistance we evaluated the effects 
of EGFR inhibition (using erlotinib), with and without 
MEK inhibition (using selumetinib or trametinib), in four 
MEKi-Re LGSC cell lines (VOA-3723, VOA-3993, VOA-
4627, and VOA-6406). IC50 values for erlotinib in these 
cell lines are shown in Additional file 5: Table S4. Except 
for VOA-3723, all MEKi-Re lines were highly resistant 
to single erlotinib treatment as observed in other ovar-
ian cancer cell lines [38, 39]. Erlotinib doses chosen for 

the combined experiments are in keeping with erlotinib 
human serum levels [40]. Effects of single and combined 
drug treatment were evaluated using proliferation, viabil-
ity, and WB assays. EGFR mutation and copy-number 
status were also evaluated. By WES, none of our LGSC 
cell lines carried activating mutations in EGFR, though 
some had copy-number changes affecting this gene. As 
summarized in Additional file 5: Table S4, we could not 
identify any obvious factors [EGFR CNV levels, levels of 
EGFR protein expression, phosphorylation, or sensitivity 
(IC50 values) to erlotinib treatment] that were associated 
with sensitivity to combination therapy.
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With the highest dose of erlotinib treatment alone 
(2.5 μM, one dose, over 4–5 days), all four MEKi-Re cell 
lines continue to proliferate. Interestingly as shown in 
Fig.  3, a reduced dose of selumetinib (0.5  μM) in com-
bination with erlotinib (2.5  μM) resulted in statistically 
significant decreases in cell proliferation and viability 
(p < 0.001; t-test) in 2 of the 4 cell lines tested (VOA-3723 
and VOA-6406). At the end of these experiments, com-
plete cell death of both cell lines was confirmed by image 
inspection on Incucyte™ (Fig.  3; and Additional file  6: 
Figure S2). Using Compusyn software analysis, syner-
gistic drug effects (were demonstrable even using lower 
doses of erlotinib (1.25 or 0.63  μM) with selumetinib 

(0.5  μM) (Additional file  7: Table  S5). These drug com-
binations were not effective in the other two lines tested 
(VOA-3993 and VOA-4627). Reduced dose of trametinib 
(0.05 μM) in combination with erlotinib (2.5 μM) resulted 
in similar results for the VOA-3723 cell line, but cyto-
static effects for the VOA-6406 cell line. A summary of 
the synergistic drug effects are shown in Additional file 7: 
Table  S5. Drug synergy was stronger with selumetinib 
and erlotinib combination than with trametinib and erlo-
tinib combination.

The effects of erlotinib, with and without MEKi treat-
ment, on EGFR and MAPK signaling pathways were 
evaluated using WB. Levels of total and phosphorylated 
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EGFR and ERK1/2, as well as total and cleaved PARP 
(c-PARP) were measured after 24  h treatment. Results 
from these experiments indicated that drug effects on 
cell signaling were cell line dependent (Fig. 4; and Addi-
tional file  8: Figure S3). As previously reported by our 
group, trametinib alone (0.1 μM) caused stronger inhibi-
tory effects on ERK1/2 phosphorylation (p-ERK1/2) than 
selumetinib (1 μM). Unexpectedly, selumetinib treatment 
increased EGFR phosphorylation (p-EGFR Y1068) in 3 
out of 4 MEKi-Re cell lines (VOA-6406, VOA-3723, and 
VOA-4627), however these effects were less obvious with 
trametinib treatment. As expected, erlotinib alone inhib-
ited EGFR phosphorylation (p-EGFR Y1068) in all cell 
lines. Interestingly, erlotinib alone also inhibited ERK1/2 
phosphorylation in 2 out of 4 lines (VOA-3723 and VOA-
4627) and activated ERK1/2 phosphorylation in another 
line (VOA-6406). No pathway interaction was detected 
in the resistant VOA-3993 cell line. In these lines, while 
pathway interaction was observed, none of the changes 
in p-EGFR Y1068, p-ERK1/2 or c-PARP correlated with 
sensitivity or resistance to dual EGFRi and MEKi treat-
ment. In the two MEKi-Re lines resistant to combination 

therapy (MEKi and erlotinib), the trametinib and erlo-
tinib combination resulted in more apoptosis induction 
than the selumetinib and erlotinib combination (as meas-
ured by c-PARP).

Effects of PKC‑alpha inhibition in MEKi‑Re LGSC cell lines
Genomic characterization of PRKCA by WES revealed 
that none of our LGSC cell lines carried activating muta-
tions in PRKCA. It is interesting to note that two MEKi-
Re cell cultures (VOA-3723 and VOA-6857) carried 
PRKCA copy-number gain and two MEKi-Se cells (VOA-
9164 and VOA-8862) had PRKCA copy-number loss. To 
determine whether PKC-alpha protein expression played 
a role in mediating MEKi resistance we evaluated the 
effects of PKC-alpha knockdown using lentiviral shRNA, 
with and without selumetinib or trametinib in two 
MEKi-Re LGSC cell lines (VOA-6406 and VOA-3723). 
As shown in Fig. 5a, PRKCA shRNA resulted in a com-
plete PKC-alpha protein knockdown in VOA-6406 cells 
and a partial knockdown in VOA-3723 cells by WB. Sub-
sequent MEKi treatment (1.0 μM selumetinib or 0.1 μM 
trametinib) experiments showed no significant changes 
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Fig. 4 Cell signaling effects of selumetinib and erlotinib treatments in four MEKi-Re LGSC cell lines. As previously described, 24 h selumetinib 
treatment caused an increased in the levels of EGFR phosphorylation (p-EGFR Y1068) in 3 out of 4 MEKi-Re cell lines (VOA-6406, VOA-3723, and 
VOA-4627). As expected, erlotinib alone inhibited EGFR phosphorylation (p-EGFR Y1068) in all cell lines. Interestingly, erlotinib also inhibited 
MAPK phosphorylation (p-ERK1/2) in 2 out of 4 lines (VOA-3723 and VOA-4627), and increased it in another line (VOA-6406). No unique pathway 
interaction patterns for each of the MEKi-Re lines that were sensitive (VOA-6406, VOA-3723) or resistant (VOA-4627, VOA-3993) to erlotinib and 
selumetinib combination was detected

Fig. 5 Effects of PRKCA knockdown in two MEKi-Re LGSC cell lines using lentiviral shRNA. a Determination of PKC-alpha (PKC-α) protein expression 
by WB. Transduction with lentiviral particles containing PRKCA shRNA resulted in a complete PKC-α protein knockdown in VOA-6406 cells and a 
partial knockdown in VOA-3723 cells. As detected by WES, VOA-3723 cells display PRCKA CN gain, which may explain the partial PKC-α protein 
knockdown. b Effects of PRKCA knockdown on cell proliferation. Reduction of PKC-α levels alone did not compromise cell proliferation in either 
of the two cell lines tested. Furthermore, PRKCA knockdown in combination with selumetinib treatment did not seem to significantly increase the 
sensitivity of these lines to selumetinib treatment. c Effects of PRKCA knockdown on cell viability (MTS and CV assays). As seen in these bar graphs, 
and similar to what we observed in the proliferation experiments, PRKCA knockdown did not seem to impact the viability of these lines

(See figure on next page.)
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in cell viability when compared to non-target shRNA 
transduced lines (Fig.  5b). Proliferation assays demon-
strated that PKC-alpha knockdown did not increase 
MEKi sensitivity in the VOA-3723 cells, but may slightly 
increase MEKi sensitivity to selumetinib in the VOA-
6406 cell line (p = 0.048). This treatment combination 
was much less effective than EGFRi and MEKi combina-
tion in MEKi-Re LGSC cell lines as the cells continue to 
proliferate. Taken together, these results do not support 
PKC-alpha as a treatment target in LGSC to expand the 
efficacy of MEKi treatment.

Discussion
Activating mutations affecting the MAPK pathway (RAS/
RAF/MEK/ERK) are frequently found in cancer. MAPK 
pathway inhibitors, such as MEK inhibitors, were devel-
oped as targeted therapeutics to potentially treat such 
cancers [41, 42]. MEKi as single agents or in combina-
tion with other therapies have been studied for the treat-
ment of melanoma, lung and colorectal cancers [43]. In 
2013, the MEKi selumetinib was evaluated in a phase II 
clinical trial as a treatment for LGSC. Clinical responses 
(RECIST-1.1) to MEKi were observed in 15% of patients 
[22, 44]. While these responses were limited, response 
rates using conventional chemotherapy in patients with 
relapsed LGSC are disappointingly low (4%) [45]. More 
recently, a number of LGSC cases have been reported, 
highlighting dramatic and durable responses to MEKi 
treatment [22, 23, 46, 47]. Currently, there are no predic-
tive biomarkers of MEKi response for LGSC. Identifying 
molecular markers which predict MEKi treatment effi-
cacy will allow for pre-selection of patients who would 
benefit from this treatment, and avoid ineffective treat-
ments and toxicities in those patients unlikely to respond.

In this study, we utilized genomic and proteomic tech-
niques to molecularly characterize a collection of LGSC 
cell lines and primary cultures (derived from advanced/
recurrent LGSC patients), and identify markers that pre-
dict response (sensitivity/resistance) to MEKi treatment 
in  vitro. Genomic profiles of two of these cell models 
were compared with their corresponding tumor samples 
from the same patient and showed remarkably similar 
copy number profiles, supporting the utility of these cell 
models for preclinical research. Subsequent comparisons 
of genomic profiles from an additional twelve LGSC cell 
models showed frequent deletion of Chr9p (including 
loss of MTAP and CDKN2A genes) [48, 49] and onco-
genic mutations in KRAS and NRAS genes, in agreement 
with results from previous studies on LGSC tumor tis-
sues [13–15]. Additionally, RAS mutations were often 
associated with RAS copy number gain. As previously 
reported [24, 46, 50] we also detected multiple and dis-
tinct genomic alterations affecting other genes related to 

the MAPK cell signaling pathway. It is worth noting that 
the individual comparison of genomic profiles between 
LGSC cultures showed substantial variations in the types 
of gene mutations and copy-number alterations, indicat-
ing widespread molecular differences in LGSC tumors 
between patients.

Further evaluation of mutation profiles in eight LGSC 
cell lines with different sensitivity to MEKi treatment 
(two MEKi-Se and six MEKi-Re) showed oncogenic 
mutations in KRAS in all four MEKi-Se lines which were 
absent in all six MEK-Re lines. Previous results from a 
clinical trial using selumetinib (Farley et al. [22]) did not 
find a significant relationship between RAS mutation 
status and MEKi response rates in LGSC patients. It is 
important to note that tumor samples were not available 
for testing in 35% of the patients (18 of 52) in this study. 
In agreement with our results, two recent case reports 
on LGSC patients with remarkable and durable clini-
cal responses (> 5 years) to MEKi therapy have reported 
oncogenic KRAS mutations (both G12V) in their tumors 
[23, 47]. As LGSC is often an indolent disease, the inclu-
sion of patients with stable disease should also be consid-
ered in the future evaluation of RAS mutation status as 
a predictive biomarker. It is not unexpected that a single 
biomarker, such as KRAS mutation status, will not accu-
rately predict responses to MEKi treatment, recognizing 
that LGSC harbor other MAPK-pathway gene mutations 
and significant MAPK copy number changes. Further-
more, KRAS copy-number amplification (described as 
one activating mechanism) could also play a role in medi-
ating MEKi efficacy [44].

Using RPPA to compare MEKi-Se and MEKi-Re LGSC 
cell lines, we found that all MEKi-Re lines had higher 
levels of EGFR and PKC-alpha expression. These results 
were subsequently validated in three newly established 
LGSC cell lines. Using this approach, we also described 
proteomic changes specific to each MEKi tested (selu-
metinib or trametinib). The changes we observed may 
be particularly relevant when evaluating differences in 
drug efficacy, as MEKi may exhibit differences in MEK 
isoform specificity or off-target effects [24]. Interestingly, 
all MEKi-Re lines expressed higher levels of EGFR activa-
tion (p-EGFR Y1068) than the MEKi-Se lines. Although 
our study was limited to a small number of cell lines, we 
did not observe an obvious correlation between levels of 
EGFR and PKC-α protein expression and specific gene 
mutations or copy number changes in these genes.

In colorectal cancer, preclinical studies with BRAF 
inhibitors have reported adaptive feedback reactivation 
of MAPK signaling involving EGFR [33, 51]. This feed-
back signaling can be blocked by the addition of a MEKi. 
We similarly found evidence of MAPK feedback signal-
ing following MEKi treatment that appears to play a role 



Page 14 of 17Fernandez et al. Cancer Cell Int           (2019) 19:10 

in MEKi resistances. Half of the MEKi-Re cells (2/4 cell 
lines) were effectively treated with selumetinib in combi-
nation with erlotinib, causing complete cell death. Com-
bination therapy was effective in these two cell lines using 
drug doses that were below those that lacked efficacy as 
single drug treatments. Drug synergy was demonstrated 
using CompuSyn analyses in the two cell lines where cell 
death was demonstrated. In contrast, the other two lines 
tested continued to proliferate even with higher doses of 
the drug combination. We were unable to observe any 
obvious changes in p-EGFR and/or p-ERK that character-
ized the two combination-therapy resistant cell lines. As 
seen in our previous study [24], trametinib appeared to 
be a more effective inhibitor of ERK phosphorylation and 
cell proliferation than selumetinib. Based on its enhanced 
efficacy, it was more difficult to detect drug synergism 
using the erlotinib/trametinib combination than with the 
erlotinib/selumetinib combination.

There is a growing body of evidence supporting the 
use of combining a targeted therapy with other targeted 
agents or with traditional chemotherapeutic agents [29, 
52]. Combination therapy using erlotinib and selumetinib 
was studied in a randomized phase II trial in lung can-
cer [53]. This drug combination did not prove to be 
effective in lung cancers irrespective of KRAS mutant 
status. Though the treatment was tolerated, significant 
side effects occurred with combination therapy. If these 
drug treatment combinations are going to be effective in 
LGSC, optimal drug dosing will be required in order to 
minimize side effects without loss of treatment efficacy.

Combination therapy with BRAFi and MEKi has 
remarkably improved survival in the adjuvant setting for 
patients with BRAF mutant melanomas, and combining 
a BRAFi and an EGFRi has improved tumor regression 
in BRAF mutant colorectal cancer xenografts [51, 54]. In 
a recent report, binimetinib in combination with pacli-
taxel was studied in platinum resistant ovarian cancer 
patients (NCT01649336). Two LGSC patients included 
in this trial showed response to this drug combina-
tion. These cases had also the largest reduction in target 
lesion size among the 25 ovarian cancer patients studied. 
MAPK pathway aberrations (KRAS G12D mutation and a 
CUL1:BRAF fusion) were identified in the tumors of both 
patients [44]. Additionally, two more LGSC patients with 
KRAS G12V [23, 47] and one with MEK1 (Q56_V60del) 
gene mutations experienced disease stabilization in 
response to this drug treatment combination [46].

PKC-alpha expression has been implicated in chem-
otherapy drug resistance in some cancers [36, 37]. To 
explore its potential role in MEKi resistance, we inhib-
ited PKC-α expression in two MEKi-Re lines. In the cell 
line where complete PKC-alpha protein knockdown 

was achieved, the effect of this treatment combination 
was not nearly as effective as combining MEKi and 
EGFRi. In the other line, where only partial knockdown 
of PKC-alpha protein expression was obtained, no 
changes in MEKi sensitivity were observed. Of interest, 
we found that this line contained PRKCA copy num-
ber gain. PKC-alpha knockdown by itself did not affect 
cell proliferation in either cell line. The results of our 
experiments suggest that PKC-alpha protein expression 
appears to be a predictive biomarker but is not a thera-
peutic target mediating MEKi resistance.

Identifying molecular characteristics to predict 
drug sensitivity/resistance in individual patients with 
solid tumors has proved to be challenging. The effi-
cacy of therapies designed to target specific muta-
tions are known to be dependent on the cancer type. 
For example, while BRAF inhibitors have shown to 
be effective in melanomas carrying BRAF mutations, 
they have demonstrated little effect in the treatment of 
BRAF mutant colon cancers [33, 55, 56]. In advanced 
LGSC, mutations in KRAS are more common than in 
BRAF [14, 19, 57, 58]. While MEKi have shown effi-
cacy in some LGSC, still only a minority of patients 
respond to this treatment. Thus, it is of utmost impor-
tance to identify markers of drug treatment efficacy 
specific for each cancer type. A current clinical trial 
using the MEKi trametinib to treat patients with LGSC 
(NCT02101788), will include a translational research 
component in an attempt to identify predictive bio-
markers in patient tumor samples.

Conclusions
In summary, this proteogenomic study is the first to 
perform predictive biomarker discovery for MEKi 
treatment in LGSC cell lines. MEKi-Se cell lines were 
found to have oncogenic KRAS mutations and low lev-
els of EGFR and PKC-alpha protein expression. The 
confirmation of these results in MEKi treated LGSC 
tumors samples could lead to better patient selection 
for MEKi treatment, and further avoid unnecessary 
treatment and toxicities in patients unlikely to respond. 
Our study also suggests that a significant portion of 
those LGSC patients whose tumors are unresponsive to 
MEKi therapy may benefit from combination therapy 
with EGFR and MEK inhibition. As LGSC xenografts 
are not yet available for research, we are currently una-
ble to validate these results in  vivo. However, we are 
now using our LGSC patient-derived cell lines to estab-
lish xenograft models. The potential predictive value of 
the three molecular markers of MEKi response identi-
fied in our LGSC cell line models should be considered 
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for further validation in clinical trials using MEKi for 
the treatment of LGSC.
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