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Down‑regulation of miR‑29c is a prognostic 
biomarker in acute myeloid leukemia and can 
reduce the sensitivity of leukemic cells 
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Abstract 

Background:  MicroRNA-29c (miR-29c) is abnormally expressed in several cancers and serves as an important predic‑
tor of tumor prognosis. Herein, we investigate the effects of abnormal miR-29c expression and analyze its clinical 
significance in acute myeloid leukemia (AML) patients. In addition, decitabine (DAC) has made great progress in the 
treatment of AML in recent years, but DAC resistance is still common phenomenon and the mechanism of resistance 
is still unclear. We further analyze the influences of miR-29c to leukemic cells treated with DAC.

Methods:  Real-time quantitative PCR (RQ-PCR) was carried out to detect miR-29c transcript level in 102 de novo AML 
patients and 25 normal controls. miR-29c/shRNA-29c were respectively transfected into K562 cells and HEL cells. Cell 
viability after transfection was detected by cell counting Kit-8 assays. Flow cytometry was used to detect apoptosis.

Results:  MiR-29c was significantly down-regulated in AML (P < 0.001). Low miR-29c expression was frequently 
observed in patients with poor karyotype and high risk (P = 0.006 and 0.013, respectively). Patients with low miR-29c 
expression had a markedly shorter overall survival (OS) than those with high miR-29c expression (P < 0.001). Multivari‑
ate analysis confirmed the independent prognostic value of low miR-29c expression in both the whole cohort as well 
as the cytogenetically normal AML (CN-AML) subset. Over-expression of miR-29c in K562 treated with DAC inhib‑
ited growth, while silencing of miR-29c in HEL promoted growth and inhibited apoptosis. MiR-29c overexpression 
decreased the half maximal inhibitory concentration (IC50) of DAC in K562, while miR-29c silencing increased the IC50 
of DAC in HEL. The demethylation of the miR-29c promoter was associated with its up-regulated expression. Although 
miR-29c demethylation was also observed in DAC-resistant K562 (K562/DAC), miR-29c expression was down-regu‑
lated. MiR-29c transfection also promoted apoptosis and decreased the IC50 of DAC in K562/DAC cells.

Conclusions:  Our results suggest that miR-29c down-regulation may act as an independent prognostic biomarker in 
AML patients, and miR-29c over-expression can increase the sensitivity of both non-resistant and resistant of leukemic 
cells to DAC.
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Background
Acute myeloid leukemia (AML) is a malignant tumor of 
myeloid progenitor cells. It is characterized by the rapid 
growth of abnormal white blood cells in the bone mar-
row, which interferes with the production of normal 
blood cells. The pathogenesis involves the inhibition of 
cell differentiation, uncontrolled proliferation, abnormal 
apoptosis and so on [1, 2]. Despite recent advances in the 
molecular basis of leukemia and the use of new chemo-
therapy regimens, the overall outlook of AML remains 
poor. It has been well established that occurrence of leu-
kemia is the result of different genetic changes, which 
ultimately leads to malignant transformation [3]. Epi-
genetic modifications such as DNA methylation and 
microRNA (miRNAs) expression also play a key role in 
the pathogenesis and progression of leukemia [4–9]. 
MicroRNAs are a class of endogenous, non-coding RNAs 
with regulatory functions that are about 20 to 25 nucleo-
tides in length [10, 11]. Only a small fraction of the bio-
logical functions of miRNAs are currently elucidated. 
These miRNAs regulate cell growth, tissue differentia-
tion, and thus are involved in development and disease 
during life [11, 12]. Over the last decade, many studies 
have confirmed that deregulated miRNAs activity can be 
responsible for hematologic malignancies [13, 14]. Some 
miRNAs may be used as potentially prognostic biomark-
ers. Alterations in the expression of miR-29, miR-125, 
miR-126, miR-142, miR-146 and miR-155 have been 
reported to play a role in the pathogenesis and progres-
sion of AML [15–17]. Let-7 family and the miRNA-34 
family are known as tumor suppressor miRNAs in B cell 
lymphoma [18]. MiR-15, miR-16, miR 29a/b and miR-127 
are also deregulated in chronic lymphocytic and AML 
[18, 19]. Gong et al. found intravenous injection of miR-
29a/b/c could significantly ameliorate leukemia symp-
toms in AML model mice and revealed a key role for the 
miR-29 family in the development of AML [20]. MiR-
29c, a member of microRNA-29 family, is located on 
chromosome lq32.2 [21–23]. Prominently, miR-29c has 
been shown to act as a tumor suppressor gene in various 
tumors and participate in the regulation of target genes 
of several important signaling pathways [24–28]. Butrym 
et al. found that miR-29c expression was up-regulated in 
older AML patients [29]. However, we got the opposite 
conclusion in this study. Therefore, this study further elu-
cidates the roles of miR-29c in  vitro with special atten-
tion to AML.

Additionally, DNA methylation changes are another 
pathological mechanism in leukemia progression. DNA 
hypomethylating agents (HMAs), including decitabine 
and azacitidine (AC), have achieved a considerable clini-
cal role during these years [30, 31]. Studies have shown 
that HMAs exerts anti-tumor activity by re-activating 

methylation-silenced genes at low doses; whereas it plays 
a major role in cytotoxicity at high doses [32]. Moreo-
ver, responses in some patients are rather low, and these 
patients are often ephemeral-lived after HMAs failure. 
During the last few years, the molecular mechanism 
of anti-methylation therapy has not yet reached a con-
sensus. Studies have shown that high MLL5 expression 
might increase the sensitivity to DAC in AML cells [33]. 
HMAs reduced the methylation level of the programmed 
death 1 (PD-1) promoter in AML cells, which was accom-
panied by worse survival [34]. Intriguingly, BCL2/adeno-
virus E1B 19  kDa interacting protein 3-like (BNIP3L) 
protein could promote apoptosis, but BNIP3L silencing 
slightly strengthens the apoptotic effect of decitabine in 
U937 cells [35]. These studies provide a new perspective 
for clinical and experimental research. Simultaneously, it 
is necessary to identify certain molecules that can distin-
guish between patient who will benefit from HMAs ther-
apy and those who will not.

In the present study, we aimed to investigate the 
expression and methylation levels of miR-29c in leuke-
mic cells. We further evaluated the clinical significance of 
deregulated miR-29c expression. To date, this study was 
the first to investigate whether miR-29c was associated 
with DAC resistance.

Methods
Study population
The present study included 102 newly diagnosed AML 
patients and 25 healthy donors. The patients were clas-
sified according to World Health Organization (WHO) 
criteria and French–American–British (FAB) classifica-
tion. Table 1 listed the clinical characteristics of patients. 
BM mononuclear cells (BMMNCs) were extracted from 
BM specimens by gradient centrifugation (TBD Sci-
ences, Tianjin, China). Mutations in FLT3, N/K-RAS, and 
U2AF1 were detected by high-resolution melting analysis 
[36–38].

RNA extraction, reverse transcription and real‑time 
quantitative PCR (RQ‑PCR)
According to the reagent specification, total RNA was 
isolated using Trizol reagent (Invitrogen, Carlsbad, CA, 
USA). RNA was reverse-transcribed to complemen-
tary DNA (cDNA) using miScript reverse transcription 
kit (Qiagen, Duesseldorf, Germany). The procedure of 
reverse transcription and RQ-PCR was conducted as pre-
viously reported [39, 40]. The forward primers for miR-
29c were 5′-TAG​CAC​CAT​TTG​AAA​TCG​GTTA-3′ and 
the reverse primers were universal primer provided by 
the manufacturer (miScript).
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Table 1  Correlation between miR-29c expression and patients’ parameters

WBC white blood cells, FAB French–American–British classification, AML acute myeloid leukemia, CR complete remission

+: positive; −: negative

* +: bi-allelicmutation; −: mono-allelic mutation or wild type

Patient’s parameters Status of miR-29c expression

Low (n = 51) High (n = 51) P

Sex, male/female 31/20 29/22 0.423

Median age, years (range) 54 (19–93) 58 (18–87) 0.968

Median WBC, × 109/L (range) 12 (1.1–201) 8.1 (0.3–528) 0.517

Median hemoglobin, g/L (range) 76.5 (34–138) 71 (32–113) 0.202

Median platelets, × 109/L (range) 42 (3–447) 37 (4–399) 0.196

BM blasts, % (range) 53 (6.5–94.5) 42.5 (1.0–97.5) 0.085

FAB classification 0.002

 M0 1 0

 M1 5 4

 M2 23 24

 M3 1 14

 M4 14 6

 M5 6 3

 M6 1 0

WHO classification 0.007

 t (8;21) 7 5

 t (15;17) 1 13

 AML without maturation 4 4

 AML with maturation 18 18

 Acute myelomonocytic leukemia 15 7

 Acute monoblastic and monocytic leukemia 5 2

 Acute erythroid leukemia 1 0

 No data 0 2

Risk classification 0.013

 Low 8 20

 Intermediate 35 23

 High 8 4

 No data 0 4

Karyotype 0.006

 Normal 27 18

 t (8;21) 7 7

 t (15;17) 1 13

 11q23 1 0

 Complex 7 4

 Others 8 5

 No data 0 4

Gene mutation*

 C-KIT (±) 2/47 1/47 1.000

 FLT3 (±) 7/42 6/42 1.000

 NPM1 (±) 5/44 5/43 1.000

 C/EBPA (±) 7/42 5/43 0.759

 N/K-RAS (±) 3/46 4/45 1.000

 IDH1/2 (±) 3/46 3/40 0.704

 DNMT3A (±) 6/43 3/40 0.494

 U2AF1 (±) 1/48 4/39 0.332

 CR (±) 33/17 26/21 0.305
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DNA isolation, chemical modification, and Bisulfite 
sequencing PCR (BSP)
Genomic DNA was isolated and modified using 
genomic DNA Purification Kit according to the instruc-
tions (Gentra, Minneapolis, MN, USA). The primers 
for the methylated of miR-29c promoter were 5′-TAG​
TAG​TGG​TTG​TTT​GTT​TTT​TTG​A-3′ (forward) 
and 5′-CCA​CTC​TAC​TAA​AAA​CTC​CAT​CTC​C-3′ 
(reverse). BSP conditions were conducted at 98  °C 
for10 s, 40 cycles for 10 s at 98 °C, 30 s at 65 °C, 30 s at 
72 °C and followed by a final 7 min. at 72 °C. Then the 
company sequenced five independent clones from each 
sample (BGI Tech Solutions Co., Shanghai, China).

Cell line, cell culture, DAC treatment, plasmid construction 
and transfection
Cell lines (including K562, HEL, THP-1, HL60, SHI-1 
and NB4) were purchased from American Type Culture 
Collection (Manassas, VA, USA). The K562/DAC was 
constructed in our laboratory [41]. Cells were cultured 
in Roswell Park Memorial Institute-1640 (RPMI-1640, 
Wisent) containing 10% fetal calf serum (FBS, ExCell-
Bio) and 100U/ml penicillin/streptom with 5% CO2 
at 37  °C. The plasmids were designed and synthesized 
by GenePharma company (Shanghai, China). MiRNA 
(miR-29c) and shRNA (shRNA-29c) were transfected 
into cells using HiperFect (Qiagen). The stably trans-
fected cells were selected by Geneticin (G418) or Blas-
ticidin (Invivogen Company) and flow sorting (BD 
FACSAriall). Then cells were harvested and detected 
miR-29c expression by RQ-PCR.

Cell viability assays
Cells (including K562-NC, K562-miR-29c, HEL-NC 
and shRNA-29c-HEL cells) were seeded at 3 × 103 cells 
per well in 96-well plate containing complete culture 
solution and 1  μM DAC. After culturing for 0, 24  h, 
48  h, and 72  h, each well added 10ul CCK-8 solution. 
The optical density (OD) was measured by microplate 
reader.

Half maximal inhibitory concentration (IC50) detection
Cells (3 × 103 cells/well) were seeded onto a 96-well 
plate containing complete culture solution and differ-
ent concentration of DAC. The drug concentration was 
0 μM, 0.125 μM, 0.25 μM, 0.5 μM, 1 μM, 2 μM succes-
sively. Cells were cultured for 48 h. OD value detection 
method was the same as cell viability assays.

Cell apoptosis assays
Cells (5 × 105  cells/well) were seeded onto a 6-well 
plate containing complete 1640 culture solution 

(without FBS solution). After 48  h, the apoptosis rate 
was detected by apoptosis detection kit (Annexin V 
PE/7-AAD, BD, 559763) and then analyzed by flow 
cytometry (BD FACSCalibur, San Jose, CA, USA).

Statistical analysis
Data analysis was performed using SPSS 20.0 software 
and GraphPad Prism 5 software. Relative levels of miR-
29c expression were calculated by 2−ΔΔCT method. The 
categorical variables were analyzed using Chi square test 
and/or Fisher’s exact test. The diagnostic value of gene 
expression was analyzed using receiver operating char-
acteristic curve (ROC curve) and area under the curve 
(AUC). Kaplan–Meier analysis and Cox regression analy-
ses (univariate and multivariate) were used to analyze the 
survival. IC50 value was calculated by Probit regression 
analysis. Data analysis results for all experiments were 
statistically significant (P < 0.05, bilateral distribution).

Results
The level of miR‑29c expression in normal controls 
and AML patients
From RQ-PCR analysis, the median level of miR-29c 
expression was different in the normal control and 
AML groups (0.5703 and 0.2137, respectively). MiR-29c 
expression was significantly lower in AML compared 
with normal controls (P < 0.001) (Fig. 1a).

Distinguishing capacity of MiR‑29c expression
ROC curve was performed to determine the discrimina-
tive capacity of miR-29c expression. The AUC value of 
miR-29c was 0.753 (95% CI 0.689–0.874, P < 0.001) in all 
AML patients and 0.763 in CN-AML patients (95% CI 
0.647–0.878, P < 0.001) (Fig. 1b, c), which suggested that 
miR-29c expression might serve as a potential biomarker 
in distinguishing AML patients from controls.

Correlation between miR‑29c expression and clinical 
characteristics in AML
To investigate the clinical relevance of miR-29c expres-
sion in AML, the whole patients were divided into two 
groups (low-expression and high-expression) by the cut 
off value of 0.187 (sensitivity 60%, specificity 80%) based 
on ROC curve. No significant differences were observed 
in age, BM blast cell percentage, gender, WBC (white 
blood cells), Hb (hemoglobin), PLT (blood platelet) and 
nine common gene mutations between the two groups 
(P > 0.05). However, obvious differences between the two 
groups were observed in karyotype and risk classification 
(P = 0.006 and 0.013, respectively). There was no correla-
tion between the common gene mutations and miR-29c 
expression (P > 0.05).



Page 5 of 11Tang et al. Cancer Cell Int          (2019) 19:177 

Effect of miR‑29c expression on the outcome of AML 
patients
In order to explore the prognostic value of miR-29c in 
AML, survival data were obtained for 99 AML patients 
with follow-up data ranged from 1 to 70  months. 
Although miR-29c has no predicting value on complete 
remission (CR), patients with low miR-29c expression 
have markedly shorter OS time in both the whole AML 
cohort and the CN-AML subset (P < 0.001, Fig. 1d). Fur-
thermore, similar results were observed in CN-AML 
patients (P < 0.001, Fig. 1e). Multivariate analysis showed 
the adverse effect of miR-29c low-expression on the out-
come. Variables in the univariate analysis with P < 0.2 
(WBC, age, and miR-29c expression, karyotype, K/N-
RAS mutation, U2AF1 mutation) were included in the 
multivariate analysis. Importantly, the results showed 
that miR-29c might be an independent prognostic mol-
ecule affecting patients’ survival in all AML (P = 0.033) or 
CN-AML (P = 0.020, Tables 2 and 3).

MiR‑29c increased sensitivity to DAC and promoted 
apoptosis in leukemic cells
Before performing cell function experiments, we 
detected the expression levels of miR-29c in differ-
ent leukemic cells, and found that miR-29c expression 
was decreased in K562, THP-1, HL60 and increased 
in HEL (Fig S1 in Additional file  1). Therefore, we 
selected HEL with the highest expression of miR-29c 
for gene gain-of-function. Additionally, we obtained 
DAC-resistant cells of K562. K562 cells were selected 
for gene loss-of-function. Increased expression of miR-
29c in K562-miR-29c cells and decreased expression of 
miR-29c in shRNA-29c-HEL cells were confirmed by 
RQ-PCR (Fig. S2A, B in Additional file 1). The growth 
rate of K562-miR-29c was significantly lower than that 
of the K562-NC cells (P < 0.001, Fig.  2a, b). Similarly, 
the growth rate of shRNA-29c-HEL was obviously 
higher than that of the HEL-NC cells (P < 0.001, Fig. 2d, 
e). Moreover, miR-29c overexpression decreased the 

Fig. 1  Expression level of miR-29c and impact of miR-29c expression on OS in AML patients. a The level of miR-29c expression in controls and AML 
patients by RQ-PCR. b Discriminative capacity of miR-29c expression by ROC curve analysis for miR-29c AML patients. c Discriminative capacity of 
miR-29c expression by ROC curve analysis for CN-AML patients. d Prognostic value of miR-29c expression in whole AML patients. e Prognostic value 
of miR-29c expression in CN-AML patients. Overall survival (OS) was analyzed between miR-29c high and miR-29c low groups
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IC50 value of DAC in K562, while miR-29c silencing 
increased the IC50 of DAC in HEL (Fig.  2c, f ). The 
overall apoptotic rate of shRNA-29c-HEL cells was sig-
nificantly lower than that of HEL-NC cells (P < 0.001, 
Fig. 2g–i).

Decreased expression of miR‑29c might be involved in DAC 
resistance
To analyze the relationship of miR-29c expression and 
DAC resistance, the expression and promoter meth-
ylation of miR-29c were detected by RQ-PCR and 
BSP separately in K562 and K562/DAC cells. Results 
showed that the expression of miR-29c was up-regu-
lated with increased DAC concentration in K562 cells 
(P < 0.01, Fig. 3a). The methylation density of the miR-
29c promoter region was reduced (Fig.  3c). Although 
demethylation change was also observed in the miR-
29c promoter region in K562/DAC cells (Fig.  3d), 
the level of miR-29c expression was down-regulated 
(Fig. 3b). This suggested DAC resistance was accompa-
nied with miR-29c down-regulation.

High miR‑29c expression could increase the sensitivity 
of DAC‑resistant cells to DAC
Increased expression of miR-29c in K562/DAC-miR-29c 
was confirmed by RQ-PCR (Fig. S3A in Additional file 1). 
Similarly, the viability rate of K562/DAC-miR-29c cells 
was significantly lower than that of the K562/DAC-NC 
cells (P < 0.001, Fig. 4a, b). The IC50 value of K562/DAC-
miR-29c cells was significantly lower than that of the 
K562/DAC-NC cells (P < 0.001, Fig. 4c). Furthermore, the 
apoptosis assays showed that the apoptotic rate of K562/
DAC-miR-29c cells was significantly higher than that of 
K562/DAC cells (P < 0.001, Fig.  4d, Fig. S3B, C in Addi-
tional file  1). The above results suggested that the miR-
29c gene might alter the reactivity of DAC-resistant cells 
to DAC.

Discussion
MiR-29c has been reported to be down-expressed in 
human solid tumors, such as breast cancer and lung 
cancer [42, 43]. Many studies have proved that miR-29c 
indeed acts as a tumor suppressor and miR-29c effects 
on cell proliferation, senescence, apoptosis and pro-
gression of cancer [44]. MiR-29c down-regulation was 

Table 2  Univariate and multivariate analyses of prognostic factors for overall survival in whole-cohort AML patients

+: positive; −: negative

Prognostic factors Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age (> 60/≤ 60 year) 2.840 (1.708–4.723) < 0.001 1.381 (0.553–3.449) 0.489

WBC (≥ 30 × 109/< 30 × 109/L) 2.111 (1.424–3.127) < 0.001 1.572 (0.420–4.132) 0.381

karyotype grouping 1.932 (1.567–2.383) < 0.001 1.967 (1.375–2.841) 0.001

miR-29c expression 2.398 (1.427–4.032) 0.001 2.336 (1.026–5.319) 0.033

K/N-RAS mutation (±) 1.622 (0.840–3.131) 0.150 1.115 (0.147–8.467) 0.916

U2AF1 mutation (±) 1.814 (0.732–4.500) 0.199 1.014 (0.492–5.806) 0.986

FLT3 mutation (±) 1.109 (0.577–2.132) 0.757 – –

Table 3  Univariate and multivariate analyses of prognostic factors for overall survival in CN-AML patients

+: positive; −: negative

Prognostic factors Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 2.080 (1.017–4.255) 0.045 1.125 (0.262–4.825) 0.874

WBC 1.522 (0.852–2.718) 0.049 1.174 (0.305–4.505) 0.816

miR-29c expression 3.546 (1.548–8.130) 0.003 6.897 (1.362 –34.483) 0.020

K/N-RAS mutation (±) 1.395 (0.548–3.550) 0.485 – –

FLT3 mutation (±) 1.185 (0.503–2.793) 0.697 – –

U2AF1 mutation (±) 1.181 (0.574–2.452) 0.651 – –
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associated with poor survival in chronic lymphocytic leu-
kemia, acute lymphoblastic leukemia, Burkitt lymphoma 
and chronic myeloid leukemia [45–48]. Conversely, Zhu 
et al. found that miR-29c was overexpressed in early stage 
non-small lung cancer (NSCLC), whereas the level of 
miR-29c expression did not relate with the OS of NSCLC 
patients [49]. Butrym et al. found that miR-29c was up-
regulated and associated with poor prognosis in older 
AML patients [29]. However, our results showed that 
miR-29c expression was significantly down-regulated in 
AML and low expression of miR-29c was associated with 

shorter overall survival. We thought there were two piv-
otal reasons for our different results, as follow: (A) Sub-
jects: Butrym et  al. contained 95 patients (73 patients 
with primary leukemia and 22 patients with leukemia 
secondary to myelodysplastic or myeloproliferative syn-
drome). Our study included 102 newly diagnosed AML 
patients. Furthermore, the previous treatment of 22 
patients with secondary leukemia was unknown. Namely, 
there were differences between the two studies’ subjects. 
(B) Treatment regimen: This is a vital factor affecting the 
prognosis of patients. Drug used by Butrym et  al. was 

Fig. 2  MiR-29c increased sensitivity to DAC and promoted apoptosis in leukemic cells. a CCK-8 Kit analysis the cell viability in K562-NC and 
K562-miR-29c cells. b, c Analysis the sensitive of DAC in K562-NC and K562-miR-29c cells by CCK-8 Kit. d CCK-8 Kit analysis the cell viability in 
HEL-NC and shRNA-29c-HEL cells. e, f Analysis the sensitive of DAC in HEL-NC and shRNA-29c-HEL cells by CCK-8 Kit. g The statistical analysis of Flow 
Cytometry about HEL-NC and shRNA-29c-HEL cells. h The apoptosis rate of HEL-NC cells was detected by Flow Cytometry. i The apoptosis rate of 
shRNA-29c-HEL cells was detected by Flow Cytometry. The IC50 was the half maximal inhibitory concentration
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azacitidine. However, the patients were treated with con-
ventional chemotherapy in our study. Additionally, our 
studies in  vitro revealed that miR-29c over-expression 
could promote apoptosis and inhibited growth in leuke-
mic cells treated with DAC, while miR-29c knock-down 
could reverse the effect.

In recent years, some miRNAs have been found to take 
part in chemotherapeutic drugs resistance, such as miR-
138, miR-194, miR-137, etc. [40–52]. It has been reported 
that high miR-29c expression increased the sensitivity of 
non-small cell lung cancer (NSCLC) cells to the cispl-
atin [53]. Wang et al. found that miR-29c overexpression 
might contribute to the efficacy of cisplatin in gastric can-
cer treatment [54]. MiR-29c overexpression increased the 
sensibility of temozolomide-resistance cells in glioblas-
toma [55]. In  vitro studies, miR-29c up-expression was 
accompanied with miR-29c demethylation during DAC 

treatment. It suggested that miR-29c expression might 
be regulated by its promoter methylation. Although the 
level of miR-29c expression was down-regulated, the pro-
moter of miR-29c was demethylated in K562/DAC. This 
suggests that decreased expression of miR-29c may be 
involved in DAC resistance, which could be reversed by 
miR-29c over-expression.

Conclusions
Taken together, our results indicate that down-regulation 
of miR-29c is a frequent event and predicts poor prog-
nosis in de novo AML patients. MiR-29c overexpression 
can increase the sensitivity of leukemic cells to DAC and 
provides possible guidance for clinical DAC resistance.

Fig. 3  The expression and methylation level of miR-29c in K562 and K562/DAC. a The expression level of miR-29c in K562 under different DAC 
concentrations. b The expression level of miR-29c in DAC resistance cell (K562/DAC). c The methylation level of miR-29c in K562 under different 
DAC concentrations. d The methylation level of miR-29c in DAC resistance cell (K562/DAC). a K562 cell line. b K562/DAC cell. c K562 + 1 μM DAC. 
Methylation density of miR-29c in K562 and K562/DAC. White cycle: un-methylated CpG dinucleotide; black cycle: methylated CpG dinucleotide. a, 
b Controls (selected randomly); c, d un-methylated
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Additional file

Additional file 1. Additional figures.

Abbreviations
DAC: decitabine, 5-Aza-2′-deoxycytidine; HMAs: hypomethylating agents; AC: 
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