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Long non-coding RNA HOTAIR functions 
as a competitive endogenous RNA to regulate 
PRAF2 expression by sponging miR-326 
in cutaneous squamous cell carcinoma
Guo‑Jun Yu1* , Yong Sun1, Da‑Wei Zhang1 and Peng Zhang2

Abstract 

Background: LncRNAs may exert a regulatory effect in tumorigenesis. Although the expression of lncRNA HOTAIR 
has been confirmed to be notably elevated in the tissues of CSCC, its biological mechanism in CSCC is still unknown.

Methods: HOTAIR expression level in CSCC cell lines was monitored via qRT‑PCR. Then CCK‑8 assay, Transwell assay 
and EdU assay were adopted to detect cell migration and proliferation. Meanwhile, through bioinformatics analysis 
and luciferase reporter gene detection, a new target of HOTAIR was identified. Additionally, Western blotting and RIP 
analysis were adopted to discuss the possible mechanism.

Results: HOTAIR expression in CSCC cell lines exhibited an obvious elevation. Cell function analysis revealed that 
HOTAIR overexpression remarkably facilitated CSCC cell migration, proliferation and EMT process, which were 
impeded by down‑regulation of HOTAIR. Furthermore, HOTAIR competitively bound to miR‑326, so as to positively 
modulate miR‑326 expression.

Conclusions: These results present that HOTAIR, as a ceRNA, regulates PRAF2 expression by competitive binding to 
miR‑326 during CSCC.
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Background
The dermis and epidermis constitute the skin, the larg-
est organ [1]. As the outer layer of the skin, the epider-
mis directly contacts with external particles, pathogens, 
UV rays and chemicals in the environment [2]. DNAs 
will mutate due to exposure of skin cells to UV rays and 
chemicals for a long time, which may induce the devel-
opment of cancers, so skin cancer becomes the most 
common cancer in human, especially in those with low 
level of melanin in the skin [3, 4]. Non-melanoma skin 
cancer (NMSC) and melanoma are two common types 
of skin cancers. NMSC can be classified into basal cell 

carcinomas (BCCs) and cutaneous squamous cell car-
cinoma (CSCC) [5]. According to the estimation of the 
American Academy of Dermatology, there are about 
9500 new cases of skin cancer every day and more than 
3 million Americans annually suffered from NMSC [6]. 
CSCC, a skin tumor derived from epidermal keratino-
cytes, ranks second among frequently occurring NMSC 
types. Emphasis in current research on CSCC has been 
gradually put on the gene, molecule and protein level. 
For instance, Mei [7] discovered that long non-coding 
RNA (lncRNA) LINC00520 impedes CSCC to progress 
through inactivating the PI3K/Akt signaling pathway by 
down-regulation of EGFR. Gong et  al. [8] showed that 
miR-221 accelerates the progression of CSCC through 
targeting PTEN. In order to improve people’s under-
standing of CSCC, the development and metastasis 
mechanisms of CSCC were further explored from the 
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perspective of epigenetics, which will be conducive to 
improving the existing diagnosis and treatment methods 
and have important clinical significance.

LncRNAs refer to ncRNAs that can regulate gene 
expression with 200 nt in length [9, 10]. In recent years, 
lncRNAs have aroused extensive attention of research-
ers due to its complex biological functions. Besides, they 
have been confirmed to exert pivotal effects on prolifera-
tion, apoptosis, invasion and infiltration of many malig-
nant tumor cells [11–14]. As a lncRNA, HOTAIR (Gene 
ID: 100124700) is located in the 12q13.13 region of the 
human genome, which is crucial in the pathological pro-
cess of a variety of diseases, such as endocrine system 
diseases [15], cardiovascular diseases [16] and diverse 
tumors [17]. HOTAIR has been verified to be involved 
in the occurrence mechanisms of cervical cancer [18] 
and breast cancer [19] by promoting tumor cell migra-
tion and proliferation. Through expression profiles and 
qRT-PCR assay, Sand et  al. [20] proved that HOTAIR is 
up-regulated in CSCC tissues compared with nonlesional 
epithelial skin. Although it has been found that lncRNA 
HOTAIR is related to the pathological process of CSCC, 
the exact mechanism of HOTAIR in participating in the 
occurrence process of CSCC still needs to be explored.

Recently, emerging evidence indicated the crucial roles 
of miRNAs in various human diseases [21–25]. Muham-
mad et al. [26], found that Anti-miR-203 suppresses ER-
positive breast cancer growth and stemness by targeting 
SOCS3. Gong [8] stated that miRNA-221 promotes cuta-
neous squamous cell carcinoma progression by target-
ing PTEN. miR-326 functions as a tumor suppressor in 
gastric cancer [27], lung cancer [28], breast cancer [29] 
and so on. Nevertheless, whether miR-326 can inhibit the 
progression of CSCC needs further study.

Our research team verified that HOTAIR exhibited a 
high expression in CSCC cell lines, and elevated HOTAIR 
stimulates the migration and proliferation of A431 and 
SCL-1. Overall, results presented that HOTAIR compet-
itively bound to miR-326, so as to affect the expression 
of prenylated Rab acceptor 1 domain family, member 2 
(PRAF2) and participate in the mechanism of CSCC, thus 
creating an option for studying CSCC based on lncRNAs.

Methods
Culture and transfection of cells
HaCaT (one human keratinocyte cell line) and A431, 
HSC-5, SCC13, and SCL‐1 (four CSCC cell lines) were 
bought from Shanghai Cell Bank, Chinese Academy 
of Sciences (Shanghai, China). Then the cells were cul-
tured in DMEM (Gibco, Grand Island, NY) containing 
10% FBS (Beyotime, Nantong, China) as well as 100 μg/
mL streptomycin and 100  IU/mL penicillin (Invitrogen, 
USA) in a cell incubator with 5%  CO2 at 37 °C. HOTAIR 

overexpression (HOTAIR OE) plasmids, HOTAIR siR-
NAs, miR-326 mimics and miR-326 inhibitors were syn-
thesized by GenePharma (Shanghai, China). On the basis 
of manufacturer’s protocol, Lipofectamine 2000 (Invitro-
gen, CA, USA) was applied to transfect cells.

RNA extraction and qRT‑PCR
For total RNA extraction from cells, TRIzol reagent 
(Takara, Tokyo, Japan) was used following the manu-
facturer’s protocol. For cell lysis, the cells were washed 
with PBS and 1 mL TRIzol was added per well for 3 min. 
The concentration and purity of the RNA were evalu-
ated using a spectrophotometer (Bio-Rad, Hercules, 
CA). The Reverse Transcription Kit (Takara, Tokyo, 
Japan) was utilized for transcription of RNA to cDNA. 
Afterwards, real-time quantitative PCR (qRT-PCR) was 
performed using the SYBR Green PCR Master Mix (Inv-
itrogen, USA). RNA was quantified through normalizing 
to GAPDH using  2−ΔΔCt method. PCR primers used are 
displayed in Table 1. Each experiment was independently 
conducted for three times.

Cell proliferation assay
To detect cell proliferation, CCK-8 (Beyotime, Nantong, 
China) assay was conducted in accordance with manu-
facturer’s regimen. On 96-well plates, the cells were 
subjected to 24 h of culture, addition of CCK-8 and 1 h 
of incubation in a cell incubator. Cell optical density at 
450  nm was identified by means of the Tecan infinite 
M200 multimode microplate reader (Tecan, Mechelen, 
Belgium). Next, the proliferation of cells was monitored 
via EDU assay. Then the cells were transfected, incubated 

Table 1 Sequences of primers for qRT-PCR

Name Sequence

lncRNA‑HOTAIR

 Forward 5′‑GAG GGG AGC AGA GTT CAA GT‑3′

 Reverse 5′‑TGG GAG GCA GCA ATA GAC AA‑3′

PRAF2

 Forward 5′‑CTG GAC GAC TTT GTT CTG GGG‑3′

 Reverse 5′‑GCT CAG GAG CGT ATG AAG TGG‑3′

GAPDH

 Forward 5′‑GCA CCG TCA AGG CTG AGA AC‑3′

 Reverse 5′‑GGA TCT CGC TCC TGG AAG ATG‑3′

U6

 Forward 5′‑CTC GCT TCG GCA GCACA‑3′

 Reverse 5′‑AAC GCT TCA CGA ATT TGC GT‑3′

miR‑326

 Forward 5′‑ACA CTC CAG CTG GGG ACC TCC TTC CCGG‑3′

 Reverse 5′‑CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA 
GCC CAG AGG ‑3′
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in EdU medium for 2  h, and fixed in 4% paraformalde-
hyde for 15 min. EdU staining was carried out with refer-
ence to manufacturer’s instructions.

Cell migration examination
Cell migration capacity was examined via Transwell 
assay. At 24 h after transfection, 1 × 106 cells suspended 
in 100 μL medium free of serum were added to the top 
chamber, and 600 μL medium with 10% FBS to the bot-
tom chamber. Then the cells were incubated for 24  h, 
fixed in 4% polymethyl alcohol for 15 min, dyed with 0.1% 
crystal violet (Beyotime, Nantong, China) for 20 min, and 
photographed with a microscope (×200, ten views per 
well). Additionally, the transferred cells were quantified 
using Image-Pro Plus 6.0 (Media Cybernetics, USA).

TUNEL staining
In accordance with the manufacturer’s instructions, 
TUNEL assays were performed on xenograft tumor tis-
sues using an Apoptosis Detection Kit (Ribobio, China). 
TUNEL-positive cells were evaluated in a randomly 
selected field of view with no significant necrosis. The 
TUNEL index was calculated based on the total number 
of nuclei and cells with green nucleus. All samples were 
assayed in triplicate.

Wound healing assay
Scratch wound healing was applied to measure cell 
migration. On 6-well plates, the cells were inoculated 
and scratched using a pipette tip (10 μL). After washing 
thrice, the non-adherent cells were washed. Cell migra-
tion toward the wound 24  h post-scratching was pho-
tographed by using an inverted microscope (Olympus, 
Japan), and the total wound areas were analyzed on 
Image J to assess migration capacity.

Cell apoptosis and cell cycle assays
Annexin V-FITC and propidium iodide (PI) were applied 
to label cells in cell apoptosis assay, and then the cells 
were subjected to flow cytometry (BD Biosciences, 
Franklin Lakes, NJ, USA). Flow cytometry was adopted 
to examine the cells stained by PI in cell cycle assay. In 
both assays, a flow cytometer (FACScan; BD Biosciences, 
USA) equipped with Cell Quest software (BD Bio-
sciences) was applied.

Subcellular fractionation location
RNAs in the nucleus and cytoplasm were separated with 
the PARIS Kit (Life Technologies, USA) based on the 
manufacturer’s instructions. As mentioned above, the 
total RNAs extracted from each fraction were deter-
mined via qRT-RCR. GAPDH was taken as a cytoplasmic 
marker, while U6 as a nuclear control transcript.

Dual‑luciferase reporter gene assay
Wild-type plasmid HOTAIR-WT, PRAF2-WT and 
mutant plasmid HOTAIR-MUT, PRAF2-MUT were 
constructed. A431 and SCL-1 on 24-well plates were 
co-transfected with 50 nM miR-326 mimics or NC and 
wild-type or mutant plasmid using Lipofectamine 2000. 
Then pRL-SV40 was added into plasmids at the ratio of 
1:16. Dual-luciferase reporter assay kit (Promega, Mad-
ison, WI, USA) was used for determining luciferase 
intensity on a microplate reader.

RNA‑binding protein immunoprecipitation (RIP) analysis
In RIP assay, the Magna Nuclear RIP™ (Native) RIP 
Kit (Millipore, Bedford, MA, USA) was utilized. Cells 
underwent lysis in complete RIPA buffer with an RNase 
inhibitor and protease inhibitor cocktail. Then mag-
netic beads in RIP buffer were conjugated to immuno-
globulin G (IgG) control or human anti-AGO2 antibody 
(Millipore), and the buffer was used to incubate the cell 
extract. Immunoprecipitated RNA was obtained from 
protein digestion. Finally, the purified RNA was quanti-
fied by qRT-PCR. Anti-HOTAIR applied for RIP assay 
was bought from Abcam (Cambridge, MA, USA).

Western blotting analysis
RIPA was used to extract total proteins. SDS-PAGE gel 
with appropriate concentration was selected in light 
of the molecular weight of target proteins. After elec-
trophoresis, the proteins were transferred onto PVDF 
membranes, and primary antibodies (Abcam, Cam-
bridge, USA) of PRAF2, E-cadherin, N-cadherin, Twist, 
Snail1, ZEB-1, Cyclin D1, pro-caspase-3, cleaved-
caspase-3 and β-actin were applied to incubate these 
membranes. The anti-rabbit or anti-mouse HRP-linked 
secondary antibodies (diluted at 1:1000; Beyotime, 
Nantong, China) were added for 2  h of incubation at 
37  °C. Data analysis was carried out with ImageJ soft-
ware (NIH, Washington, DC, USA).

Immunohistochemistry
Immunohistochemical staining was performed accord-
ing to published methods [30]. First, 3  μm paraffin 
sections of tissue samples were stained with immuno-
histochemistry. The primary antibody specific for Ki-67 
(Abcam, Cambridge, USA) was used at a 1:100 dilu-
tion in the experiments. Images were captured using a 
Nikon Eclipse 80i system with NIS-Elements software 
(Nikon, Japan).

Animal experiments
The flanks of BALB/c thymic free nude mice (female, 
4–6  weeks old, Animal Center of Shanghai Jiaotong 
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University) were subcutaneously injected with A431. 
After cell injection for 4 weeks, the mice were executed 
and tumors were excised for analysis. This study was 
approved by the ethic committee in The Affiliated Hua-
ian No.1 People’s Hospital of Nanjing Medical Univer-
sity, and experiments were performed according to the 
animal welfare and NIH requirement.

Statistical analysis
Statistical analysis was conducted by means of SPSS20.0 
software (SPSS, Chicago, IL, USA) and GraphPad Prism 
6.0 (GraphPad Software Inc., CA, USA). Student’s t-test 
was performed to assess the statistical difference among 
data sets when the data conformed to the normal distri-
bution, while the nonparametric test was used when the 
data did not accord with the normal distribution in all 
relevant experiments. The multigroup comparisons were 
determined by one-way ANOVA followed by Dunnett’s 
multiple comparison test. All data were presented as 
mean ± SD. The difference would be statistically signifi-
cant when P< 0.05.

Results
Role of HOTAIR in CSCC cell lines
To elucidate whether HOTAIR was elevated in CSCC 
cell lines, HOTAIR expression level in CSCC cell lines 
and a human keratinocyte cell line (HaCaT) was meas-
ured via qRT-PCR. It could be seen from Fig.  1a that 
compared with HaCaT, the level of HOTAIR in CSCC 
cells was increased remarkably, which is identical to 
the findings of Sand [20] in CSCC tissues. In the mean-
time, HOTAIR had the highest expression in A431 and 
the lowest expression in SCL-1 compared with that in 
other CSCC cell lines. Hence, A431 and SCL-1 were 
selected as research objects in the following experi-
ments. Subsequently, qRT-PCR was conducted to 
verify transfection efficiency, which manifested that 
HOTAIR siRNAs were capable of prominently interfer-
ing with the expression of HOTAIR while HOTAIR OE 
plasmids increased its expression remarkably (Addi-
tional file 1: Figure S1A, B). Meanwhile, it was proved 
by CCK-8 assay that down-regulation of HOTAIR 
(HOTAIR siRNAs) evidently attenuated the prolifera-
tion ability of CSCC cells. In contrast, HOTAIR OE 

obviously enhanced proliferation ability of CSCC cells 
(Fig.  1b). Results of EdU assay were consistent with 
those of CCK-8 (Fig.  1c, d). However, neither down-
regulation nor HOTAIR OE would affect the apoptosis 
and cycle of CSCC cells (Fig.  1e, f ), so as the expres-
sion of Cyclin D1, pro-caspase-3, cleaved-caspase-3 
(Fig. 1g). Moreover, cell migration experiments showed 
that down-regulation of HOTAIR notably weakened 
the migration ability of CSCC cells (Fig.  2a), while 
HOTAIR OE prominently promoted its migration 
(Fig.  2b), which were also confirmed by wound heal-
ing assay (Fig.  2c, d). EMT process is known to be 
closely associated with cell migration. Subsequently, 
the expressions of mesenchymal marker N-cadherin, 
epithelial marker E-cadherin and EMT-related mark-
ers Twist, Snail1 and ZEB1 were measured. It could 
be seen that HOTAIR siRNAs could elevate E-cad-
herin expression but inhibit the expressions of N-cad-
herin and Twist, Snail1 and ZEB1. Transfection with 
HOTAIR OE plasmids had an expected opposite effect 
(Fig.  2e). All in all, these results reveal that HOTAIR 
may exert regulatory effects on CSCC cell migration 
and proliferation to a certain degree.

HOTAIR promotes CSCC cell proliferation in vivo
To explore the role of HOTAIR in tumor growth of 
CSCC in vivo, nude mice received subcutaneous injec-
tion of A431 transfected with NC or HOTAIR siRNAs. 
The results displayed that down-regulation of HOTAIR 
decreased the tumor volume (Fig. 3a) and tumor weight 
(Fig. 3b) after the 4-week intratumorally injection. Fur-
thermore, immunohistochemistry demonstrated that 
mice received subcutaneous injection of A431 trans-
fected with si-HOTAIR appeared to have a lower level 
of Ki-67, the proliferation-specific gene in mice tumor 
tissues (Fig.  3c). Interestingly, after removing the lung 
tissues of nude mice, we found that the destruction of 
lung tissues was more pronounced in control group 
compared to the si-HOTAIR group (Fig. 3d). Then, we 
performed TUNEL assay to examine the apoptotic cells 
in the tumors tissues as shown in new Fig. 3e. Results 
showed that there is no significant difference between 
the control and HOTAIR siRNA group.

Fig. 1 Regulatory effects of HOTAIR on proliferation, apoptosis and cell cycle progression of CSCC cells. a Detection of HOTAIR expressions in CSCC 
cell lines (A431, SCL‑1, HSC‑5, and SCC13) and one human keratinocyte cell line (HaCaT) via qRT‑PCR. b CCK‑8 assay shows the proliferation of A431 
transfected with HOTAIR siRNAs and SCL‑1 transfected with HOTAIR OE plasmids. c, d EdU assay shows the proliferation of A431 transfected with 
HOTAIR siRNAs and SCL‑1 transfected with HOTAIR OE plasmids. e Determination of cell cycle through BD Biosciences FACSCalibur™ Flow Cytometry. 
f Detection of cell apoptosis through BD Biosciences FACSCalibur™ Flow Cytometry. g Detection of the expression of Cyclin D1, pro‑caspase‑3, 
cleaved‑caspase‑3 through western blot. Data are presented as mean ± SD. *P < 0.05; ns, no significant difference; siRNA NC, siRNA negative control 
group; vector, overexpression plasmid vector negative control group

(See figure on next page.)
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Subcellular localization of HOTAIR
Subcellular localization of lncRNA is known to deter-
mine how lncRNA functions. In order to elucidate the 
cellular localization of HOTAIR, CSCC cells were isolated 
into the cytoplasm and the nucleus, with U6 and GAPDH 
as controls. U6 is mainly distributed in the nucleus, 
whereas GAPDH mainly exists in the cytoplasm. Accord-
ing to qRT-PCR results, 52.5% and 50.6% HOTAIR were 
detected in the cytoplasm of A431 and SCL-1, respec-
tively (Fig.  4a), displaying that HOTAIR may be located 

in both cytoplasm and nuclei of CSCC cells. These results 
meant that HOTAIR may be involved in transcriptional 
and post-transcriptional level regulation. Considering 
that more than half of HOTAIR located in the cytoplasm 
of CSCC cells, we mainly explored its function in post-
transcriptional level in the mechanism of CSCC.

HOTAIR is targeted by miR‑326
Although HOTAIR was discovered to be markedly up-
regulated in CSCC cells and to speed up migration 
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Fig. 2 Regulatory effects of HOTAIR on cell migration and progression of CSCC cells. a, b Transwell assay shows the migration of A431 transfected 
with HOTAIR siRNAs and SCL‑1 transfected with HOTAIR OE plasmids. Images are harvested under a light microscope (×200). c, d Wound healing 
assay shows the migration of A431 transfected with HOTAIR siRNAs and SCL‑1 transfected with HOTAIR OE plasmids. e Transfection with HOTAIR 
siRNAs in A431 promotes the expression of E‑cadherin and inhibited the expressions of N‑cadherin, Twist, Snail1 and ZEB1. Transfection with HOTAIR 
OE plasmids in SCL‑1 represses the expression of E‑cadherin and promotes N‑cadherin and Twist expressions. Data are presented as mean ± SD. 
*P < 0.05; siRNA NC, siRNA negative control group; vector, overexpression plasmid vector negative control group
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and proliferation CSCC cells, the exact mechanism of 
HOTAIR in participating in CSCC is still unclear. It was 
inferred that HOTAIR might act as a (competing endog-
enous RNA) ceRNA in biological processes [31, 32]. 
Through the intersection of RegRNA and Starbase soft-
ware prediction results, it was found that miR-326 highly 
matched with the sequences of HOTAIR in 3′-UTR 
(Fig.  4b). QRT-PCR manifested that miR-326 expres-
sion level in CSCC cells was reduced (Fig. 4c), which was 
contrary to the expression trend of HOTAIR in CSCC 
cells. To study the interaction between HOTAIR and 
miR-326, HOTAIR fragments containing mutant or pre-
dicted target sites were established into the downstream 

of the firefly luciferase gene (pGL3-HOTAIR-WT and 
pGL3-HOTAIR-MUT) (Fig.  4d). The relative luciferase 
expression declined remarkably in SCL-1 and A431 
co-transfected with HOTAIR-WT and miR-326 mim-
ics, but luciferase intensity did not notably change after 
transfection with HOTAIR-MUT (Fig.  4e). Moreover, 
whether miRNA-containing ribonucleoprotein com-
plexes involved HOTAIR was demonstrated via RIP assay 
in SCL-1 and A431. Then the relative RNA expression in 
immunoprecipitates was measured via qRT-PCR, which 
revealed that a large number of HOTAIR RNAs were 
enriched by anti-AGO2 antibodies in cells in contrast to 
IgG control. The expected similar results were obtained 
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Fig. 3 HOTAIR promotes CSCC cell proliferation in vivo. a Representative images of xenografts tumor in nude mice. b Tumor weight is monitored. 
c Representative images of IHC stained Ki‑67 are shown (bar = 20 μm). d Representative images of H&E stained lung tissues are shown. e 
Representative images of TUNEL stained tumors tissues are shown (bar = 20 μm). Data were presented as mean ± SD. *P < 0.05; ns, no significant 
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at miR-326 (Fig.  4f ). The above-mentioned results sug-
gest that HOTAIR directly interacts with miR-326.

HOTAIR regulates miR‑326 target gene, PRAF2
Target genes of miR-326 were screened through bioin-
formatics prediction with TargetScan (http://www.targe 
tscan .org/), Starbase (http://starb ase.sysu.edu.cn/) and 
RegRNA (http://regrn a2.mbc.nctu.edu.tw/). The inter-
section of the prediction results on these three datasets 
contained several genes. Through consulting literature, 
only PRAF2 is closely related to the progress of cancer 
[33–35]. Finally, PRAF2 was chose for further research. 
Then dual-luciferase reporter gene assay was conducted 
to further verify the binding relationship between miR-
326 and PRAF2. Luciferase plasmids pGL3-PRAF2-WT 
and pGL3-PRAF2-MUT with mutant or predicted bind-
ing sites were established, which were then used to co-
transfect SCL-1 and A431 with miR-326 mimics or NC, 
respectively (Fig. 5a). The results unfolded that miR-326 
overexpression inhibited the luciferase intensity of the 
WT reporter, but transfection with miR-326 caused no 
luciferase activity change in the MUT reporter (Fig. 5b). 
The above results denote that PRAF2 is a potential tar-
get gene of miR-326. Subsequently, the expression level 
of PRAF2 in CSCC cell lines was measured. As shown 
in Fig.  5c, in contrast to HaCaT, the control cell line, 
the mRNA level of PRAF2 in CSCC cell lines was raised 
remarkably. Besides, the protein level of PRAF2 was 

examined through Western blotting, the results of which 
were consistent with those of qRT-PCR (Fig. 5d).

To elaborate whether HOTAIR was capable of modu-
lating PRAF2 expression level by binding to miR-326, 
the mRNA and protein levels of PRAF2 in cells with 
regulated expressions of HOTAIR and miR-326 were 
detected. The results revealed that transfection with miR-
326 inhibitors in A431 notably elevated PRAF2 expres-
sion, whereas transfection with HOTAIR siRNAs exerted 
an opposite effect (Fig. 6a, b). Furthermore, transfection 
with miR-326 mimics in SCL-1 evidently repressed the 
expression of PRAF2, but transfection with HOTAIR 
OE plasmids could reverse this change (Fig. 6c, d). Sub-
sequently, HOTAIR OE plasmids and its mutant over-
expression plasmids were applied to transfect SCL-1, 
followed by determination of PRAF2 expression. Both 
Western blotting and qRT-PCR results validated that 
overexpression of HOTAIR-WT upregulated PRAF2 
expression in CSCC cells, whereas HOTAIR-MUT did 
not have this effect (Fig.  6e, f ). To sum up, the findings 
unfolded that HOTAIR positively modulated PRAF2 
expression by directly binding to miR-326.

HOTAIR‑miR‑326 regulatory loop exerts a pivotal effect 
on cell function
Next, whether miR-326 could affect proliferative and 
migratory potentials of A431 and SCL-1 was explored. 
First of all, transfection efficiency of miR-326 mimics and 
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inhibitors were verified by qRT-PCR (Additional file  1: 
Figure S1C, D). Downregulation of miR-326 in A431 
markedly promoted proliferative and migratory poten-
tials compared to controls, which were partially reversed 
by co-transfection with miR-326 inhibitors and HOTAIR 
siRNAs (Fig.  7a, c, e). In addition, overexpression of 
miR-326 inhibited proliferative and migratory poten-
tials of SCL-1, and were partially reversed by HOTAIR 
OE (Fig.  7b, d, f ). Overexpression of HOTAIR-MUT 
in SCL-1 had no effect on proliferative and migratory 
potentials (Fig.  7g, h). Then, we showed the expression 
of mesenchymal marker N-cadherin, epithelial marker 
E-cadherin and EMT-related markers Twist, Snail1 and 
ZEB1 in the same experiment setting as shown in Fig. 7e, 
f, i). It could be seen from the above results that HOTAIR/
miR-326/PRAF2 axis showed great effects on regulating 
behaviors of CSCC cells (Fig. 8).

Discussion
The onset of CSCC is associated with unlimited migra-
tion and proliferation of skin squamous epithelial cells 
[36], so any factor that affects the proliferation and 
migration of skin squamous epithelial cells may trigger 
CSCC. LncRNAs turn out to be regulators of almost all 

cellular processes, including cell migration and prolifera-
tion [37, 38]. Since HOTAIR is identified to participate 
in cell migration and proliferation [39, 40], it is assumed 
that HOTAIR may participate in the pathogenesis of 
CSCC.

The results of this study illustrated that in comparison 
with that in normal human keratinocyte cell line HaCaT, 
the level of HOTAIR in CSCC cell lines was raised signifi-
cantly. Additionally, lowered expression of HOTAIR could 
prominently repress cell migration and proliferation as 
well as its EMT process, representing that HOTAIR is a 
pivotal positive regulator of CSCC cell growth and plays 
a role as an oncogene. Therefore, deeply investigating the 
mechanism of HOTAIR in boosting CSCC cell growth 
is conducive to understanding the occurrence, develop-
ment and metastasis of CSCC.

Literature [31, 32, 41, 42] has demonstrated that 
HOTAIR is a potential ceRNA. Later, it was con-
firmed through RIP and dual-luciferase reporter assay 
that HOTAIR could bind to miR-326. Up to now, an 
enormous body of studies have shown that miR-326 
expression in tumors such as colorectal cancer and 
gastric cancer is reduced [43, 44]. The current research 
proved that miR-326 was down-regulated in CSCC 
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cell lines, and miR-326 mimics could markedly repress 
cell migration and proliferation. It was simultaneously 
found that the inhibition of miR-326 mimics on prolif-
eration and migration of CSCC cells could be reversed 
by HOTAIR OE. All these results identify that HOTAIR 
and miR-326 may participate in CSCC occurrence and 
development through modulating the proliferation and 
migration of CSCC cells.

PRAF2, formerly known as JM4, is a 19-kDa protein 
possessing four transmembrane-spanning domains. It 
is a protein of the PRAF family associated with vesicle 
transport. In contrast to paired normal tissue samples, 
PRAF2 is observed to be overexpressed in tumor tis-
sue samples of hepatocellular carcinoma and malig-
nant glioma [45, 46]. A study of Yco [34] has shown 
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that PRAF2 accelerates cell migration and proliferation 
and predicts poor prognosis in neuroblastoma. Cor-
respondingly, this study manifested that up-regulated 
HOTAIR resulted in high expression of the miR-326 
target PRAF2, which might cause abnormal migration 
and proliferation of CSCC cells.

Conclusions
To sum up, this study indicates that HOTAIR functions 
as a ceRNA to modulate PRAF2 expression by sponging 
miR-326, and plays a certain role in triggering CSCC.
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