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carcinoma
Gao‑Min Liu* , Hua‑Dong Zeng, Cai‑Yun Zhang and Ji‑Wei Xu*

Abstract 

Background: Hepatocellular carcinoma (HCC) remains a major challenge for public health worldwide. Considering 
the great heterogeneity of HCC, more accurate prognostic models are urgently needed. To identify a robust prognos‑
tic gene signature, we conduct this study.

Materials and methods: Level 3 mRNA expression profiles and clinicopathological data were obtained in The Can‑
cer Genome Atlas Liver Hepatocellular Carcinoma (TCGA‑LIHC). GSE14520 dataset from the gene expression omnibus 
(GEO) database was downloaded to further validate the results in TCGA. Differentially expressed mRNAs between 
HCC and normal tissue were investigated. Univariate Cox regression analysis and lasso Cox regression model were 
performed to identify and construct the prognostic gene signature. Time‑dependent receiver operating characteristic 
(ROC), Kaplan–Meier curve, multivariate Cox regression analysis, nomogram, and decision curve analysis (DCA) were 
used to assess the prognostic capacity of the six‑gene signature. The prognostic value of the gene signature was 
further validated in independent GSE14520 cohort. Gene Set Enrichment Analyses (GSEA) was performed to further 
understand the underlying molecular mechanisms. The performance of the prognostic signature in differentiating 
between normal liver tissues and HCC were also investigated.

Results: A novel six‑gene signature (including CSE1L, CSTB, MTHFR, DAGLA, MMP10, and GYS2) was established for 
HCC prognosis prediction. The ROC curve showed good performance in survival prediction in both the TCGA HCC 
cohort and the GSE14520 validation cohort. The six‑gene signature could stratify patients into a high‑ and low‑risk 
group which had significantly different survival. Cox regression analysis showed that the six‑gene signature could 
independently predict OS. Nomogram including the six‑gene signature was established and shown some clinical 
net benefit. Furthermore, GSEA revealed several significantly enriched oncological signatures and various metabolic 
process, which might help explain the underlying molecular mechanisms. Besides, the prognostic signature showed a 
strong ability for differentiating HCC from normal tissues.

Conclusions: Our study established a novel six‑gene signature and nomogram to predict overall survival of HCC, 
which may help in clinical decision making for individual treatment.
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Background
Hepatocellular carcinoma (HCC) is the fifth leading 
cause of malignant cancer and the third most common 
cause of cancer-related death worldwide [1]. Despite 

the great improvement in earlier diagnosis and multi-
disciplinary cancer management, the long-term prog-
nosis remains poor. Thus, an effective prognostic model 
that identify patients with a high risk of recurrence and 
metastasis could guide clinical management. Conven-
tional models utilizing clinical tumor-node-metastasis 
(TNM) staging, vascular invasion, and other parameters 
help predict HCC prognosis [2]. However, considering 
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the great heterogeneity of HCC, the predictive efficacy 
of conventional models is still far from satisfying. It’s 
important to take molecular markers into key account 
when establishing novel predictive tools.

With the advance of genome-sequencing technologies, 
accumulating evidence shown that gene signatures at 
mRNA level had great potential in predicting HCC prog-
nosis. For example, Long et  al. established a four-gene-
based prognostic model (including gene CENPA, SPP1, 
MAGEB6, and HOXD9) that accurately predicted overall 
survival OS using data from The Cancer Genome Atlas-
Liver Hepatocellular Carcinoma Dataset (TCGA-LIHC) 
[3]. Similarly, Zheng et  al. identified another four-gene-
based signature (including gene SPINK1, TXNRD1, LCAT, 
and PZP) for predicting the prognosis of HCC using data 
from the TCGA-LIHC and gene expression omnibus 
(GEO) database [4]. Deep mining of publicly available 
genomic data tends to be an efficient method to identify 
novel robust gene prognostic signatures to guide patients’ 
prognostic stratification and personalized therapy.

In this study, we conduct univariate and lasso Cox regres-
sion analysis to identify novel prognostic biomarkers and 
established a prognostic six-gene signature using data from 
TCGA. Multivariate Cox regression analysis confirmed 
the independent prognostic role of our six-gene signa-
ture. Nomogram was established to predict HCC progno-
sis. Gene set enrichment analysis was performed to help 
explain the intrinsic mechanisms. In addition, the prognos-
tic value of our six-gene signature was further validated in 
GSE14520 dataset from GEO database. Besides, the prog-
nostic signature showed a strong ability for differentiating 
HCC from normal tissues. Collectively, our results suggest 
the six-gene signature and nomogram might help effec-
tively predict overall survival of HCC patients.

Materials and methods
Data collection
Level 3 mRNA expression and clinical data from 374 
LIHC and 50 normal control samples were obtained from 
TCGA-LIHC and cBioportal for Cancer Genomics [5, 6]. 
Data were downloaded from the publicly available data-
base hence it was not applicable for additional ethical 
approval.

Identification of differentially expressed mRNA in HCC
The raw count data were firstly normalized with tran-
scripts per million (TPM) method and underwent a log2 
transformation. Then 19654 protein-coding genes were 
annotated. The differentially expressed mRNA (DEMs) 
were calculated using the Limma version 3.36.2 R pack-
age [7]. DEMs with an absolute log2 fold change (FC) > 1 
and an adjusted P value of < 0.05 were considered for sub-
sequent analysis.

Establishment of the prognostic gene signature
Only patients with a follow-up period longer than 
1  month were included for survival analysis. Univari-
ate Cox regression analysis was performed to identify 
prognostic genes, and genes were considered significant 
with a cut-off of P < 0.001. Then patients were randomly 
separated into a training set and testing set. Lasso-
penalized Cox regression analysis was conducted to 
further select prognostic genes for OS in patients with 
HCC [8]. Then a prognostic gene signature was con-
structed based on a linear combination of the regres-
sion coefficient derived from the lasso Cox regression 
model coefficients (β) multiplied with its mRNA 
expression level. The risk score = (βmRNA1  *  expres-
sion level of mRNA1) + (βmRNA2  *  expression level of 
mRNA2) + (βmRNA3  *  expression level of mRNA3) + ⋯ 
+ (βmRNAn  *  expression level of mRNAn). The optimal 
cut-off value was investigated by The R package “survival” 
[7] and “survminer” and two-sided log-rank test. Patients 
were classified into a high-risk and low-risk cohort 
according to the threshold. The time-dependent receiver 
operating characteristic (ROC) curve was drawn to eval-
uate the predictive value of the prognostic gene signature 
for overall survival using the R package “survivalROC” 
[9]. The Kaplan–Meier survival curve combined with a 
log-rank test was used to compare the survival difference 
in the high- and low-risk group using the R package “sur-
vival”. Then the predictive value of the prognostic gene 
signature was further investigated in the testing cohort 
and the whole cohort.

External validation of the prognostic gene signature 
and gene expression pattern
GSE14520 dataset from the GEO database was down-
loaded [10]. The risk score for each included patient 
was calculated with the same prognostic gene-signature 
based model. Next, the ROC curve and the Kaplan–
Meier curve were used to test the predictive value of 
the prognostic gene signature. The mRNA expression 
of the genes in the prognostic gene signature was ana-
lyzed in HCC and non-tumor tissue using the Wilcoxon 
signed-rank test. The two-sided P < 0.05 was considered 
statistically significant. The protein expression of the 
genes in the prognostic gene signature was explored in 
the Human Protein Atlas (http://www.prote inatl as.org) 
online database.

Independent prognostic role of the gene signature
To investigate whether the prognostic gene signa-
ture could be independent of other clinical parameters 
[including gender, age, body mass index (BMI), alpha-
fetoprotein (AFP), tumor grade, inflammation, vascular 
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tumor invasion, and TNM stage], univariate and multi-
variate analyses were performed using the Cox regres-
sion model method with forwarding stepwise procedure. 
P < 0.05 were considered as statistically significant.

Building and validating a predictive nomogram
Nomogram is widely used to predict cancer prognosis 
[11]. All independent prognostic factors identified by 
multivariate Cox regression analysis were included to 
build a nomogram to investigate the probability of 1-, 
3-, and 5-OS of HCC. Validation of the nomogram was 
assessed by discrimination and calibration. The con-
cordance index (C-index) was calculated to assess the 
discrimination of the nomogram by a bootstrap method 
with 1000 resamples. The calibration curve of the nomo-
gram was plotted to observe the nomogram prediction 
probabilities against the observed rates. Subsequently, we 
compared the nomogram including all with those includ-
ing only one independent prognostic factor using the 
time-ROC curve, C-index, and the decision curve anal-
ysis (DCA) [12]. DCA was used to calculate the clinical 
net benefit of each model compared to all or none strate-
gies. The best model is the one with the highest net ben-
efit as calculated.

Gene Set Enrichment Analyses
To explore the potential molecular mechanisms under-
lying our constructed prognostic gene signature, GSEA 
(Gene Set Enrichment Analyses) [13, 14] was performed 
to find enriched terms predicted to have a correlation 
with the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway in C2; in C5, a gene set that contain 
genes annotated by the same gene ontology (GO) term; 
and in C6, oncogenic signatures of gene sets often dys-
regulated in cancer. P < 0.01 and FDR (false discovery 
rate) q < 0.05 were considered statistically significant.

Differentiating performance of the prognostic signature
Boxplot and ROC curve was used to explore the differ-
ence of the risk score and the differentially diagnostic 
capability of the risk score between normal liver and 
HCC, respectively. P < 0.05 was considered statistically 
significant.

Statistical analysis
Statistical analyses were performed using R software 
v3.5.0 (R Foundation for Statistical Computing, Vienna, 
Austria) and GraphPad Prism v7.00 (GraphPad Software 
Inc., USA). Qualitative variables were analyzed using 
the Pearson χ2 test or Fisher’s exact test; quantitative 

variables were analyzed using a t-test for paired sam-
ples or a non-parametric Wilcoxon rank-sum test for 
unpaired samples as appropriate. Multiple groups of nor-
malized data were analyzed using one-way ANOVA. If 
not specified above, P < 0.05 was considered statistically 
significant.

Results
DEMs identification
We conducted our study as described in the flow chart 
(Fig. 1). A total of 6761 genes were identified as differen-
tially expressed at mRNA level in tumor tissues (n = 374) 
when compared with that of normal tissues (n = 50). The 
heatmap of the DEMs was shown in Additional file  1: 
Figure S1. mRNA of 5822 genes were found to be signifi-
cantly up-regulated, while that of 939 genes were found 
to significantly down-regulated (Additional file 2: Figure 
S2).

Establishment of the six‑gene‑based prognostic gene 
signature
343 patients with a follow-up period longer than 
1  month were included for subsequent survival analy-
sis. Then patients were randomly separated into a train-
ing set (n = 172) and testing set (n = 171). The baseline 
characteristics were summarized in Additional file  3: 
Table S1. No clinical parameters except adjacent hepatic 
tissue inflammation type were significantly different in 
the training set and testing set. Univariate Cox regres-
sion model identified 368 genes that significantly asso-
ciated with OS. Then, lasso-penalized Cox analysis was 
performed in the training set (n = 171) to further nar-
row the mRNAs (Additional file 4: Figure S3). Six genes 
were identified and subsequently used to construct 
a prognostic gene-signature. The six genes identified 
were chromosome segregation 1-like (CSE1L), cys-
tatin B (CSTB), methylenetetrahydrofolate reductase 
(MTHFR), diacylglycerol lipase alpha (DAGLA), matrix 
metalloproteinase 10 (MMP10), and glycogen syn-
thase 2 (GYS2). The risk score = 0.0606  *  ExpressionC-

SE1L + 0.0257  *  ExpressionCSTB + 0.1177  *  Expression-
MTHFR + 0.1912  *  ExpressionDAGLA + 0.4324  *  Expres-
sionMMP10 + (−  0.1003)  *  ExpressionGYS2. We then 
calculated the six-gene based risk score for each patient 
and used the Survminer R package to find the optimal 
cut-off for the risk score. Time-dependent ROC and 
Kaplan–Meier curve were used to assess the prognos-
tic capacity of the six-gene signature. Similar proce-
dures were performed in the testing set and the whole 
set. The AUCs (Area under the ROC curve) for 1-year, 
3-year, and 5-year OS were 0.832, 0.850, 0.768, and 
0.712, 0.591, 0.602, and 0.773, 0.702, 0.673 for training 
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set, testing set, and whole set, respectively. Patients in 
the high-risk group shown significantly poorer OS than 
patients in the low-risk group (all P < 0.001) (Fig. 2a–c). 
Compared with other six signatures [3, 4, 15–18], our 
signature showed a middle C-index and comparable 
AUCs for 1-, 3-, 5-year OS prediction (Additional file 5: 
Figure S4; Additional file 6: Table S2). Collectively, our 
results indicated a good performance of the six-gene 
signature for survival prediction.

External validation of the prognostic gene signature
To validate the predictive value of the six-gene signa-
ture, we calculated risk score with the same formula for 
patients in GSE14520. Consistent with the results in the 
TCGA cohort, patients in the high-risk group shown sig-
nificantly poorer OS than patients in the low-risk group 
(P = 0.002). The AUCs for 1-year, 3-year, and 5-year OS 
were 0.678, 0.643, and 0.633, respectively (Fig. 2d). Tak-
ing together, the six-gene signature was capable of pre-
dicting OS in HCC.

External validation of the genetic alteration and expression 
of the six gene
Among the 366 patients included in cBioportal for Can-
cer Genomics database, 36 (10%) shown genetic altera-
tions in the six genes. Missense mutation was the most 
common genetic alteration (Fig. 3a). Consistent with the 
results in the TCGA cohort, the mRNA expression of 
CSE1L, CSTB, MMP10 was significantly up-regulated in 
HCC while GYS2 was significantly down-regulated when 
compared with non-tumor tissues. Yet the upregulation 
of MHTFR and DAGLA was not found in GSE14520 
cohort (Fig. 3b). We further explored the protein expres-
sion of the six genes in the Human Protein Profiles and 
shown the characteristic pictures of them in Fig.  3c. 
However, we did not find MTHFR protein expression in 
the database.

Independent prognostic role of the gene signature
165 patients with complete information including gen-
der, age, BMI, AFP, tumor grade, inflammation, vascular 

Fig. 1 The flow chart showing the scheme of our study on mRNA prognostic signatures for hepatocellular carcinoma
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Fig. 2 Time‑dependent ROC analysis, risk score analysis, and Kaplan–Meier analysis for the six‑gene signature in HCC. a Time‑dependent 
ROC analysis, risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the six‑gene signature in the training set of TCGA cohort. b 
Time‑dependent ROC analysis, risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the six‑gene signature in the testing set of TCGA 
cohort. c Time‑dependent ROC analysis, risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the six‑gene signature in the whole 
included set of TCGA cohort. d Time‑dependent ROC analysis, risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the six‑gene 
signature in GSE14520 cohort. HCC hepatocellular carcinoma, ROC receiver operating characteristic, TCGA  The Cancer Genome Atlas
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tumor invasion, and TNM stage were included for fur-
ther analysis. Univariate and multivariate Cox regression 
analysis indicated that vascular tumor invasion, TNM 
stage, and risk score calculated from the six-gene signa-
ture were independent prognostic factors for OS (Fig. 4).

Building and validating a predictive nomogram
We then built a nomogram to predict 1-year, 3-year, and 
5-year OS in the 165 HCC patients using three independ-
ent prognostic factors including vascular tumor invasion, 
TNM stage, and risk score. Calibration plots showed that 
the nomogram (combined model) might under-estimate 
or over-estimate the mortality (Fig.  5). The C-index for 
vascular tumor invasion, TNM stage, risk score, and 
the combined model was 0.66 (95% confidence interval 
[CI] 0.58–0.74), 0.61(95% CI 0.54–0.61), 0.72 (95% CI 
0.62–0.82), and 0.77 (95% CI 0.67–0.86), respectively. 
The AUCs of the nomogram were 0.87 (95% confidence 
interval [CI] 0.80–0.95), 0.78 (95% CI 0.66–0.88), and 

0.71 (95% CI 0.58–0.85) for 1-year, 3-year, and 5-year 
OS, respectively (Table  1). Compared with nomogram 
including only the vascular, TNM, or prognostic gene 
signature, the combined model shown the largest AUC 
for 1-year and 3-year OS but not for 5-year OS (Table 1, 
Fig. 6a–c). DCA demonstrated that the combined model 
showed the best net benefit for 1-year and 3-year OS but 
not for 5-year OS as well (Fig.  6d–f). Taking together, 
these results indicated that compared with nomograms 
built with a single prognostic factor, the nomogram built 
with the combined model might be the best nomogram 
for predicting short-term survival (1-year and 3-year) but 
not for long-term survival (such as 5-year) for patients 
with HCC, which might help clinical management.

Gene Set Enrichment Analyses
To explore the underlying molecular mechanisms of the 
signature, we conduct GSEA comparing the high-risk 

Fig. 3 The expression and genetic alterations of the six prognostic genes in HCC. a The expression alteration profiles of the six genes in the TCGA 
liver cancer RNA‑seq (n = 366) dataset. b The expression profiles of the six genes in the GSE14520 cohort. c The representative protein expression 
of the six genes in HCC and normal liver tissue. Data were from the Human Protein Atlas (http://www.prote inatl as.org) online database. HCC 
hepatocellular carcinoma

http://www.proteinatlas.org
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group with the low-risk group in 343 TCGA patients 
of the whole set. In the high-risk group, 4 oncological 
signatures including Early serum response (CSR), E2F 
Transcription Factor 1 (E2F1), Rb-P107, and granule cell 
neuron precursors (GCNP) were enriched; however, no 
KEGG or GO terms were significantly enriched. In the 
low-risk group, the enriched KEGG pathways and GO 
terms were mainly focused on various metabolism pro-
cess (including fatty acid, retinol, tyrosine, butanoate and 
so on). However, no oncological signatures were signifi-
cantly enriched (Additional file 7: Table S3).

Differentiating performance of the prognostic signature
The risk score was then compared between normal liver 
and HCC to explore the differentially diagnostic capabil-
ity of the prognostic signature. The risk score was found 
to be significantly higher in HCC when compared with 
normal control. The risk score was also found to be sig-
nificantly higher in patients with advanced TNM stage 
and tumor grade (Fig. 7). The AUC of the risk score was 
0.93 in both cohorts, indicating a strong diagnostic ability 
for HCC. Furthermore, the subgroup analysis of different 

stages and grades also showed modest diagnostic capa-
bility (Fig. 8). Taking together, these results also suggest 
great potential of the signature in the differential diagno-
sis of HCC.

Discussion
HCC remains a major challenge for public health world-
wide. Conventional parameters such as TNM staging, 
vascular invasion, and AFP help predict HCC prognosis 
in some degree. However, considering the great hetero-
geneity of HCC, identification of novel prognostic bio-
markers and establishment of more accurate prognostic 
models are urgently needed. And the combination of 
the prognostic gene signature with conventional clinical 
parameters may have better predictive efficacy than a sin-
gle biomarker. Recently, gene-signatures based on aber-
rant mRNA have gained much attention and shown great 
potential in prognosis prediction of cancer [3, 16, 17, 19].

In this study, we established a novel six-gene signature 
(including CSE1L, CSTB, MTHFR, DAGLA, MMP10, 
and GYS2) for HCC prognosis prediction. While CSE1L, 
CSTB, MTHFR, DAGLA, and MMP10 were found to 

Fig. 4 Forrest plot of the univariate and multivariate Cox regression analysis in HCC. HCC hepatocellular carcinoma
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Fig. 5 Nomogram predicting overall survival for HCC patients. a For each patient, three lines are drawn upward to determine the points received 
from the three predictors in the nomogram. The sum of these points is located on the ‘Total Points’ axis. Then a line is drawn downward to 
determine the possibility of 1‑, 3‑, and 5‑year overall survival of HCC. b The calibration plot for internal validation of the nomogram. The Y‑axis 
represents actual survival, and the X‑axis represents nomogram‑predicted survival. HCC hepatocellular carcinoma

Table 1 Comparison of the nomogram with vascular, TNM stage, prognostic model, and the combined model

AUC  area under curve, CI confidence interval, TNM tumor-node-metastasis

Models 1‑year AUC (95% CI) P‑value 3‑year AUC (95% CI) P‑value 5‑year ACU (95% CI) P‑value

Vascular model 0.76 (0.64–0.87) – 0.66 (0.56–0.77) – 0.58 (0.47–0.70) –

TNM model 0.73 (0.59–0.87) – 0.63 (0.53–0.74) – 0.57 (0.46–0.68) –

Prognostic model 0.73 (0.58–0.87) – 0.72 (0.61–0.84) – 0.72 (0.57–0.86) –

Nomogram (combined) model 0.87 (0.80–0.95) – 0.78 (0.66–0.88) – 0.71 (0.58–0.85) –

Nomogram vs. vascular model 0.05 0.027 0.01

Nomogram vs. TNM model 0.01 0.01 0.03

Nomogram vs. prognostic model 0.01 0.29 0.93
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be negative prognostic genes, GYS2 was found to do the 
opposite. The prognosis predictive performance of the 
signature was good not only in the TCGA HCC cohort 
but also in the GSE14520 cohort, and comparable with 
six previously reported models. The six-gene risk was 
an independent prognostic factor of HCC and patients 
in the high-risk group shown significantly poorer sur-
vival than patients in the low-risk group. ROC and DCA 
demonstrated that the nomogram combining the six-
gene signature and conventional clinical prognostic fac-
tors performed the best in predicting short-term survival 
(1-year and 3-year) but not in long-term survival (such as 
5-year) for patients with HCC. All these results indicated 
that the risk model developed from the six genes could 
be a useful indicator for HCC survival. Furthermore, 
GSEA revealed several significantly enriched oncological 
signatures and various metabolic process, which might 
help explain the underlying molecular mechanisms of the 
signature. And we found the risk score shown a strong 

ability in differentiating HCC from normal tissues, sug-
gesting a great potential of utilizing the signature in HCC 
differential diagnosis.

CSE1L, also named as CAS (cellular apoptosis sus-
ceptibility protein), has been reported as an oncogene 
in several cancers [20–22]. CSE1L is a multifunctional 
gene that participates in apoptosis, chromosome assem-
bly, nucleocytoplasmic transport, microvesicle forma-
tion, chemo-resistance, and cancer progression [20, 23, 
24]. However, the role and mechanism of aberrant CSE1L 
in HCC remains poorly defined. CSTB is a reversible 
endogenous inhibitor of lysosomal cysteine proteinases 
[25]. Mutations of CSTB leads to progressive myoclonus 
epilepsy (EPM1), which is an inherited and lethal auto-
somal disease [26]. Dysregulated expression of CSTB 
has been implicated to be a useful biomarker in various 
cancers such as ovarian cancer [27], esophageal cancer 
[28] and breast cancer [29]. Especially, CSTB was found 
to be overexpressed in most HCCs and was elevated in 

Fig. 6 The time‑dependent ROC and DCA curves of the nomogram. a–c The time‑dependent ROC curves of the nomograms compared for 1‑, 
3‑, and 5‑year overall survival in HCC, respectively. d–f The DCA curves of the nomograms compared for 1‑, 3‑, and 5‑year overall survival in HCC, 
respectively. The none plot represented the assumption that no patients have 1‑, 3‑ or 5‑year survival; while all plot represented the assumption 
that all patients have 1‑, 3‑ or 5‑year survival at a specific threshold probability. The x‑axis represented the threshold probabilities, and the y‑axis 
measured the net benefit. In d, the DCA curves of vascular and TNM model were not shown as the calculated net benefit were all smaller than 
calculated with the none assumption. ROC receiver operating characteristic, DCA decision curve analysis, HCC hepatocellular carcinoma
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the serum of most HCC patients [30]. DAGL (Diacyl-
glycerol lipase) hydrolyzes diacylglycerol to 2-arachi-
donoylglycerol (2-AG) and free fatty acid (FFA) [31]. 
Disruption of DAGL activity influenced the development 
of the central nervous system [32]. Recently, Okubo et al. 
reported that DAGLA promoted tumorigenesis in oral 
squamous cell carcinomas by regulating cell-cycle [33]. 
Roy et al. indicated that DAGLA participated in ovarian 
progression caused by loss of the endosulfatase HSulf-1 
[34]. Nevertheless, the role of DAGLA in HCC remains 
unclear. MTHFR catalyzes the 5,10-methylenetetrahy-
drofolate to 5-methyltetrahydrofolate, a co-substrate for 
homocysteine re-methylation to methionine. Methio-
nine is the forebody of S-adenosylmethionine (SAM), 
and SAM is the direct methyl donor for the DNA meth-
ylation [35]. Abnormal MTHFR activity leads to abnor-
mal gene methylation, gene instability and finally cancer 
[36]. Accumulating studies demonstrate that MTHFR 
polymorphism affects the susceptibility of various can-
cer, especially HCC [37–41]. Matrix metalloproteinases 
(MMPs) are widely accepted as critical modulators for 

tumor microenvironment [42]. MMP10 promoted HCC 
by involving in tumor angiogenesis, growth, and dissemi-
nation [43]. Decreased glycogen concentration negatively 
correlated with tumor growth [44]. GYS, the rate-lim-
iting enzyme of glycogen synthesis, consists of two iso-
forms including GYS1 and GYS2. Loss of GYS2 caused 
glycogen storage disease type 0 [45]. A very recent study 
revealed that decreased expression of GYS2 reduced gly-
cogen and indicated unfavorable clinical outcomes of 
HCC. Mechanically, GYS2 suppressed tumor growth in 
HBV-related HCC via a negative feedback loop with p53 
[46].

To our knowledge, the six-gene signature related 
prognostic model and nomogram have not been 
reported previously and could be a useful prognostic 
and diagnostic classification tool of HCC. The risk score 
was based on mRNA expression but not somatic muta-
tions or methylation status of only six prognostic genes. 
It could be more routine and cost-effective in practice 
as it decreased the necessity of whole-genome sequenc-
ing for all patients. Nomogram combining our signature 

Fig. 7 The different risk score in normal tissue and HCC. The risk score was group by a, e sample type, b, c, f TNM stage, and d tumor grade. a–d 
Were from the TCGA cohort, while e, f were from GSE14520 cohort. HCC hepatocellular carcinoma
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with conventional clinical parameters like TNM stage 
shown significantly improved performance, especially in 
predicting short-term survival (1-year or 3-year), indi-
cating a more accurate reflection of the great heteroge-
neity of HCC. However, several limitations of our study 
should be taken into consideration. Firstly, our study 
was mainly based on data from TCGA in which most 
patients were White or Asian. Extending our findings to 
other ethnic patients should be with great caution. Sec-
ondly, external validation of the six-gene signature and 
prognostic nomogram in more independent cohorts 
is necessary. Thirdly, the expression and the prognos-
tic role of the six genes at protein level warrant further 
investigation. Forth, calibration plots showed that the 
nomogram (combined model) might under-estimate or 
over-estimate the mortality, efforts should be made to 
further improve the prediction performance. Fifth, all 
mechanical analysis in our study was descriptive, fur-
ther functional experiments are needed to clarify the 
underlying mechanism of the six genes. Sixth, except its 
excellent performance in differentiating HCC from nor-
mal liver, the performance of our signature in differen-
tiating between the normal liver, liver adenomas, focal 
nodular hyperplasia, and hepatocellular carcinomas 
remains to be further elucidated.

Conclusions
Our study established a novel six-gene signature and 
nomogram to predict overall survival of HCC, which may 
help in clinical decision making for individual treatment.
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