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Abstract 

Background:  Esophageal squamous cell carcinoma (ESCC) is one of leading malignant cancers of gastrointestinal 
tract worldwide. Until now, the involved mechanisms during the development of ESCC are largely unknown. This 
study aims to explore the driven-genes and biological pathways in ESCC.

Methods:  mRNA expression datasets of GSE29001, GSE20347, GSE100942, and GSE38129, containing 63 pairs of 
ESCC and non-tumor tissues data, were integrated and deeply analyzed. The bioinformatics approaches include 
identification of differentially expressed genes (DEGs) and hub genes, gene ontology (GO) terms analysis and biologi-
cal pathway enrichment analysis, construction and analysis of protein–protein interaction (PPI) network, and miRNA–
gene network construction. Subsequently, GEPIA2 database and qPCR assay were utilized to validate the expression 
of hub genes. DGIdb database was performed to search the candidate drugs for ESCC.

Results:  Finally, 120 upregulated and 26 downregulated DEGs were identified. The functional enrichment of DEGs in 
ESCC were mainly correlated with cell cycle, DNA replication, deleted in colorectal cancer (DCC) mediated attractive 
signaling pathway, and Netrin-1 signaling pathway. The PPI network was constructed using STRING software with 146 
nodes and 2392 edges. The most significant three modules in PPI were filtered and analyzed. Totally ten genes were 
selected and considered as the hub genes and nuclear division cycle 80 (NDC80) was closely related to the survival of 
ESCC patients. DGIdb database predicted 33 small molecules as the possible drugs for treating ESCC.

Conclusions:  In summary, the data may provide new insights into ESCC pathogenesis and treatments. The candidate 
drugs may improve the efficiency of personalized therapy in future.
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Background
Esophageal cancer (EC) ranks seventh in terms of inci-
dence and sixth in cancer deaths worldwide, responsi-
ble for about 572,000 new cases and 509,000 deaths last 
year [1]. Although we have made great progress on the 
early diagnosis and novel therapy, EC still is one of chal-
lengeable diseases in Eastern Asian [1]. Generally, EC 
includes two most common histologic subtypes: esoph-
ageal squamous cell carcinoma (ESCC) and esopha-
geal adenocarcinoma (EAC) [2]. ESCC comprises over 
90% of all EC cases [1]. And risk factors, such as smok-
ing and hot drinks, are closely related to the initiation 
of ESCC [1, 2]. However, the underlying mechanisms of 
ESCC are not well understood. And due to the lack of 
specific biomarkers, most ESCC patients are diagnosed 
at a late stage, leading to particularly poor outcomes of 
patients [3]. Even worse, some of ESCC patients suffer 
from tumor recurrence due to the chemotherapy resist-
ance [3]. Therefore, it is of paramount importance to find 
novel biomarkers and effective targets for ESCC patients.

Recently, gene profile and gene chip have been exten-
sively applied in the field of scientific researches [4, 5]. 
Gene expression analysis based on these methods can 
quickly detect the differentially expressed genes (DEGs) 
that may have a strong influence on cancer progression 
[6]. However, most of the gene chip or gene profile data 
have been only deposited in public databases. And re-
analyzing these data can be an efficient way to provide 
the new insights into further studies. So far, many studies 
have used gene chip or gene profile to identify key genes 
for ESCC, and numerous DEGs have been detected [7]. 
Nevertheless, the results may be inconsistent and vari-
able because of the existence of tumor heterogeneity. To 
date, few reliable biomarkers and therapeutic targets have 
been identified for ESCC [8]. Thus, it’s urgent to discover 
new markers and therapeutic targets for ESCC patients.

Many chemotherapeutic drugs have shown activity 
against ESCC, including docetaxel [9–11], cisplatin [10, 
11], fluorouracil [9–11], and nedaplatin [9]. Moreover, 
the combinations of these agents are also recommended 
because of the existence of chemotherapy resistance. 
A recent study found that concurrent chemoradio-
therapy (CCRT) with 5-fluorouracil plus cisplatin were 
more effective and less toxic than CCRT with the doc-
etaxel plus cisplatin as the first-line treatment for ESCC 
patients [11]. However, the progression-free survival and 
overall survival (OS) of ESCC patients remained short, 
highlighting the importance of developing some molecu-
lar drugs.

In the study, four mRNA expression profiles were 
downloaded (GSE29001 [12], GSE20347 [13], GSE100942 
[14], and GSE38129 [15]) from GEO database, from 
which there are 63 pairs of ESCC and non-tumor tissues 

data available. Integrated analyses included identifying 
DEGs using the GEO2R tool, overlapping four datasets 
using a Venn diagram tool, GO terms analysis, biologi-
cal pathway enrichment analysis, PPI construction, hub 
genes identification and verification, miRNA–hub genes 
network construction, and exploration of the candidate 
small molecular drugs for ESCC.

Materials and methods
Data collection
ESCC and adjacent normal tissue gene expression pro-
files of GSE20347 [13], GSE29001 [12], GSE100942 [14], 
and GSE38129 [15] were downloaded from GEO (http://
www.ncbi.nlm.nih.gov/geo/) database [16]. The micro-
array data of GSE29001 was based on GPL571 Plat-
forms (Affymetrix Human Genome U133A 2.0 Array) 
and included 12 pairs of ESCC and non-tumor tissues 
(Submission date: May 02, 2011). The GSE20347 data 
was based on GPL571 Platforms (Affymetrix Human 
Genome U133A 2.0 Array) and included 17 ESCC tissues 
and 17 normal tissues (Submission date: Feb 16, 2010). 
The GSE100942 data was based on GPL570 Platforms 
(Affymetrix Human Genome U133 Plus 2.0 Array) and 
included 4 ESCC tissues and 4 non-tumor tissues (Sub-
mission date: Jul 07, 2017). The GSE38129 data was based 
on GPL571 Platforms (Affymetrix Human Genome 
U133A 2.0 Array) and included 30 pairs of ESCC and 
non-tumor tissues (Submission date: May 22, 2012). The 
above datasets met the following criteria: (1) they used 
tissue samples from human ESCC tissues and paired 
adjacent or non-tumor tissues; (2) each dataset involved 
more than eight samples.

DEGs identification
GEO2R (https​://www.ncbi.nlm.nih.gov/geo/geo2r​/) was 
used to pick out the DEGs in ESCC tissues and adjacent 
non-tumor tissues [17]. p < 0.05 and |logFC| > 1 were set 
as the cut-off criterion to select DEGs for every dataset 
microarray respectively [7, 17]. Finally, the overlapping 
DEGs among the four datasets was identified by Venn 
diagram tool (http://bioin​fogp.cnb.csic.es/tools​/venny​/).

Cell culture, RNA extraction and quantitative PCR (qPCR)
Human ESCC cell line EC109 and human esophageal 
squamous epithelial cell line Het-1A were cultured in 
RPMI-1640 medium (Gibco) with 10% fetal bovine 
serum (Gibco) at 37 °C in a humidified atmosphere with 
5% CO2. Total RNA was extracted from cells using the 
E.Z.N.A.™ Total RNA Kit I (OMEGA). PrimeScript™ 
RT Master Mix (Perfect Real Time) was used for RNA 
reverse transcription. SYBR Premix Ex Taq (TaKaRa) 
was employed to conduct qPCR assay. PCR primers were 
designed and synthesized by TaKaRa (Additional file  1: 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinfogp.cnb.csic.es/tools/venny/
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Table  S1). The experiments were performed in three 
times. GAPDH was used as the internal control.

GO and biological pathway enrichment analysis
GO terms analysis of selected DEGs were performed 
using the DAVID database (https​://david​.ncifc​rf.gov/; 
version: 6.8) [18]. We submitted the DEGs, including 
120 upregulated genes and 26 downregulated genes, 
into DAVID with p < 0.05 as the cut-off criterion. The 
GO results of significant terms for cellular component 
(CC), biological process (BP), and molecular func-
tion (MF) were ranked by p-value and exhibited as bar 
charts. The FunRich tool (version: 3.0) was mainly used 
for analyzing the functional enrichment and interaction 
networks of genes and proteins [19]. In this study, the 
FunRich was used to analyze the biological pathways of 
DEGs. Finally, the top 10 biological pathways of upreg-
ulated genes and downregulated genes were presented 
as bar charts, respectively. p-value < 0.05 was consid-
ered as statistically significant.

PPI network construction and analysis
PPI networks are the networks of protein complexes 
formed as the results of biochemical or electrostatic 
forces [20]. PPI network is crucial for molecular pro-
cesses, and abnormal PPI is the basis of many diseases, 
including tumors [21]. In this study, the Search Tool for 
the Retrieval of Interacting Genes (STRING) database 
(https​://strin​g-db.org/cgi/input​.pl; version: 11.0) [20], 
Cytoscape software (version: 3.6.1) [22], and FunRich 
were utilized to construct PPI networks. Cytoscape and 
FunRich tool were applied to present the PPI networks 
with the cut-off criterion as confidence score ≥ 0.4, 
maximum number of interactors = 0. The Molecular 
Complex Detection (MCODE) plug-in of Cytoscape 
tool was employed to visualize the significant gene 
modules in ESCC with degree cutoff = 2, node score 
cutoff = 0.2, k-core = 2, and max. depth = 100. The cri-
teria for selecting the top 3 significant modules were set 
as follows: MCODE scores ≥ 4 and number of nodes ≥ 4 
[23]. FunRich tool was performed to do the functional 
enrichment for each module. 10 hub genes with high 
degree of connectivity were selected and mapped into 
PPI based on STRING following confidence score ≥ 0.4, 
maximum number of interactors ≤ 5. Furthermore, 
STRING was used to perform the co-expression analy-
sis of hub genes.

Validation of the hub genes
The GEPIA2 (http://gepia​2.cance​r-pku.cn/#index​) is an 
online database for analyzing gene expression profiles of 

9736 tumors and 8587 normal samples from the Cancer 
Genome Atlas (TCGA) and the genotype-tissue expres-
sion (GTEx) projects [24]. Thus, we can validate the 
expression levels and genes correlations of hub genes 
in ESCC tissues and normal tissues. The cBio Cancer 
Genomics Portal (http://www.cbiop​ortal​.org/; version: 
2.2.0) is an open access tool which provides analysis, vis-
ualization, and downloads of cancer genomics datasets 
of many types of tumors [25]. Complex cancer genomics 
profiles are accessible from the cBioPortal tool, thus ena-
bling us to compare the genetic alterations of the selected 
ten hub genes in ESCC.

miRNA–hub gene network
The targeted miRNAs of hub genes were predicted by 
four established miRNA target prediction databases 
[miRanda, PITA, PicTar, and TargetScan (version: 
3.1)]. The miRNAs predicted by at least two programs 
were selected as the targeted miRNAs of hub genes. A 
co-expression network based on correlation analysis 
of hub genes and miRNAs associated with cancer was 
constructed by Cytoscape software. In the network, a 
green circular node represented the miRNA and a red 
circular node represented the hub gene, their inter-
action was represented by an arrow. The numbers of 
arrows in the networks indicated the contribution of 
one miRNA to the surrounding genes, and the higher 
the degree, the more central the hub gene was within 
the network.

Drug‑hub gene interaction
The 10 hub genes were also served as the promis-
ing targets for searching drugs through the DGIdb 
(http://dgidb​.genom​e.wustl​.edu/; version: 3.0.2—
sha1 ec916b2) [26]. This database contains drug-gene 
interaction data from 30 disparate sources includ-
ing ChEMBL, DrugBank, Ensembl, NCBI Entrez, 
PharmGKB, PubChem, clinical trial databases, and lit-
erature in NCBI PubMed. The results of this process 
were arranged so that each entry was a specific drug-
gene interaction associated with its source link [27]. 
Drugs supported by more than one databases or Pub-
Med references were selected as the potential drugs. 
The final list only involved the drugs that have been 
approved by the Food and Drug Administration (FDA). 
The identified target network was visualized using 
STITCH (http://stitc​h.embl.de/; version: 5.0), a pro-
gram similar to STRING which also incorporated drug-
gene relationships [27, 28].

https://david.ncifcrf.gov/
https://string-db.org/cgi/input.pl
http://gepia2.cancer-pku.cn/#index
http://www.cbioportal.org/
http://dgidb.genome.wustl.edu/
http://stitch.embl.de/
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Results
Identification of DEGs
The four mRNA expression profiles (GSE29001 [12], 
GSE20347 [13], GSE100942 [14], and GSE38129 [15]), 
including 63 pairs of ESCC tissues and adjacent nor-
mal tissues, were included in this study. Using p < 0.05 
and |logFC| > 1 as cut-off criterion [7, 17], we extracted 
2594, 1295, 833, and 520 DEGs from the expression 
profile datasets GSE29001, GSE20347, GSE100942, and 
GSE38129, respectively. By using Venn diagrams to 
overlap the DEGs of the four profile datasets, a total of 
146 overlapping DEGs were identified (Fig. 1; Table 1), 
including 120 upregulated genes and 26 downregulated 
genes. Employing FunRich, we constructed a heatmap 
of the 120 upregulated and 26 downregulated DEGs 
using data profile GSE20347 as a reference. Additional 
file 1: Figure S1 showed the differential distribution of 
the 146 DEGs.

Enrichment analysis and PPI network
Functional enrichment analysis of DEGs
GO and pathways enrichment were analyzed through 
multiple databases or software, including DAVID [18], 
KEGG pathway (http://www.genom​e.jp/kegg; release 
89.0) [29], and FunRich software [19] with p < 0.05 as the 
cut-off criterion.

GO analysis of DEGs classified DEGs into three func-
tional groups: CC, BP, and MF group (Fig. 2). As shown 
in Fig.  2a, in the CC group, the upregulated genes were 

enriched in kinetochore, nucleus, microtubule, nucleo-
plasm, and condensed chromosome kinetochore, whereas 
the downregulated genes were related to collagen type 
XIV, mast cell granule, collagen, Z disc, and extracellular 
matrix (Fig. 2b). In the MF group, the upregulated genes 
were mainly enriched in chromatin binding, motor activ-
ity, protein binding, protein serine/threonine kinase activ-
ity, and DNA binding, whereas the downregulated genes 
were involved in heat shock protein activity, transcrip-
tion factor binding, and peroxidase activity. As for BP, the 
upregulated genes were correlated to cell growth and/or 
maintenance, cell cycle, chromosome segregation, cell 
communication, and signal transduction. The downregu-
lated genes were significantly connected with muscle con-
traction. GO term analysis showed that most of the DEGs 
were enriched in kinetochore, collagen, binding func-
tions, cell cycle, and cell growth. The data were in keeping 
with the knowledge that abnormality of cell cycle and cell 
growth regulators was the major cause of tumorigenesis 
[30]. Moreover, the metabolism of the nuclear compo-
nents and intercellular substances of cancer cells was dif-
ferent from that in normal cells [31, 32].

As for biological pathway enrichment, the upregu-
lated genes were enriched in cell cycle, DNA replica-
tion, mitotic M–M/G1 phases, M phase, and Polo-like 
kinase 1 (PLK1) signaling pathway (Fig.  3a). Previous 

Fig. 1  Identification of 164 DEGs from the four cohort profile 
datasets (GSE29001, GSE20347, GSE100942, and GSE38129). DEGs 
were screened out by GEO2R (https​://www.ncbi.nlm.nih.gov/geo/
geo2r​/) tool, statistically significant DEGs were defined with p < 0.05 
and |logFC| > 1 as the cut-off criterion. Venn diagram tool (http://bioin​
fogp.cnb.csic.es/tools​/venny​/) was used to identify the overlapping 
DEGs in the four datasets. Different color areas represented different 
datasets. The cross areas meant the overlapping DEGs

Table 1  146 DEGs were identified from  the  four cohort 
profile datasets, including  120 upregulated genes and  26 
downregulated genes in  the  ESCC tissues compared 
to normal controls

DEGs Genes name

Upregulated (120) NCAPH, P3H4, COL3A1, GGH, ADAM12, NUP155, 
TPX2, CCNB1, SHCBP1, HMGB3, NETO2, 
MMP3, IGF2BP2, CENPE, ASPM, SOX4, SPAG5, 
ANP32E, FAP, TBC1D31, CDCA3, GINS1, ACTL6A, 
ATAD2, KPNA2, COL1A1, POSTN, BIRC5, STIL, 
UBE2C, KNTC1, FSCN1, FOXM1, CCNB2, PRC1, 
HSPBAP1, BORA, CDK1, CHEK1, LRP8, FZD2, 
CEP55, MINPP1, KIF18B, DNMT3B, TOP2A, FEN1, 
FANCI, RAD54L, CCNE2, NCAPD2, CDC6, SPC25, 
CST1, MCM2, MCM4 KIF18A, KIF15, APOBEC3B, 
AURKA, KIF14, HEY1, BUB1B, TIMELESS, DLGAP5, 
HJURP, RAD51AP1, AURKB, HDGFRP3, CKS1B, 
TIPIN, RNASEH2A, MKI67, DTL, RAD51, MEST, 
MARCKSL1, HMMR, COL5A2, KIF4A, NCAPG2, 
EXO1, RAD54B, CENPI, GMNN, FZD6, KIF2C, 
KIF20A, CBS, ORC6, SIX1, TYMS, MELK, CDC20, 
CENPN, CDH11, NDC80, HOXB7, CCNA2, GTSE1, 
CDKN3, BUB1, NCAPG, COL1A2, SLC16A1, 
LAPTM4B, MMP1, TRIP13, APOC1, NEK2, STMN1, 
CENPF, NUSAP1, EPCAM, CKS2, ISG15, ECT2, 
ITPR3, KIF23, RPL39L

Downregulated (26) HSPB8, CRYAB, COL14A1, CXCR2, CRIP2, HLF, 
ADIRF, AHNAK, RBPMS, FAM189A2, SORBS2, 
EMP1, FMO2, RRAD, EPS8L1 MEIS1, ADH1B, 
FAM107A, MXD1, GPX3, ABLIM3, EREG, MAFF, 
SSBP2, ABLIM1, P2RY14

http://www.genome.jp/kegg
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
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Fig. 2  GO analysis and significant enriched GO terms of DEGs in ESCC a, upregulated DEGs; b downregulated DEGs). GO analysis classified the 
DEGs into 3 groups (cellular component, molecular function, and biological process)

Fig. 3  Significantly enriched biological pathway terms of DEGs in ESCC. a Biological pathway for upregulated DEGs. b Biological pathway for 
downregulated DEGs. DEGs functional and signaling pathway enrichment were conducted using KEGG pathway (http://www.genom​e.jp/kegg) 
and FunRich tool

http://www.genome.jp/kegg
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investigations have demonstrated that some cell cycle-
related genes in ESCC development could predict the 
OS of ESCC patients [33]. Recent evidence also indicated 
that PLK1 signaling pathway could regulate cell cycle 
[34]. Moreover, the genes involved in DNA replication 
system might be useful markers to predict tumor pro-
gression [35]. The downregulated genes were enriched 
in DCC mediated pathway, Netrin-1 signaling pathway, 
Flavin-containing monooxygenases (FMO) oxidizes 
nucleophiles, noradrenaline and adrenaline degradation, 
and ethanol degradation II (cytosol) (Fig. 3b). Previously, 
we have reported that substance P (SP)/NK-1R signal-
ing could promote the growth and metaseries of ESCC, 
suggesting that interactions between cancers and nerv-
ous system were indispensable for understanding the 
biological mechanisms of tumorigenesis [36]. Here, we 
found that the downregulated DEGs were involved in 
two nervous system-related pathways (DCC mediated 
signaling pathway and Netrin-1 signaling pathway). Pro-
gress toward exploring the links between neuronal activ-
ity and oncology might provide new insight into cancer 
biology. Moreover, specific metabolic activities can be 
directly involved in cancer progression [35]. The down-
regulated DEGs were related to metabolic activities such 
as noradrenaline and adrenaline degradation, suggesting 
that these metabolism-targeted pathways may be valu-
able for improving the treatment efficiency.

PPI network construction and modules analysis
Using STRING database [20] and Cytoscape software 
[22], totally 146 DEGs were mapped into the PPI net-
work, including 146 nodes and 2392 edges (Additional 
file  1: Figure S2). The PPI enrichment p-value was 
1.0 × 10−16. Additional file 1: Figure S3 shows the inter-
action network of the 146 DEGs and their related genes, 
allowing us to evaluate their biological functions. For 
example, AURKA and TPX2 belong to the “Role of Ran 
in mitotic spindle regulation” pathway, and TPX2 knock-
down could inhibit the cell proliferation of ESCC cells 
[37]. The top three significant clusters within PPI net-
work were selected using MCODE plug-in in Cytoscape 
software (Module 1, MCODE score = 51.778; Module 2, 
MCODE score = 7; Module 3, MCODE score = 4). We 
also analyzed the functions of each module (Fig. 4). Path-
way enrichment analysis indicated that Module 1 con-
sisted of 55 nodes and 1398 edges (Fig. 4a, b), which were 
mainly associated with cell cycle, DNA replication, and 
PLK1 signaling pathway. Module 2 consisted of 7 nodes 
and 21 edges (Fig.  4c, d), which were mainly associated 
with platelet adhesion to exposed collagen, epithelial-to-
mesenchymal transition, and VEGFR3 signaling in lym-
phatic endothelium. Module 3 consisted of 4 nodes and 
6 edges (Fig. 4e, f ), which were associated with regulation 

of Insulin-like growth factor (IGF) activity by Insulin-like 
growth factor binding proteins (IGFBPs), EGF receptor 
(ErbB1) signaling pathway, and class I Phosphoinositide 
3-kinase (PI3K) signaling events.

Using cytoHubba software, ten genes (Cyclin-depend-
ent kinase 1 (CDK1), Cyclin B1 (CCNB1), DNA topoi-
somerase II alpha (TOP2A), Cyclin B2 (CCNB2), BUB1 
mitotic checkpoint serine/threonine kinase (BUB1), Cyc-
lin A2 (CCNA2), Non-SMC condensin I complex subu-
nit G (NCAPG), Aurora kinase B (AURKB), NDC80, and 
BUB1B) with higher degree of connectivity were identi-
fied as hub genes (Table 2). Moreover, the PPI network of 
ten hub genes was established using Cytoscape software 
(Fig.  5a). The interaction network of ten hub genes and 
their related genes was also established by the FunRich 
(Fig.  5b). The related genes here were defined as these 
genes connected to the hub genes. The hub genes and 
the related genes could be enriched in biological path-
ways according to the enrichment functions of FunRich 
tool. The gene co-expression analysis of the ten hub genes 
performed by STRING database showed that these genes 
might be actively interacted with each other (Fig. 5c). The 
above findings suggested that these hub genes might play 
a crucial role in ESCC progression. For example, AURKB 
was found to increase in the early development stage of 
ESCC and might influence the initiation of ESCC [38]. 
Interestingly, two important genes (BUB1 and BUB1B), 
which affect the chemotherapy of ESCC [39], could inter-
act with AURKB according to the Fig. 5a. The pathways 
consisted by these three genes might be important for 
improving the drug sensitivity of early ESCC.

Genetic information and hub genes expression
Kaplan–Meier-plotter website (http://kmplo​t.com/analy​
sis/) was used to analyze the prognostic information of 
the ten hub genes. The result showed that the upregu-
lated NDC80 was closely related to the OS of patients 
with ESCC (Fig. 6a). The deregulation of NDC80 caused 
by amplification and mutation might lead to poor OS. 
The remaining 9 genes presented similar trends to that 
of NDC80, but not statistically significant (Additional 
file 1: Table S2). Then, we used cBioPortal to enquiry the 
genetic alterations of the hub genes. And Fig.  6b pre-
sented the network constructed by the 10 hub genes and 
their 40 most frequently altered neighbor genes. Besides, 
drugs targeting the 10 genes were illustrated. Figure  6b 
showed that only TOP2A, CDK1, CCNB1, and AURKB 
were identified as chemotherapy targets currently. We 
therefore supposed that the other 6 genes (CCNB2, 
BUB1, BUB1B, CCNA2, NCAPG, and NDC80) might 
be the novel targets in the future. Figure 6c, d presented 
the alteration information of the ten genes. The ten hub 
genes were changed in 24 (25%) of 96 sequenced patients 

http://kmplot.com/analysis/
http://kmplot.com/analysis/
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(96 total). NDC80 and BUB1 were changed most often 
(6% and 5%), these include amplification, mutation and 
so on.

We further conducted the expression analysis using the 
data from GEPIA2 database. The expression levels of the 
10 hub genes were significantly different between ESCC 
and normal tissues (Fig. 7). The expression trends of the 
10 genes from GEPIA2 database were in accordance to 

the data in GEO datasets. Real-Time PCR results revealed 
that the mRNA expressions of the 9 hub genes (except 
for CCNA2) were upregulated in EC109 cells (ESCC cell 
line) as compared to Het-1A cells (esophageal squamous 
epithelial cell line) (Additional file 1: Figure S5). In addi-
tion, the expression levels of the 10 hub genes in ESCC 
were positively correlated with each other using GEPIA2 
database (data not shown).

Fig. 4  The top 3 modules from the PPI network. a Module 1; b the top 5 enriched pathways of module 1; c module 2; d the top 5 enriched 
pathways of module 2; e module 3; f the top 5 enriched pathways of module 3
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miRNA–hub genes network
To investigate the regulatory relationships of identified 
hub genes and miRNAs, four miRNA targets predic-
tion databases was used to predicted the targeted miR-
NAs of hub genes. The miRNAs predicted by at least two 
databases were selected as the targeted miRNAs of hub 
genes. The co-expression network based on the correla-
tion analysis between the hub genes and miRNAs was 
constructed by Cytoscape software (Fig. 8). The numbers 
of miRNAs and mRNAs in the network were 175 and 10, 
respectively. In the network, the numbers of arrows in 
the networks indicated the contribution of one miRNA 
to the surrounding hub genes, and the higher the degree, 
the more central the hub gene was within the network. 
CDK1, TOP2A, and CCNA2 were identified as the three 
hub genes which were targeted by the most miRNAs. 
miR-543, miR-495-3p, and miR-590-3p were the top 
three miRNAs with the most target genes. Previously, Ma 

et al. demonstrated that miR-219-5p/CCNA2 axis could 
inhibit the cell proliferation and cell cycle distribution of 
ESCC cells, highlighting the role of CCNA2 in cell cycle 
and tumor growth [40]. In addition, miR-543 could facili-
tate cell mobility and invasion of ESCC by repressing 
PLA2G4A [41]. Therefore, the miRNA–hub genes net-
work could provide powerful basis for understanding the 
molecular mechanisms of ESCC.

Drug‑gene interaction
Using the 10 hub genes to explore the drug-gene inter-
actions, 33 drugs for possibly treating ESCC were com-
piled and selected (Table 3). Promising targets of these 
drugs include CDK1, TOP2A, CCNA2, and AURKB. 
Among these four genes, CDK1, TOP2A, and AURKB 
have been currently considered as the drug targets 
according to the cBioPortal database (Fig. 6b). The final 
list comprised only the drugs which were approved by 
FDA, and several drugs have been tested in clinical tri-
als (teniposide, etoposide, paclitaxel, and epirubicin). 
Additionally, Table  3 showed that most of the drugs 
(28/33) might target TOP2A in an inhibitory manner. 
Among the listed drugs, paclitaxel was considered as 
a potential drug for cancer therapy based on its inter-
action with TOP2A [42]. Etoposide, another inhibi-
tor of TOP2A, might inhibit the progress of cancer by 
inducing DNA damaging [43]. Additionally, TOP2A 
might be an important therapeutic target in etoposide 
resistant breast cancer [44]. Using STITCH database, 
we constructed an extended downstream network of 
TOP2A to investigate the additional effects caused by 
TOP2A inhibition. Our model showed that TOP2A 
inhibition might have possible downstream influence 
on DNA topoisomerase I (TOP1), DNA topoisomerase 

Table 2  Top 10 hub genes with  higher degree 
of connectivity

Genes Degree p-value

CDK1 80 < 0.001

CCNB1 78 < 0.001

TOP2A 77 < 0.001

CCNB2 76 < 0.001

BUB1 76 < 0.001

CCNA2 76 < 0.001

NCAPG 75 < 0.001

AURKB 75 < 0.001

NDC80 74 < 0.001

BUB1 74 < 0.001

Fig. 5  PPI network construction and co-expression analysis for the 10 hub genes in ESCC. a A total of 10 hub genes with higher degree of 
connectivity were selected and filtered into the PPI network complex using the STRING online database. b The PPI network of the 10 hub genes and 
their related genes, created by the FunRich software. c The co-expression analysis of 10 hub genes using the STRING online database
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II beta (TOP2B), Ubiquitin C (UBC), Proliferating cell 
nuclear antigen (PCNA), Small ubiquitin-like modi-
fier 1 (SUMO1), and SUMO2 (Additional file 1: Figure 
S4). According to the network, amsacrine, levofloxacin, 
dexrazoxane, and etoposide might act as key regula-
tors in these processes. To the best of our knowledge, 
few TOP2A inhibitors have been tested for ESCC treat-
ments. Some of them were even not to be considered 
as anti-cancer drugs (such as levofloxacin and dexra-
zoxane). The data might provide new clues for targeted 
therapy in ESCC patients.

Discussion
Numerous researches have been performed to explore 
the mechanisms of ESCC during the past years, but 
the trends in incidence and mortality of ESCC is still 
increasing worldwide. Compared to the previous 

studies that only focused on several genes or a single 
cohort, this study selected 4 high-quality gene profile 
datasets from different research teams to integratedly 
explore the driven-genes and biological pathways in 
ESCC. Finally, we identified 146 DEGs (120 upregulated 
and 26 downregulated). Biological pathway enrich-
ment analysis showed that DNA replication, cell cycle, 
DCC mediated signaling pathway, and Netrin-1 sign-
aling pathway might paly crucial roles in the progres-
sion of ESCC. The PPI network was constructed with 
146 nodes and 2392 edges. We then selected the top 3 
significant modules from the PPI network, and these 
three modules were mainly related to DNA replication, 
cell cycle, PLK1 signaling pathway, EMT process, and 
ErbB1 signaling pathway, etc. According to the degree 
of connectivity, the top 10 genes in PPI network were 
considered as hub genes and they were verified in 

Fig. 6  a High expression of NDC80 was significantly associated with poor OS in ESCC patients, using a Kaplan–Meier curve and a log-rank test 
(Kaplan–Meier-plotter website; http://kmplo​t.com/analy​sis/). b The network contained 50 nodes, including 10 hub genes and the 40 most 
frequently altered neighbor genes. The relationships between 10 hub genes and drugs were also presented. c A visual summary across a set of 
ESCC (data from esophageal squamous cell carcinoma, TCGA, Provisional) showed the genetic alterations connected with the 10 hub genes which 
were altered in 24 (25%) of 96 sequenced cases/patients (96 total). d An overview of changes in the 10 hub genes in the genomics datasets of ESCC 
in TCGA database

http://kmplot.com/analysis/


Page 10 of 15Yang et al. Cancer Cell Int          (2019) 19:142 

TCGA database. NDC80 was clearly associated with 
the poor outcome of ESCC patients. miRNA–hub gene 
network revealed the importance of epigenetic regu-
lation in ESCC. Additionally, small molecular drugs 
found here provided new insights into the targeted 
therapies of ESCC.

Driven-genes play crucial roles during carcinogen-
esis and progression, and they usually serve a distinct 
biological function as a module. Using integrated bio-
informatics analysis, we have identified 3 important 
modules. The first module (Fig. 4a) included 55 nodes, 
and its biological pathways (Fig. 4b) were correlated to 
DNA replication, cell cycle, and PLK1 signaling path-
way. The aberrant cell cycle was one of marked fea-
tures of tumor cells [45]. In this study, the genes related 
to cell cycle and mitotic regulation, such as CDK1, 
CCNB1, CCNB2, and NDC80, were apparently altered 
in patients with ESCC (Fig. 5c). Importantly, high level 
of NDC80 predicted poor OS in patients with ESCC. 
The alterations of these genes included amplification, 
missense, and mutation. We supposed that the above 
genes might be the driven-genes for ESCC develop-
ment. Moreover, DNA replication stress could not only 
cause cell cycle abnormalities, but also accumulate 

genome alterations [46, 47]. In this study, the func-
tion of Module 1 was associated with the DNA replica-
tion, indicating that dysregulation of DNA replication 
might function as a promoter of sustained proliferation 
and genome instability in ESCC [46]. PLK1 was one of 
the most extensively studied genes in cell cycle regula-
tion [48], and it was highly expressed in various can-
cers, especially in gastric cancer [49], lung cancer [50], 
and pancreatic carcinoma [34]. Recently, researchers 
have investigated the PLK1-based targeted therapy and 
found that PLK1 was involved in several pathways of 
drug resistance [51].

Module 2 (Fig. 4c) mainly consisted of collagen family 
members COL3A1, COL1A1, COL1A2, and COL5A2. 
Dysregulated expression of collagen family members 
was the foundation of cancer invasion and migration 
[52]. Many studies have demonstrated that the ectopic 
expression of the above genes could be the cause of can-
cer development, resulting in genetic mutations, epige-
netic alterations, and activation of oncogenic signaling 
pathways or processes (such as EMT, extracellular matrix 
(ECM) remodeling, VEGFR3 signaling pathway, and Wnt 
signaling pathway, etc.) [53–56]. So far, studies have dem-
onstrated the abnormal expression of collagen family 

Fig. 7  Validation of the hub genes in the Cancer Genome Atlas (TCGA) database. Box plots showed the mRNA expressions of the 10 hub genes 
using data from the TCGA database in GEPIA2 (http://gepia​2.cance​r-pku.cn/#index​). The validation results of 10 hub genes were in accordance with 
the profiles in our study, and their p-values < 0.05

http://gepia2.cancer-pku.cn/#index
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members in several cancers [57–59]. However, their cru-
cial role in ESCC was rarely mentioned [21]. In the future, 
in-depth studies on the roles of collagen family members 
in ESCC might provide new clues for inhibiting ESCC.

Module 3 (Fig.  4e) were closely related to IGF activ-
ity regulation, ErbB1 signaling pathway, and class I PI3K 
signaling pathway. Previously, Imsumran et  al. have 
found that the expression level of IGF-I receptor (IGF-Ir) 
and IGF-II were related to the metastasis, invasion depth, 
and recurrence in patients with ESCC [60], indicating 
the potential values of using IGF members as the bio-
markers for the prediction of recurrence and outcomes 
of ESCC patients. Moreover, miR-375 could inhibit 
the proliferation and migration abilities of ESCC cells 
through regulating the activity and expression of IGF1R 

[61]. ErbB1 was overexpressed and mutated in several 
tumors, including breast cancer [62]. The downstream 
signaling modules of ErbB included the PI3K/Akt sign-
aling pathway, the phospholipase C (PLCγ) pathway and 
Ras/Raf/MEK/ERK1/2 pathway [63]. Fichter et  al. have 
found that ErbB inhibitors could inhibit cell migration of 
ESCC cells through distinct signaling pathways (ERK1/2, 
Akt, STAT3, and RhoA), suggesting the powerful clues 
for developing ErbB targeted therapies. Since PI3K/Akt 
pathway also played important roles in ESCC cell growth, 
invasion, and migration [64, 65], we thus supposed that 
Module 3 was the cluster that regulated the growth and 
metastasis of ESCC cells.

In the study, ten genes were recognized as the hub 
genes, and their expression levels were all verified in the 

Fig. 8  miRNA–hub gene interaction network of ESCC. The green circular node represented the miRNA. The red circular node represented the hub 
gene. The arrow represented the interaction between the miRNAs and hub genes
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TCGA database. A list of 33 drugs with potential thera-
peutic efficacy against ESCC were identified. Among the 
10 hub genes, the potential gene targets of the drugs are 
CDK1, TOP2A, CCNA2, and AURKB. In Table  3, most 
of drugs were TOP2A inhibitors. However, only a few of 
TOP2A inhibitors have been used for ESCC. More stud-
ies and clinical trials were needed to identify and explore 
the effective drugs for ESCC. Still, the study might push 
valuable insights into the individualized treatment and 

targeted therapy in ESCC, and the conventional drug was 
of potentially new use.

There were still several limitations worth mentioning 
in this study. First of all, we majorly explored the func-
tions and potential roles of the hub genes without deeply 
analyzing the other DEGs. In the future, in-depth stud-
ies considering this field is required. Secondly, we only 
used TCGA data and qPCR assay to validate the expres-
sion levels of hub genes, and further experimental studies 
were required to demonstrate the above findings. Finally, 

Table 3  Candidate drugs targeting hub genes

a  The score is the combined number of database sources and PubMed references supporting a given interaction

Number Gene Drug Interaction types Approved? Scoresa Ref. (PubMed ID)

1 CDK1 ELTROMBOPAG Agonist FDA 1 –

2 CDK1 ROMIPLOSTIM Agonist FDA 1 –

3 TOP2A DOXORUBICIN HYDROCHLORIDE Inhibitor FDA 13 –

4 TOP2A TENIPOSIDE Inhibitor FDA 12 8702194; 16271071; 17361331; 17514873; 
11752352; 16480143; 9426516

5 TOP2A ETOPOSIDE Inhibitor FDA 12 8823806; 9485461; 8870683; 9494516; 9426516

6 TOP2A VINCRISTINE – FDA 10 9494516

7 TOP2A DOXORUBICIN Inhibitor FDA 9 –

8 TOP2A NORFLOXACIN Inhibitor FDA 6 11752352

9 TOP2A VALRUBICIN Inhibitor FDA 6 11752352; 16019763

10 TOP2A LEVOFLOXACIN Inhibitor FDA 4 11752352

11 TOP2A ENOXACIN Inhibitor FDA 4 18471102; 11752352; 10089819

12 TOP2A ETOPOSIDE PHOSPHATE – FDA 3 –

13 TOP2A PACLITAXEL – FDA 2 –

14 TOP2A DAUNORUBICIN Inhibitor FDA 2 9494516

15 TOP2A OFLOXACIN Inhibitor FDA 2 2847647

16 TOP2A IDARUBICIN HYDROCHLORIDE Inhibitor FDA 2 –

17 TOP2A PEFLOXACIN Inhibitor FDA 2 11752352

18 TOP2A DAUNORUBICIN HYDROCHLORIDE Inhibitor FDA 2 –

19 TOP2A MITOXANTRONE DIHYDROCHLORIDE Inhibitor FDA 2 –

20 TOP2A AMSACRINE Inhibitor FDA 2 1322791; 8823806; 10691026; 8519659; 
8632768; 11006484; 11716434; 11752352; 
11473732; 1311390

21 TOP2A PODOFILOX Inhibitor FDA 2 16061385; 1334447; 10783066; 11752352; 
1845848; 1331331

22 TOP2A DEXRAZOXANE – FDA 2 12911317

23 TOP2A MITOXANTRONE Inhibitor FDA 2 10451375; 11004693; 18687447; 11752352; 
9631585; 9494516; 11278845; 9426516

24 TOP2A LOMEFLOXACIN Inhibitor FDA 1 11752352

25 TOP2A EPIRUBICIN Inhibitor FDA 1 14728934; 16234514; 17639997

26 TOP2A DACTINOMYCIN – FDA 1 9494516

27 TOP2A DAUNORUBICIN CITRATE Inhibitor FDA 1 –

28 TOP2A FINAFLOXACIN Inhibitor FDA 1 25808831

29 TOP2A IDARUBICIN – FDA 1 –

30 TOP2A HYDROQUINONE – FDA 1 15833037

31 CCNA2 ETHINYL ESTRADIOL – FDA 2 9806355

32 AURKB SUNITINIB Inhibitor FDA 1 –

33 AURKB SUNITINIB MALATE Inhibitor FDA 1 –
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the clinical information of ESCC patients were not 
deeply analyzed due to the inaccessible of data. Despite 
this, our study provided novel findings for ESCC studies. 
Compared to the single dataset studies, this study might 
provide more accurate results by using integrated bio-
informatics analysis. Moreover, the therapeutic targets 
and drugs found in this study are promising and novel 
for personalized therapy. Additionally, we constructed 
the miRNA–hub gene network which might reveal the 
importance of epigenetic regulation in ESCC.

Conclusions
Using integrated bioinformatics analysis, the study iden-
tified commonly changed 146 DEGs in ESCC, which 
were enriched in DNA replication, cell cycle, DCC 
mediated pathway, and Netrin-1 signaling pathway. We 
also identified 10 hub genes, including CDK1, CCNB1, 
TOP2A, CCNB2, BUB1, CCNA2, NCAPG, AURKB, 
NDC80, and BUB1B, that might play important roles in 
ESCC. The 10 hub genes might function as novel markers 
and/or targets for the early cancer detection, prognostic 
judgment, and targeted therapy of ESCC. Additionally, a 
group of drugs was identified, and they could be poten-
tially utilized for treatment of ESCC patients. And this 
study provided powerful basis for ESCC studies, and in-
depth experimental studies were needed.
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ESCC. Figure S4: Targetable TOP2A subnetwork. Figure S5: Relative mRNA 
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Table S2: Prognostic information of the 10 hub genes in ESCC patients.
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