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Abstract 

Background: Head and neck squamous cell carcinoma (HNSC) ranks as the sixth most common malignancy. 
The identification of highly specific and sensitive prognostic markers and potential drug targets can contribute to 
enhanced patient prognosis and individualized treatments. Heat shock proteins (HSPs) act as molecular chaperones 
and play a crucial role in maintaining cell homeostasis. Recently, research has indicated that HSPs also act as “evil 
chaperones” in cancer development.

Methods: In this study, we assessed the expression of HSPs in HNSC patients using the ONCOMINE, GEPIA, and UAL-
CAN databases. Mutations of HSP genes were also analysed using the cBioPortal database. Additionally, the expres-
sion levels of HSPs were verified using the Human Protein Altas (THPA) database.

Results: We found that the expression levels of HSPH1, HSPD1, SERPINH1, HSPA4, and HSP90AA1 were significantly 
higher in tissues from HNSC patients compared with normal tissues. Moreover, HSPH1, HSPD1, SERPINH1, HSPA4 and 
HSP90AA1 expressions were linked to disease progression. Survival analysis with the GEPIA and OncoLnc databases 
indicated that upregulation of HSPH1, HSPD1, SERPINH1, HSPA4 and HSP90AA1 was related to poor overall survival 
(OS).

Conclusion: This study suggests that the HSPH1, HSPD1, SERPINH1, HSPA4 and HSP90AA1 genes are potential clini-
cal targets and prognostic biomarkers for patients with HNSC.
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Background
Head and neck squamous cell carcinoma (HNSC) com-
monly occurs in the oral cavity, larynx, and pharynx and 
ranks as the sixth most common malignancy. In 2018, 
there was an estimated 43,000 HNSC-associated deaths 
worldwide and 835,000 new cases [1, 2]. Unfortunately, 
diagnosis of HNSC is usually made at an advanced 

disease stage as the clinical symptoms of HNSC are not 
obvious during the early stage. As a result, the current 
5-year survival rate is less than 65% [3]. It is generally 
understood that the accumulation of genetic mutations 
in epithelial cells plays a key causal role in the develop-
ment and progression of HNSC [4]. Hence, the identifi-
cation of highly specific and sensitive prognostic markers 
and potential drug targets can contribute to enhanced 
patient prognosis and individualised treatments.

Heat shock proteins (HSPs) are genetically highly 
conserved proteins that act as molecular chaperones 
and play a crucial role in maintaining cell homeosta-
sis [5]. Aside from their cytoprotective effects, recent 
research has suggested that HSPs also act as “evil 

Open Access

Cancer Cell International

*Correspondence:  xhjent_whxh@hust.edu.cn
†Guorun Fan and Yaqin Tu contributed equally to this work
1 Department of Otorhinolaryngology, Union Hospital, Tongji Medical 
College, Huazhong University of Science and Technology, Wuhan 430022, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1776-5435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-020-01296-7&domain=pdf


Page 2 of 12Fan et al. Cancer Cell Int          (2020) 20:220 

chaperones” in the development, progression, metas-
tasis and drug resistance of cancers [6, 7]. Therefore, 
HSPs have recently been proposed as potential thera-
peutic targets for tumor therapy [8]. HSPH1 (also 
named HSP105), a member of the HSP70 superfamily, 
is a component of the β-catenin degradation complex. 
Previous studies have demonstrated that overexpres-
sion of HSPH1/HSP105 in various cancers is associ-
ated with increased levels of nuclear β-catenin protein 
and upregulation of Wnt target genes [9].  HSPD1 is a 
molecular chaperone primarily localised in the mito-
chondrial matrix. It has been described as a poten-
tial prognostic and diagnostic biomarker for cancer. 
Recent studies have demonstrated that HSPD1 not 
only regulates the stability of survivin protein, but also 
regulates the mRNA expression of survivin [10]. SER-
PINH1, also called heat shock protein 47 (HSP47), is a 
collagen specific molecular chaperone.  Several studies 
have confirmed that SERPINH1 participates in numer-
ous steps of collagen synthesis, blocking the aggrega-
tion of procollagen and inducing the hydroxylation of 
proline and lysine residues. Abnormal expression lev-
els of SERPINH1 are frequently found in a variety of 
cancers, including cervical, lung and gastric cancers 
[11–13]. Heat shock protein A4 (HSPA4), a member 
of the HSP110 family, is widely expressed in a variety 
of organs and can be induced under different condi-
tions, including carcinogenic stress [14–16]. Recent 
studies have indicated that knockdown of HSPA4 can 
significantly reduce the migration, invasion, and trans-
formation activities of tumor cells [17]. Heat shock 
protein 90α (Hsp90α) is the major cytosolic chaper-
one in eukaryotes. It is involved in cell protection and 
intracellular signaling transduction, controls intra-
cellular homeostasis and assemblies of endoplasmic 
reticulum-secreted peptides, and regulates the translo-
cation of proteins across the membranes of organelles 
after translation. Upregulated expression of Hsp90α is 
observed in a variety of cancer tissues, including liver, 
breast, and pancreatic cancers [18–20]. However, there 
is limited understanding of the underlying mechanisms 
and the unique roles of these genes in HNSC.

Although some studies have reported dysregulated 
expression of HSPs in HNSC and have linked this to 
patients’ prognosis [21, 22], the overall HSP expression 
profiles and the prognostic relevance of these expres-
sion profiles remain unknown. In the current study, we 
assessed the expression levels and mutations of HSPs 
in HNSC patients. The aim was to assess the potential 
functions, patterns of expression, and prognostic rel-
evance of these genes in HNSC. To achieve this goal, 
we analysed large datasets available in various public 
databases.

Methods
Ethics statement
Our study was approved by the Academic Committee 
of Huazhong University of Science and Technology, and 
conducted in accordance with the principles expressed 
in the Declaration of Helsinki. All datasets used in this 
study were extracted from online public databases or 
published literature, and thus, written informed con-
sent was not required for the current data analysis.

ONCOMINE analysis
The expression patterns of HSPs in different cancers 
can be assessed using the online ONCOMINE data-
base (https ://www.oncom ine.org). ONCOMINE is an 
integrated data-mining platform that store previously 
published or open-access cancer microarray data. The 
results were filtered by selecting HNSC vs. normal 
tissue.

GEPIA dataset
GEPIA is an online database that incorporates gene 
expression data from TCGA and GTEx, bringing 
together 9736 tumor samples and 8587 normal con-
trols. It allows for the assessment of differential expres-
sion profiles, patient outcomes, and various other 
analyses [23]. Through these public bioinformatics plat-
forms, we are able to analyse the expression profiles of 
HSP genes in HNSC.

UALCAN dataset
The UALCAN database (http://ualca n.path.uab.edu/
index .html) is a user-friendly interactive platform for 
facilitating tumor subgroup gene expression and sur-
vival analyses [24]. Using the UALCAN database, we 
can evaluate the expression levels of HSP genes in 
HNSC and normal tissues based on tumor stages in the 
Cancer Genome Atlas (TCGA) HNSC datasets.

The Human Protein Atlas (THPA) database
The Human Protein Atlas (THPA) (https ://www.prote 
inatl as.org) is a public database that can be used to vali-
date the expression of target genes. It contains immu-
nohistochemical expression data for near 20 common 
kinds of cancers. In this study, we compared the protein 
expression levels of different HSPs between normal and 
HNSC tissues using immunohistochemistry images.

Prognostic analysis
Using the GEPIA (http://gepia .cance r-pku.cn) database 
and OncoLnc (http://www.oncol nc.org) database, we 
analyzed the relationship between HSP gene expres-
sions and overall survival in HNSC patients using a cox 
p value threshold of < 0.05.

https://www.oncomine.org
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org
https://www.proteinatlas.org
http://gepia.cancer-pku.cn
http://www.oncolnc.org
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TCGA data and cBioPortal
The Cancer Genome Atlas (TCGA) database contains 
sequencing and clinicopathologic data for 30 cancer 
types [25]. The Head and Neck Squamous Cell Carci-
noma (TCGA, Provisional) was selected for further anal-
ysis of HSP genes using cBioPortal (https ://www.cbiop 
ortal .org). Genomic profiles, including mutations and 
copy-number alterations (CNA) were calculated using 
the cBioPortal’s online tool.

Protein–protein interaction (PPI) network construction
In order to better understand the molecular mecha-
nisms of HSPs in tumorigenesis, the PPI network for HSP 

family genes was constructed using STRING database. 
We choose a minimum interaction score of 0.4 as a cut-
off when visualizing this PPI network.

Functional and pathway enrichment analysis
The online STRING (https ://strin g-db.org/) tool provides 
investigators with systematic and comprehensive func-
tional annotation tools to identify the biological mean-
ing behind an extensive list of genes. In our study, Gene 
ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were con-
ducted for HSP family genes using STRING. The signifi-
cance threshold was p < 0.05.

Fig. 1 The expression levels of HSPs in different types of cancers (ONCOMINE). The expression levels of HSPH1, HSPD1, Serpinh1, HSPA4 and 
HSP90AA1 in different types of cancers. Red: over-expression; Blue: down-regulated expression

https://www.cbioportal.org
https://www.cbioportal.org
https://string-db.org/
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Results
The expression levels of HSPs in HNSC patients
In order to explore the prognostic and potential thera-
peutic values of different HSP members in HNSC, we 
analyzed the mRNA and protein expressions of HSPs in 
HNSC patients using the ONCOMINE database. The 
expressions of five HSPs members (HSPH1, HSPD1, SER-
PINH1, HSPA4 and HSP90AA1) in more than 20 types of 
cancers were detected and compared with expressions in 
normal tissues using the ONCOMINE database. As were 
shown in Fig. 1, the expression levels of HSPs were sig-
nificantly upregulated in HNSC patients. Interestingly, 
the expression levels of these five HSP genes were sig-
nificantly upregulated in most tumors. In addition, we 
searched various HNSC datasets and found that these 
five genes showed significant upregulation across all 
datasets (Additional file  1: Fig. S1, Table  1). We further 
used the UALCAN.database to validate our findings. The 
results also showed that the expression levels of HSPH1, 
HSPD1, SERPINH1, HSPA4 and HSP90AA1 in HNSC 
were significantly increased (Additional file 2: Fig. S2).

Correlations between the expression levels of HSPs 
and the clinicopathological parameters of HNSC patients
GEPIA was used to compare HSPs between tumor and 
normal tissues. The findings revealed that the expres-
sion of all five genes was higher in HNSC samples than 
in normal control samples (Fig. 2a, b). We also analyzed 
HSPH1, HSPD1, SERPINH1, HSPA4, and HSP90AA1 
expression as a function of the HNSC tumor stage. The 
results revealed a clear correlation between gene expres-
sion and tumor stage, with HNSC patients in more 
advanced stages tending to exhibit HSP expression lev-
els (Fig. 3). After investigating the expression patterns of 
HSPH1, HSPD1, SERPINH1, HSPA4 and HSP90AA1 in 
HNSC, we examined HSP expression patterns in HNSC 
using THPA. The results confirmed that the protein levels 
of HSPH1, HSPD1, SERPINH1, HSPA4 and HSP90AA1 
were elevated in HNSC samples relative to normal con-
trol samples (Fig. 4).

Table 1 The significant changes of  HSP associated genes expression levels between  different types of  Head and  neck 
cancer and normal tissues (ONCOMINE database)

TCGA  the Cancer Genome Atlas

Gene Types of head and neck cancer vs. normal Fold change p value T test Reference (PMID)

HSPH1 Tongue carcinoma vs. normal 2.902 5.56E−7 6.528 Pyeon, 17510386

Tongue squamous cell carcinoma vs. normal 2.136 7.85E−5 4.433 Ye, 18254958

Head and neck squamous cell carcinoma vs. normal 1.896 1.37E−5 5.107 Ginos, 14729608

Tall cell variant thyroid gland papillary carcinoma vs. normal 1.178 3.22E−6 7.594 Giordano, 16609007

Hypopharyngeal squamous cell carcinoma vs. normal 2.982 0.033 2.362 Schlingemann, 16205657

HSPD1 Salivary gland adenoid cystic carcinoma vs. normal 1.500 3.23E−4 4.102 FriersonHF, 12368205

Head and neck squamous cell carcinoma vs. normal 2.282 4.67E−7 6.773 Ginos, 14729608

Floor of the mouth carcinoma vs. normal 2.488 9.57E−7 7.144 Pyeon, 17510386

Nasopharyngeal carcinoma vs. normal 1.812 3.60E−5 5.246 Sengupta, 16912175

Tongue squamous cell carcinoma vs. normal 1.732 1.59E−5 4.785 Ye, 18254958

SERPINH1 Head and neck squamous cell carcinoma vs. normal 6.350 1.25E−6 12.064 Cromer, 14676830

Tongue squamous cell carcinoma vs. normal 3.148 1.09E−10 7.757 Estilo,19138406

Salivary gland adenoid cystic carcinoma vs. normal 308.933 3.74E−6 7.691 FriersonHF, 12368205

Oral cavity squamous cell carcinoma vs. normal 2.072 2.44E−9 7.125 Peng,21853135

Tongue squamous cell carcinoma vs. normal 2.022 2.05E−9 7.405 Talbot, 15833835

HSPA4 Thyroid gland oncocytic follicular carcinoma vs. normal 1.259 1.32E−4 6.863 Giordano, 16609007

Oral cavity carcinoma vs. normal 2.732 4.49E−6 6.212 Pyeon, 17510386

Tongue squamous cell carcinoma vs. normal 1.478 1.74E−6 5.146 Talbot, 15833835

Follicular variant thyroid gland papillary carcinoma vs. normal 1.017 4.02E−4 3.464 TCGA, 2013

Oral cavity squamous cell carcinoma epithelia vs. normal 1.199 0.002 3.391 Toruner, 15381369

HSP90AA1 Floor of the mouth carcinoma vs. normal 3.010 1.40E−8 8.051 Pyeon, 17510386

Oral cavity carcinoma vs. normal 3.878 6.57E−9 8.959 Pyeon, 17510386

Tongue carcinoma vs. normal 2.549 2.98E−7 6.220 Pyeon, 17510386

Tonsillar carcinoma vs. normal 2.641 1.81E−6 6.050 Pyeon, 17510386

Hypopharyngeal squamous cell carcinoma vs. normal 2.931 0.011 3.044 Schlingemann, 16205657
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Genetic alterations to HSP‑associated genes and neighbor 
gene networks in HNSC patients
The frequencies of mutations of the HSPH1, HSPD1, 
SERPINH1, HSPA4 and HSP90AA1 genes in HNSC were 
assessed using cBioPortal. In total, 504 patients from 
the Head and Neck Squamous Cell Carcinoma (TCGA, 

Provisional) were analyzed. According to this dataset, 
the percentages of genetic variations in HSPH1, HSPD1, 
SERPINH1, HSPA4 and HSP90AA1 genes among HNSC 
patients ranged from 1.4 to 4% for individual genes 
(HSPH1, 1.4%; HSPD1, 2.6%; SERPINH1, 4%; HSPA4, 
1.8%; HSP90AA1, 3%). A total of 62 (12%) samples 

Fig. 2 The expression profiles of HSPs in HNSC patients. The expression profile of HSPH1, HSPD1, Serpinh1, HSPA4 and HSP90AA1 in HNSC patients 
were analyzed by GEPIA (a) and UALCAN database (b); the p-value was set at 0.05
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exhibited gene set/pathway alterations, with mutations 
in 2.82% of analyzed gene sets (Fig.  5a).The cBioPor-
tal online tool also allows Pearson correlation analysis 
of HSP expression data (RNA Seq V2 RSEM) in HNSC 
(TCGA, Provisional). The results revealed a significant 
negative correlation between HSPD1 and SERPINH1 
(Fig. 5b). Next, a PPI enrichment analysis, was then used 
to explore the relationships among these genes in HNSC. 
The PPI network was constructed by STRING. The 
results showed that several HSPs, including DNAJB1, 
HSPA1A, STIP1, HSPE1, HSPA8, HSPA9, HSF1, and 
HSP90AB1, were closely associated with HSPH1, HSPD1, 
SERPINH1, HSPA4 and HSP90AA1 (Fig. 5c).

The prognostic values of HSPs in HNSC
We evaluated the prognostic significance of HSPH1, 
HSPD1, SERPINH1, HSPA4 and HSP90AA1 in all HNSC 
patients using Kaplan–Meier plots and the OncoLnc 
database. The results revealed that increased expres-
sion levels of HSPH1, HSPD1, SERPINH1, HSPA4 and 
HSP90AA1 were strongly associated with poor over-
all survival (Fig. 6). Thus, the results suggest that highly 
expressed HSPs (HSPH1, HSPD1, SERPINH1, HSPA4 
and HSP90AA1) are prognostic factors for HNSC. Since 
HSPs are reportedly associated with tumor immunity 
[26], we used the TIMER (https ://cistr ome.shiny apps.io/
timer /) database to investigate the relationships between 

the HSP expression levels and the levels of immune infil-
tration in HNSC. Unfortunately, we did not find any sig-
nificant correlations between HSP gene expressions and 
immune infiltration levels (Additional file 3: Fig. S3).

Functional enrichment analysis of HSPs in HNSC patients
The functions of these five genes were next explored 
through GO and KEGG analyses. GO analyses allow 
assessment of the biological process, molecular func-
tion, and cellular component annotations of genes of 
interest. The results revealed that HSPH1, HSPD1, 
SERPINH1, HSPA4 and HSP90AA1 as well as their 
neighbor genes, are primarily enriched for regulation 
of protein ubiquitination, cellular protein metabolic 
and immune system process, chaperone-mediated 
autophagy, regulation of apoptotic process, positive 
regulation of DNA metabolic process, protein target-
ing to mitochondrion, regulation of cellular response to 
stress and heat, and protein folding (Additional file  4: 
Fig S4A). Enriched molecular functions included tran-
scription regulation by Hsp70 protein binding, ATPase 
regulator activity, enzyme regulator activity, DNA 
polymerase binding, ubiquitin protein ligase bind-
ing, chaperone binding, ATP binding, protein binding, 
HSP binding, and unfolded protein binding (Addi-
tional file 4: Fig S4B). Cellular component annotations 
for these genes included mitochondrion, cytoplasmic 

Fig. 3 Correlations between expression levels of HSPs and tumor stage in HNSC patients. The relationships between expression levels of HSPH1, 
HSPD1, SERPINH1, HSPA4, and HSP90AA1 and tumor stages in HNSC patients were determined using the UALCAN database. The p-value was set at 
0.05. The abscissa indicates the HNSC tumor stage and the ordinate indicates the expression levels of HSPs (gene expression ~ pathological stage)

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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vesicle lumen, intracellular organelle part, protein-con-
taining complex, extracellular exosome, ficolin-1-rich 
granule lumen, cytosol, intracellular organelle lumen, 
cytoplasmic part, and chaperone complex (Additional 
file  4: Fig S4C). The KEGG pathways for these genes 
are shown in Table  2. Among these pathways, protein 
processing in the estrogen signaling pathway, endoplas-
mic reticulum, antigen processing and presentation, 
Prostate cancer, PI3K-Akt signaling pathway, NOD-like 
receptor signaling pathway, Epstein-Barr virus infec-
tion, MAPK signaling pathway, IL-17 signaling path-
way, and Th17 cell differentiation were involved in 
tumor development and pathogenesis in HNSC (Addi-
tional file 5: Fig S5A and B).

Discussion
Dysregulation of HSPs is common in cancer develop-
ment. Research suggests that HSPs are essential for 
tumor cell proliferation and differentiation. Although 
rarely used as diagnostic biomarkers for cancer, the 

expression levels of HSPs may predict the development 
of various cancers. For example, there is considerable evi-
dence demonstrating that the over-expression of HSP27 
may confer poor prognosis in gastric, prostate, and liver 
cancers [27–29]. Herein, we sought to investigate the 
expression pattern and prognostic values of different 
HSP members (HSPH1, HSPD1, SERPINH1, HSPA4 and 
HSP90AA1) in HNSC. These findings advance our cur-
rent understanding of HNSC and may offer a means for 
improving treatment approaches and prognostic accu-
racy in HNSC patients.

The primary role of HSPs in tumorigenesis involves 
the stabilisation of functions of mutated or aberrantly-
expressed tumor-related genes. Thus, high expression of 
HSPs is a hallmark of many cancers. In addition, HSPs 
are released from cancer cells, influencing their proper-
ties and functions through receptor-mediated signaling 
[30]. HSPH1 has been reported to be over-expressed in 
melanoma and colon cancer patients [31, 32]. The upreg-
ulation of HSPH1 is implicated in hyperactivation of the 
Wnt signalling pathway. The transcription levels of Wnt 
signalling target genes are significantly downregulated in 
cell line models with HSPH1 inhibition [9]. In our study, 
we confirmed that the expression of HSPH1 in HNSC tis-
sue was significantly elevated compared with normal tis-
sue. We also observed a significant correlation between 
the expression of HSPH1 and tumor stage in HNSC 
patients. High HSPH1 expression was associated with 
low overall survival in all HNSC patients.

HSPD1 is a molecular chaperone that is primar-
ily localized in the mitochondrial matrix [33]. Recently, 
HSPD1 has been found in many extramitochondrial sites, 
including the extracellular surface, cell surface, intracel-
lular vesicles, nucleus, extracellular fluid, and even the 
cytoplasm. HSPD1 has been recognized as a potential 
biomarker for tumor diagnosis and prognosis, especially 
in colorectal cancer. There is increasing evidence that 
HSPD1, especially intracellular HSPD1, is involved in 
the survival and metastasis of various tumors [34–36]. In 
our study, the ONCOMINE and TCGA datasets revealed 
that the expression of HSPD1 was higher in HNSC tis-
sue than in normal tissues. High HSPD1 expression was 
significantly associated with poor overall survival among 
HNSC patients followed up for more than 6000 days.

SERPINH1 is a collagen-binding protein and has been 
identified to be a collagen-specific chaperon. It promotes 
the malignant behavior of cancer cells  and predicts the 
metastatic activity of human cancer cells. SERPINH1 
also plays an essential role in regulating the expression 
of extracellular matrix (ECM) proteins and fibronectin 
(FN); therefore, dysfunction of SERPINH1 stimulates 
abnormal expression of ECM proteins, which promotes 
epithelial-mesenehymaltransition (EMT) [37]. Our data 

Fig. 4 HSP genes were distinctively high expressed in HNSC tissues 
from Human Protein Atlas. HSP proteins were not expressed in 
normal head and neck tissues, whereas their high expressions were 
observed in HNSC tissues
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confirmed that dysregulation of SERPINH1 is closely 
related to the development and progression of HNSC, 
and further affects the prognosis of HNSC.

HSPA4 is highly expressed in malignant tumor cells and 
is involved in tumor development and chemotherapy resist-
ance, presumably due to its ability to inhibit tumor cell 
apoptosis [38]. It has been reported that overexpression of 
HSPA4 can inhibit cell apoptosis and prevent activation of 
the caspase signaling pathway, which leads to accumulation 
of misfolded proteins, ROS, and DNA damage. HSP70 not 
only affects the apoptotic pathway, but also the autophagic 
pathway. It prevents the formation of autophagosomes by 
activating the mTOR pathway. Consistent with these results, 
Leu et al. found that the inhibition of HSP70 resulted in sig-
nificant increases in the expression of LC3-II and the num-
ber of autophagosomes [39]. In our study, it is clear that 
HSPA4 acts as an “evil chaperone” in HNSC. Its expression 
was significantly increased in HNSC patients and was asso-
ciated with poor prognosis.

HSP90AA1 acts as a highly conserved chaperone pro-
tein and participates in tumor cell differentiation, prolif-
eration, and angiogenesis. Recently, it has been regarded 
as a promising target for specific cancer therapy [40]. 
Hsp90AA1 is expressed in various cancers, including 
breast, colon, ovarian, lung and prostate cancers. This 
may be related to the involvement of HSP90AA1 in the 
regulation of apoptosis and signaling transduction trig-
gered by growth factors, death receptors, and stress 
signals [41]. HSP90AA1 inhibits the initiation of apop-
tosis by blocking the binding of caspase 9 to apoptotic 
protein 1 activator. Additionally, it promotes the forma-
tion of tumor cells by stabilizing mutant p53 complexes, 
thereby inhibiting the apoptosis of tumor cells [38, 42]. 
In our systematic analyses of various databases, we 
found that HSP90AA1 was significantly upregulated in 
HNSC patients, and its expression level was significantly 
associated with the tumor stage in HNSC patients. As 
expected, high HSP90AA1 expression predicted poor 

Fig. 5 Expression of HSP genes and mutation analysis in HNSC. a Summary of alterations in HSPs. b Pearson correlation analysis of HSP family 
members. c Protein–protein interaction network of HSPs
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overall survival among HNSC patients, implying an 
oncogenic role of HSP90AA1 in HNSC.

In this study, we also explored the genetic alterations 
and potential functions of HSP family members. The 

percentages of genetic mutations in HSPs in HNSC var-
ied from 1.4% to 4% for individual genes. At the same 
time, we constructed a network for these five genes and 
their neighbor genes. Functional analysis demonstrated 

Fig. 6 The prognostic values of HSP family members in HNSC patients. The overall survival curves comparing HNSC patients with high (red) and 
low (blue) HSPH1, HSPD1, SERPINH1, HSPA4, and HSP90AA1 expression levels were plotted using the GEPIA (a) and OncoLnc databases (b) at the 
threshold p-value of < 0.05
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that these five genes were primarily enriched in tumor-
related signaling pathways, indicating that HSPH1, 
HSPD1, SERPINH1, HSPA4, and HSP90AA1 play cru-
cial cancer-promoting roles in the development of head 
and neck cancer.

Conclusion
In summary, our results indicate that HSPH1, HSPD1, 
SERPINH1, HSPA4, and HSP90AA1 are significantly 
upregulated in HNSC patients and their upregulation is 
negatively correlated with HNSC tumor stage. Based on 
the above findings, it is expected that HSPH1, HSPD1, 
SERPINH1, HSPA4, and HSP90AA1 could act as poten-
tial prognostic biomarkers and therapeutic targets for 
HNSC. Our research contributes to a better under-
standing of the pathogenesis of HNSC and may assist 
in the development of more effective targeted drugs 
for head and neck cancer. However, further mechanis-
tic studies are needed to validate our findings and to 
promote clinical application of HSPs as prognostic or 
therapeutic targets in HNSC.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1293 5-020-01296 -7.

Additional file 1: Fig. S1. The expression levels of HSPs in HNSC 
(ONCOIME). The expression levels of HSPH1, HSPD1, Serpinh1, HSPA4 and 
HSP90AA1 in several head and neck cancer studies. Red: over-expression. 
The significance threshold was p < 0.05.

Additional file 2: Fig. S2. Expressions of HSPs across TCGA cancers (with 
tumor and normal samples). The expression levels of HSPH1, HSPD1, 
Serpinh1, HSPA4 and HSP90AA1 in pan-cancer.

Additional file 3: Fig. S3. The relationships between the HSP expression 
levels and the levels of immune infiltration in HNSC.

Additional file 4: Fig. S4. Functional Enrichment Analysis of HSPs in 
patients with HNSC. GO enrichment analysis predicted the function of 

target genes from three aspects: biological processes (A), cellular compo-
nents (B), and molecular functions (C).

Additional file 5: Fig. S5. p53 signal pathway and cell cycle pathway 
regulated by HSPs in HNSC. The MAPK signal pathway (A) and PI3K-Akt 
signaling pathway (B) regulated by HSPs in HNSC are shown.
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Table 2 KEGG pathway analysis of HSP associated genes in HNSC

Pathway ID Pathway name Gene count False discovery rate Genes

hsa04141 Protein processing in endoplasmic reticulum 6 7.82E−07 DNAJB1, HSP90AA1, HSP90AB1, HSPA1A, HSPA8, 
HSPH1

hsa04612 Antigen processing and presentation 5 7.82E−07 HSP90AA1, HSP90AB1, HSPA1A, HSPA4, HSPA8

hsa04915 Estrogen signaling pathway 5 7.43E−06 AKT1, HSP90AA1, HSP90AB1, HSPA1A, HSPA8

hsa05215 Prostate cancer 3 0.0017 AKT1, HSP90AA1, HSP90AB1

hsa04151 PI3K-Akt signaling pathway 4 0.0033 AKT1, CDC37, HSP90AA1, HSP90AB1

hsa04621 NOD-like receptor signaling pathway 3 0.0045 HSP90AA1, HSP90AB1, SUGT1

hsa05169 Epstein-Barr virus infection 3 0.0061 AKT1, HSPA1A, HSPA8

hsa04010 MAPK signaling pathway 3 0.0173 AKT1, HSPA1A, HSPA8

hsa04657 IL-17 signaling pathway 2 0.0209 HSP90AA1, HSP90AB1

hsa04659 Th17 cell differentiation 2 0.0242 HSP90AA1, HSP90AB1
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