
Song et al. Cancer Cell Int          (2020) 20:211  
https://doi.org/10.1186/s12935-020-01301-z

REVIEW

Circular RNA and tumor microenvironment
Huixin Song†, Qiaofei Liu† and Quan Liao* 

Abstract 

Circular RNAs (circRNAs) are small non-coding RNAs with a unique ring structure and play important roles as gene 
regulators. Disturbed expressions of circRNAs is closely related to varieties of pathological processes. The roles of circR-
NAs in cancers have gained increasing concerns. The communications between the cancer cells and tumor microen-
vironment (TME) play complicated roles to affect the malignant behaviors of cancers, which potentially present new 
therapeutic targets. Herein, we reviewed the roles of circRNAs in the TME.

Keywords:  CircRNA, Tumor microenvironment, Immunotherapy

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
CircRNAs are a class of highly abundant endogenous 
RNAs with a unique covalently closed, single-stranded, 
complete ring structure with no free 3′ or 5′ ends. Cir-
cRNAs are highly abundant and stable in the cytoplasm, 
as most of them are resistant to RNase. A variety of gene 
structures generate circRNAs mainly via a type of alter-
native RNA splicing called ‘back-splicing’ [1], regulated 
by canonical splice signals [2]. In 1976, Sanger et al. first 
investigated the existence of circRNA in viroid [3]. In the 
following decades, various circRNAs were identified in 
human cells, although for a long time they were thought 
to be just junk byproducts of RNA splicing errors [1]. It 
was not until novel sequencing technologies made the 
transcriptional profile of the entire human genome avail-
able did these molecules gain attention. The vital roles 
of circRNAs have increasingly come into light with the 
development of RNA sequencing technology and numer-
ous efficient specific algorithms to detect and quantify 
genome-wide circRNA expression from RNA sequencing 
data [4].

The special characteristics of circRNAs, such as 
extensive distribution, stability, and cell type-specific 

and tissue-specific expression, ultimately shape their 
functional roles, such as cell cycle regulation, prolifera-
tion, and apoptosis [5, 6]. Aberrantly expressed circR-
NAs exert tumor-suppressive or oncogenic functions by 
microRNA(miRNA) sponge function, posttranscriptional 
regulation [7, 8], circRNA-derived pseudogene transla-
tion [9, 10] and interaction with protein (Fig. 1), thereby 
affecting cancer initiation, development, metastasis [11–
20] and therapy resistance [21–25]. These molecules have 
already become a novel area of interest and promising 
molecular focus in the diagnosis and treatment of cancer.

TME, nourished by the vasculature, consists of the 
cell compartment (which includes tumor cells, immune 
cells, and other nonmalignant cells), extracellular matrix 
(ECM) and abundant signaling molecules. It is the 
indispensable ‘soil’ for in  situ and metastatic tumor cell 
growth. The intimate, complicated and rapidly changing 
crosstalk between cancer cells and the surrounding struc-
ture exerts a significant influence on tumor initiation, 
development and therapeutic response [26–32]. Evidence 
also reveals that cancer-related inflammation in the TME 
is an essential hallmark [33]. The TME can both improve 
and inhibit therapeutic efficacy and may have variable 
activation status. Modifying or regulating specific fac-
tors or cells in the TME is particularly beneficial to treat 
tumors, one example being checkpoint inhibitors, which 
have already made great strides in cancer treatment in 
the past decade [26–30, 33–37]. The mechanisms of bio-
genesis of circRNA and its roles to directly regulate the 
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malignant behaviors of cancer cells have been widely 
reviewed before, so it is beyond the scope of this review 
[38–41]. In this review, we focused on the roles of circR-
NAs in the TME and discuss the potential application 
of circRNAs in tumor therapy (Fig.  2), to provide novel 
ideas and methods to uncover a rational design for com-
binational therapies to overcome therapeutic resistance.

CircRNAs play roles in TME regulation
CircRNA and immune cells
Tumor cells and different types of immune cells influ-
ence each other at various stages of cancer, which con-
tributes to the complexity of the TME. Immune cells can 
be remodeled to favor tumor cell proliferation, evasion 
and metastasis. Among immune cells, antigen-present-
ing cells (including dendritic cells (DCs), epithelial cells 
and B cells), natural killer cells (NKs) and lymphocytes 
(especially T cells) are crucial for tumor suppression, 
while tumor-associated macrophages (TAMs), regulatory 

T cells (Tregs) and myeloid-derived suppressor cells 
(MDSCs) are considered to play immunosuppressive 
roles. The previously reported studies about the relation-
ships between circRNAs and immune cells are summa-
rized in Fig. 3 and Table 1.

CircRNA and T cells
CD8+ T cells can be activated by tumor-associated 
antigen (TAA) to specifically kill tumor cells. However, 
human tumors still progress as T cells invariably fail to 
eradicate the tumor owing to tumor-promoting molecu-
lar and cellular mechanisms, including T cell anergy, 
exhaustion, senescence and stemness [42].  CircRNAs 
participate in these immunosuppressive networks by 
impairing normal  T cell  function and enabling tumor 
escape.

CircRNAs regulate the T cell-mediated immune 
response, which is critical for tumor immunity. Correla-
tion assays revealed that hsa_circ_0005519 activated the 
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immune response, as it might induce cytokine IL-13 and 
IL-6 expression by regulating hsa-let-7a-5p in CD4+ T 
cells [43]. CircRNA hsa_circ_0012919 contributed to 
DNA methylation of CD70, a member of the TNF fam-
ily, by sponging DNA methylation-related miRNAs in 
CD4+ T cells [44]. The CD27-CD70 interaction pro-
motes the activation, proliferation and differentiation of 
T cells and B cells and plays an important role in mediat-
ing the immune response. Thus, circRNAs regulate spe-
cific cytokine secretion in CD4+ T cells, affecting the 
immune response against tumors.

Indoleamine 2,3-dioxygenase 1 (IDO1) suppressed the 
CD8+ T cell response in colon cancer, while miR-448, as 
a tumor-suppressive miRNA, enhanced the CD8+ T cell 
response by inhibiting IDO1 expression [45]. CircRNA 
circ-NT5C2 acted as an oncogene in tumor proliferation 
and metastasis by targeting miR-448 and subsequently 
decreased the immune response [46]. These data sug-
gest that inhibition of circ-NT5C2 might strengthen 
the immune response against tumors. CircRNA-002178 
could induce PD1 expression by sponging miR-34, which 
induces T-cell exhaustion [47].

Specific circRNAs mediate T cell aging, affecting 
immune senescence, one example is circRNA100783, 
which regulate phosphoprotein-related signal 
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transduction during CD28-dependent CD8+ T cell aging 
[48]. Overlapping expression of circRNA100783 may rep-
resent a novel biomarker for the longitudinal tracking 
of CD28-related CD8+ T cell aging and global immune 
senescence [47]. Besides, circRNA in exosomes may par-
ticipate in the regulation of Tregs [49].

CircRNAs are also notable regulators of T cell lympho-
blastic lymphoma (T-LBL). Deng et  al. found that circ-
LAMP1, which was overexpressed in T-LBL tissues and 
cell lines, significantly boosted cell growth by inhibit-
ing cell apoptosis in T-LBL cells. Circ-LAMP1 activated 
domain receptor tyrosine kinase 2 (DDR2) by sponging 
miR-615-5p, which directly targeted DDR2, a member of 
the receptor tyrosine kinase (RTK) family, therefore, circ-
LAMP1 might be an oncogene in T-LBL, as RTK initiated 
a signaling cascade closely related to cancer progression. 
This finding may develop into a promising therapy for 
T-LBL [50].

As well, circRNAs are potent vaccine adjuvants that 
boost innate and adaptive immune responses. Study 
revealed that circRNAs transfected into HeLa cells stim-
ulated innate immunity by enhancing the expression of 
specific genes which were highly related to response to 
cytokine, cytokine production, cellular response to virus, 
and NF-kB signaling [51]. Compared to endogenous cir-
cRNA with N6-methyladenosine(m6A) modification 
which could be recognized as “self” and wouldn’t stimu-
late immune response. Exogenous circRNAs without 
m6A modification bound to and activated RIG-1, which 
subsequently stimulated the activation of downstream 
signals and eventually increased the expression of immu-
nity related genes, such as retinoic-acid-inducible gene-
I (RIG-I), melanoma-differentiation-associated gene 5 
(MDA5, also known as IFIH1), 2′-5′ oligoadenylate syn-
thase 1 (OAS1) OAS-like protein (OASL) and protein 
kinase R (PKR). Comparative analysis of DCs isolated 
from C57BL/6 J mice which were injected cricFOREIGN 
and control subcutaneously revealed that cricFOREIGN 
could activate DCs and indirectly activated CD4 + follic-
ular T-helper (Tfh) cells and CD8+ T cells by facilitating 
antigen cross-presentation. Also, OVA-B16 melanoma 
mice model vaccinated with circFOREIGN had sig-
nificantly longer overall survival compared to negative 
control group [52]. Therefore, circRNAs can activate 
immunocytes to fight against tumors by acting as tumor 
antigens or by being modulated to enhance the immune 
response.

CircRNA and B cells
B cells, being a major cellular component in TME, are 
crucial effector cells in humoral immunity against tumor 
progression through secreting immunoglobulins, regulat-
ing tumor-suppressing responses of other immune cells 

directly and indirectly, such as T cells and macrophages 
[53]. Tertiary lymphoid structure (TLS), identified within 
a wide range of cancer tissues, are transient ectopic lym-
phoid aggregates with a similar structure and function 
of the secondary lymphoid organ [54]. Unique distribu-
tion, frequency of B cells and functional state of B cell-
related pathways, including CCL19, -21/CCR7 axis and 
CXCL13/CXCR5 axis, take effect in enhancing immune 
response mainly via TLS formation [55]. A specific sub-
set of infiltrating B cells are strong prognostic factors in 
various cancers context, such as CD20+ CD27− IgM+ 
group and CD20+ CD27− IgM− group in hepatocel-
lular carcinoma(HCC), IgG4+ in pancreatic ductal ade-
nocarcinoma and CD20+ in melanoma and some other 
cancers [56–59]. Several studies have also unveiled the 
significance of TLS formation in improving immunother-
apy efficacy. Although the exact mechanisms have not 
been well understood, mediating B cell and B cell-related 
pathways are certainly vital to gain better cancer therapy 
outcome [58, 60, 61].

CircRNA can enhance the antibody response directly 
or indirectly [52]. Zheng et  al. analyzed the circRNA 
expression profile of chickens inoculated with Sal-
monella enterica serovar enteritidis (SE). The results 
revealed that specific circRNA of which NFATC2 was 
the parental gene was related to B cell proliferation. Cir-
cRNA NC_006099.4:1 6132825|16236906 and circRNA 
NC_006099.4:15993284|16006290 mediated B cell pro-
liferation through Foxp1 pathway [62]. Weng et al. com-
pared and analyzed the expression profile of circRNAs 
between plasma of HCC patients with high tumor-infil-
trating lymphocytes (TILs) and low TILs and identified 
that hsa_circ_0064428, which was significantly down-
regulated in HCC patients high TILs, was negatively cor-
related with patient prognosis [63]. Given the evidence 
above, hsa_circ_0064428 might be a key regulator of 
TIL formation with the potential to be utilized in B cell-
related therapy.

CircRNA and natural killer cells (NKs)
NK cells constitute an early cellular defense mecha-
nism that secretes cytokines and chemokines and 
employs cytotoxicity to reduce or damage pathogens or 
tumor cells. NK cells play an indispensable role in the 
immune system [64]. CircRNAs are notable regulators 
of the NK cell-mediated immune response. For example, 
hsa_circ_0008433 regulated inflammatory gene matrix 
metalloproteinases 2 (MMP2) expression by sponging 
hsa-miR-181c-5p and hsa-miR-181b-5p, inducing NK 
cells to attack arterial elastic fibers and remodel vessels, 
resulting in aneurysm progression [65, 66].

Tumor-induced circRNAs regulate NK cell activi-
ties. Androgen receptor (AR) differentially suppressed 



Page 7 of 15Song et al. Cancer Cell Int          (2020) 20:211 	

circRNA expression in HCC by upregulating adenosine 
to inosine acting on RNA enzyme 1 (ADAR1). ADAR1 
directly suppressed RNA circularization, which had 
been observed for circARSP91 (hsa_circ_0085154). 
CircARSP91 enhanced innate immune surveillance by 
increasing the cytotoxicity of NK cells in HCC. As a 
repressor of HCC, enhancing circARSP91 activity was a 
potent novel therapy strategy [67].

Natural killer group 2 member D (NKG2D) on NK 
cells, LAK cells, and effector T cells mediate immune 
responses to cancer by interacting with different ligands 
on the tumor cell surface. Activation of the NKG2D 
ligand complex enhanced the immune response, leading 
to the subsequent lysis of tumor cells and thus prevented 
cancer progression [20]. A scatter plot analysis revealed 
a positive correlation between circTRIM33–12 expres-
sion and NKG2D-positive cell numbers in HCC tissues, 
indicating that circTRIM33–12 had a modulating effect 
on NKG2D. CircTRIM33–12 might exert its antitumor 
effects by enhancing the functions of NK cells [68].

Besides, the interaction of NKG2D with MHC class 
I-related molecule (MICA) was critical to the surveillance 
function of immune effectors in pancreatic cancer [69]. 

The interaction could be inhibited by NO via inhibition of 
hypoxia-inducible factor 1-alpha (HIF1A) accumulation 
[70]. Recently, Ou et al. found that circ_0000977 spong-
ing miR-153, of which HIF1A was a downstream target, 
modulated HIF1A. Thus, overexpression of circ_0000977 
promoted HI1FA accumulation, inhibiting NK cell lysis 
and resulting in immune escape of pancreatic cancer cells 
[71].

CircRNA and myeloid‑derived suppressor cells (MDSCs)
MDSCs, derived from myeloid progenitor cells, com-
prise the major cell population that negatively regulates 
immune responses. Under pathological conditions, espe-
cially in tumors, MDSCs are aberrantly activated in the 
TME and release cytokines, such as reactive oxygen spe-
cies (ROS), inducible NO synthase (iNOS), arginase 1 
(ARG1) and other immunosuppressive cytokines, which 
all suppress the normal functions of T cells.

It has already been demonstrated that miR-494 in 
MDSCs is crucial to recruit MDSCs to the tumor site and 
regulate the production of ARG1 and iNOS by down-
regulating the protein levels of PTEN [72]. CircSLC8A1, 
generated from the SLC8A1 gene, directly interacted 
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Fig. 4  CircRNAs modulating angiogenesis in TME. Specific circRNAs act as promotor or inhibitor in angiogenesis. CircRNAs can increase the 
permeability of vessel wall
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with miR-494, subsequently inhibiting the secretion of 
related cytokines [73]. CircRNA circC3P1 acted similarly 
by regulating the miR-21/PTEN axis [74].

Evidence suggested that miR-17-5p inhibited the 
expression of STAT3 and reduced the production of 
ROS, further inhibiting the immunosuppressive function 
of MDSCs [75]. Circ-MTO1 downregulated miR-17-5p 
expression in prostate cancer cells, which subsequently 
decreased ROS levels and inhibited cell proliferation and 
invasion [41]. The evidence above shows that in the TME, 
circRNAs regulate the fate of MDSCs; thus, circRNAs 
might serve as potential therapeutic targets by modulat-
ing the MDSC-mediated immune response.

CircRNA and granulocytes
Granulocytes are not only a crucial component of the 
innate immune response but also play pivotal roles in 
cancer progression, especially neutrophils which are the 
most abundant circulating leukocytes and a substantial 
proportion of the immune cell infiltrated in TME. Can-
cer-related neutrophils, including circulating neutrophils 
and tumor-associated neutrophils (TANs), can exert both 

pro-tumoral and antitumoral effects in different cancer 
context [76–78]. Circulating neutrophils serve as guards 
to escort circulating tumor cells which are precursors of 
cancer metastasis to travel in the bloodstream [79]. TANs 
can be polarized to antitumoral N1 phenotypes or pro-
tumoral N2 phenotypes when exposed to different cues 
in TME. Pro-tumoral effects related evidence includes 
secreting pro-tumoral chemokines like myeloid growth 
factor granulocyte-colony stimulating factor (G-CSF) to 
promote cancer progression, suppressing T-cell mediated 
anti-tumor response and mediating degradation of IRS1 
to boost cancer cell proliferation [80–84]. Anti-tumoral 
evidence includes presenting antigen, promoting T cell 
responses, putting down early tumor growth and resist-
ance against primary 3-methylcholantrene-induced car-
cinogenesis [84–88]. A recent study directed by Ponzetta 
et al. found that neutrophils impelled the polarization of 
a subset of CD4- CD8- unconventional αβ T cells and 
type 1 immunity to fight against murine sarcomas and 
several human tumors [88]. In a word, the complex and 
intricate function of neutrophil in TME is vital to cancer 

Table 2  Representative circular RNAs targeting angiogenesis

CircRNA Expression  Targeted miRNA Downstream 
target

Cancer type Functions Clinical 
correlation

Reference

circPIP5K1A Up-Regulated MiR-600 HIF-1α Non-Small Cell 
Lung Cancer

Promoting 
angiogenesis 
by regulating 
VEGFR

/ [108]

circSCAF11 Up-Regulated MiR-421 VEGFA Glioma Promoting 
angiogenesis 
by regulating 
VEGFR

Overall survival [115]

Circ0001429 Up-Regulated MiR-205-5P VEGFA Bladder Cancer Promoting 
angiogenesis 
by regulating 
VEGFR

Overall survival [116]

circular RNA MYLK Up-Regulated MiR-29A VEGFA Bladder Cancer Promoting 
angiogenesis 
by regulating 
VEGFR

TNM stage, patho-
logical grade

[114]

circ_002136 Up-Regulated MiR-138-5P SOX13 Glioma Promoting 
angiogenesis 
by regulating 
SOX13

/ [118]

circ-SHKBP1 Up-Regulated MiR-544A/Mir-379 FOXP1/FOXP2 Glioma Promoting angio-
genesis ability of 
endothelial cell 
by regulating 
FOXP1/FOXP2

/ [119]

circ-IARS Up-Regulated MiR-122 RhoA Pancreatic Cancer Increasing 
endothelial 
monolayer 
permeability to 
promote cancer 
development

Vascular invasion, 
TNM stage, 
liver metastasis, 
postoperative 
survival time

[120]
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progression which highlights its emerging role to be an 
effective therapeutic target.

A specific set of circRNAs are implicated in the nor-
mal function of granulocytes. In neutrophils, Toll-like 
receptor 6 (TLR6) generated a circRNA structure that 
functioned in the innate immune response [89]. Liang 
et al. demonstrated that circRNAs that were significantly 
decreased in severe acne compared with adjacent unaf-
fected skin were involved in leukocyte trans endothe-
lial migration [90]. The aberrant circRNA expression 
profile of the neutrophil transcriptome in patients with 
asymptomatic moyamoya disease (MMD) revealed that 
asymptomatic MMD was characterized by an intrinsic 
autoimmune status with different phenotypes of neutro-
phils, which had several differentially expressed circR-
NAs [91].

CircRNAs also play a crucial role in granulocyte-
related cancer. PML/RARa is the most recurrent chromo-
somal translocation in patients with acute promyelocytic 
leukemia (APL). The fusion of the two translocated genes 
generates f-circRNAs. Guarnerio et  al. mapped RNA-
seq reads directly to linear RNA fusion and f-circRNA 
fusion reference libraries. A series of cell culture experi-
ments revealed that f-circPR and f-circM9, together with 
other oncogenic hits, were biologically active, promoting 
tumorigenesis, tumor cell proliferation and cell transfor-
mation both in vitro and in vivo. F-circM9 also conferred 
tumor cell resistance to arsenic trioxide [22]. Li study also 
demonstrated that circ-HIPK2 served as a sponge for 
differentiation-associated miR-124-3p and significantly 
affected all-trans retinoic acid-induced differentiation of 
APL cells in APL patients, indicating its potential role as 
an APL biomarker [92].

CircRNA and macrophages
Macrophages are also effectors of innate immunity. They 
play crucial roles in linking innate and acquired immu-
nity. Macrophages initiate innate immunity through 
special receptors called pattern‐recognition receptors, 
such as the Toll-like receptors (TLRs). After exposure 
to invading microorganisms or tumor cells, TLRs on 
the surface of macrophages recognize antigens or com-
ponents of microorganisms, such as lipopolysaccharide 
(LPS), and initiate defense signaling cascades. During this 
process, cytokines and chemokines increase to enhance 
antigen presentation and other immune responses [93]. 
CircRNAs carry out specific functions in this path-
way. Circ790 influenced the secretion of IL-6, IL-1β 
and TNF-α by macrophages [94]. Mouse circRasGEF1B 
(McircRasGEF1B), a kind of LPS-inducible circRNA that 
has a human homolog (hcircRasGEF1B) sharing similar 
properties, is a positive regulator of the LPS response. 
ICAM-1, an intercellular adhesion molecule involved 

in this response, facilitated the binding of leukocytes 
to endothelial cells and the subsequent transmigration 
into different tissues to promote the immune response. 
Knocking down the expression of mcircRasGEF1B with 
shRNA reduced LPS-induced ICAM-1 expression. 
Also, mcircRasGEF1B regulated the stability of mature 
ICAM-1 transcripts in LPS-activated cells [95].

In addition to preventing cytotoxic T cell (CTL) infil-
tration into the tumor core [96], TAMs are versatile cells 
that can rapidly polarize to accommodate different con-
ditions. In response to microenvironmental stimuli, mac-
rophages polarize to different phenotypes, including the 
M1 type activated by interferon-γ (IFN-γ) or other micro-
bial components, such as LPS, and the M2 type activated 
by IL-4, IL-13 or the immune complex. CircRNA expres-
sion profiling revealed that M1 and M2 macrophages had 
different circRNA expression profiles, providing novel 
insight into the role of circRNAs in macrophage differ-
entiation and polarization [31]. CircRNA-003780, cir-
cRNA-010056, and circRNA-010231 were upregulated in 
M1, with a fold change > 4 comparing with M2. Similarly, 
circRNA-003424, circRNA-013630, circRNA-001489 and 
circRNA-018127 were upregulated in M2 [68]. Another 
study revealed that circHECTD1 (HECT domain E3 
ubiquitin-protein ligase 1) was involved in this polarizing 
process [97]. Additionally, ICAM-1 expression had been 
reported to suppress M2 macrophage polarization in 
the TME. Given the relationship between circRNAs and 
ICAM-1 discussed above, circRNAs are closely related to 
macrophage polarization [95].

CircRNA and cancer‑associated fibroblasts (CAFs)
CAFs are generated or differentiated from a subset of 
cells under cancer-bearing conditions, including local 
hypoxia and oxidative stress [98]. As the critical and most 
abundant component of the tumor mesenchyme, CAFs 
play key functions in the TME. CAFs provide physical 
support to other components, synthesize and modify the 
extracellular matrix, regulate other cell types in TME via 
bidirectional cell contact and release multiple regulatory 
factors to affect the occurrence and development of can-
cer in a context-dependent manner. They act as a double 
agent in tumors, as the complex and nuanced interactions 
between CAF cells and associated cells exert stimulatory 
(notably promoting metastasis) or inhibitory effects [99–
102] depending on the spatial distribution of information 
[101] and surface markers. CAFs and fibroblasts share 
many prosperities, as tumors are “an unending series of 
wounds that continually initiate healing but never heal 
completely”. Understanding the relationship between cir-
cRNAs and fibroblasts is of substantial help to clarify the 
involvement of circRNAs in CAF regulation.
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In primary human pulmonary fibroblasts (HPF-a) 
exposed to SiO, circHECTD1 was downregulated, thus 
inducing an increase in HECTD1, which subsequently 
caused fibroblast activation and accumulation via the 
EMT and endothelial-mesenchymal transition (EndMT) 
processes [97, 103, 104]. CircRNAs also help fibro-
blasts overcome stress. A study profiling differentially 
expressed circRNAs in the ultraviolet B stress-induced 
human fibroblast premature senescence (UVB-SIPS) 
model and assessing the role of circRNA_100797 in 
UVB-SIPS revealed that the decreased expression of 
circRNA_100797 had a photoprotective role in UVB-
SIPS by sponging miR-23a-5p. The expression of 
circRNA_100797 in fibroblasts facilitated cell prolif-
eration and alleviated cell cycle arrest [105]. Specific 
circRNAs disturbed fibroblast functions, such as circ-
COL3A1-859267, which was downregulated in UVA-
exposed human dermal fibroblasts (HDFs). This circRNA 
regulated type I collagen expression by sponging miR-29c 
in human dermal fibroblasts [106].

There is sufficient evidence to classify that UV light are 
strong oncogenic factor of skin cancers, including mela-
noma, keratinocyte cancers, squamous cell carcinoma 
and basal cell carcinoma. UV radiation (both UV-A and 
UV-B) induces damage of skin cancer related genes, such 
as TP53, RAC1, and STK19 [107]. Fibroblasts in skin 
TME secrete more stimulating factors (basic fibroblast 
growth factor, hepatocyte growth factor and endothelin) 
after UV radiation exposure. Interactions between cancer 
cells and skin TME, including fibroblasts, promote can-
cer development of skin cancer cells [108, 109]. Although 
it is still unclear what role circRNA acts in the context of 
UV radiation leading skin cancer, circRNAs should play 
a part taken the evidence that circRNA regulates UV-
exposed fibroblast above into consideration. CircRNA 
harnesses the potential to be utilized in treatment of skin 
cancer, especially developed from UV lesion.

Besides, circNFIB was found to be decreased in post-
myocardial infarction mouse hearts and subsequently 
promoted adult fibroblast proliferation by sponging miR-
433 [110]. Overexpression of circRNA_000203 could 
eliminate the anti-fibrotic effect of miR-26b-5p in cardiac 
fibroblasts [111]. Taken together, these results emphasize 
the importance of circRNAs to deregulate the functions 
of fibroblasts, indicating the potential importance of cir-
cRNAs in CAFs.

CircRNA and ECM
ECM is composed of various macromolecules includ-
ing fibronectin, collagens, proteoglycans and poly-
saccharides which are mainly secreted by CAFs. The 
bidirectional communication between ECM and cancer 
cell is crucial for cancer metastasis. Alterations in ECM, 

including composition and organization, is closed related 
to prognosis of cancer victims [112]. CircRNAs carried 
by exosomes disseminate from cancer cells to ECM and 
function as a regulator of ECM.

A functional enrichment analysis by Zou et al. revealed 
that circRNA CDR1 as, also named as ciRS-7, played a 
role in ECM reshaping, collagen binding and integrin 
binding. They also found CDR1as functioned as a regula-
tor in ECM-receptor interaction, thereby mediating TME 
[113]. In cancer development, matrix metalloproteinases 
(MMPs) is vital for pathological destruction of ECM and 
malignant behavior of cancer cells. MMPs is upregulated 
in various tumors [114, 115]. Besides hsa_circ_0008433, 
hsa_circ_0000096 was also found to regulate MMP-2 and 
MMP-9 expression in gastric cancer. hsa_circ_0000096 
levels was closed associated with several clinicopatholog-
ical factors, including TNM stage, invasion and gender, 
presenting its clinical diagnostic value in gastric cancer 
[116]. These evidences suggest that circRNAs play a role 
in ECM remodeling, while the interplay and the exact 
mechanism needs further exploration.

CircRNA and the vasculature
Angiogenesis is crucial to promote tumor growth and 
metastasis and has been identified as a hallmark of can-
cer. Tumor vasculature exhibits abnormal leaky structure 
and function compared to vessels in normal tissue and 
generates a special “hypoxia and malnutrition island” for 
cancer development. The island alters the expression of 
genes controlling the cancer stem cell compartment, epi-
thelial-mesenchymal transition (EMT), and angiogenesis 
in tumor cells, hence promoting cell survival and resist-
ance to apoptosis induction through a series of factors, 
such as HIF-1α [117] and ultimately influencing cancer 
development and therapeutic responses [118]. Hsa_
circ_0014130 (circPIP5K1A), which is overexpressed in 
non-small cell lung cancer, facilitates cancer proliferation 
and metastasis by sponging miR-600, which interacts 
with the 3′ untranslated region of HIF-1α [119].

Despite the characterization of a series of ‘blood-vessel 
growth-stimulating factors’, vascular endothelial growth 
factor (VEGF) secreted by tumor cells and stroma in 
the TME is often considered to be a crucial angiogenic 
molecule in cancer [120]. The overexpression of VEGF 
in the majority, if not all, of human tumors, correlates 
strongly with poor outcomes in various cancers [121]. 
Several trials targeting the VEGF-VEGFR pathway to 
inhibit cancer have been conducted [122–124]. Vascular 
endothelial growth factor A (VEGFA) is a member of the 
VEGF growth factor family. Overexpression of VEGFA 
promotes angiogenesis, EMT and activates Ras/ERK 
signaling cascade, hence inducing tumor development 
[125]. The overexpression of circSCAF11 was found in 
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glioma tissue specimens and cell lines and closely corre-
lated with the poor clinical outcome of glioma patients. A 
study of circSCAF11 in glioma genesis demonstrated its 
molecular mechanism in the pathophysiological process. 
The upregulated molecule circSCAF11 sponged miR-421, 
thereby increasing SP1 expression and hence activating 
the transcription of VEGFA [126]. Circ0001429 and cir-
cRNA MYLK exerted similar functions in bladder cancer 
tissues via mediating VEGFA [125, 127].

VEGFA is not the only vehicle involved in the circRNA-
angiogenesis regulating process. Belonging to the SOX 
gene family (Sex-related region Y, Sry-related high-
mobility group box), the SOX13 gene had been proved to 
regulate angiogenesis in the human disease model [128]. 
He et  al. found that circ_002136, overexpressed in gli-
oma, functionally sponged miR-138-5p and subsequently 
enhanced SOX13 expression and regulated angiogenesis. 
The promoted SOX13 activated the upstream promoter 
FUS, forming a positive feedback loop to amplify its 
effect to regulate angiogenesis in glioma [129]. Another 
angiogenesis factor is forkhead box P1/P2 (FOXP1/
FOXP2), which are targets of miR-544a/miR-379. 
FOXP1/FOXP2 are overexpressed since the upregulated 
molecule circ-SHKBP1 in glioma wound sequester their 
hunters-miR-544a/miR-379. Therefore, circ-SHKBP1 
promoted the movement and tube formation of glioma-
exposed endothelial cells to boost angiogenesis via the 
circ-SHKBP1/miR-544a/FOXP1 and circ-SHKBP1/miR-
379/FOXP2 axis [130].

Apart from promoting angiogenesis, circRNA like 
circ-IARS which was secreted into exosomes by pan-
creatic cancer cells enhances the permeability of the 
vessel wall to accelerate cancer metastasis. The overex-
pressed circ-IARS sponged miR-122 and promoted the 
activity of Ras homolog gene family, member A (RhoA), 
which restrained tight junction ligand–protein Zonula 
occludens-1(ZO-1) and enhanced endothelial monolayer 
permeability, promoting cancer development [131]. 
These findings all give us a hint that targeting circRNAs 
to inhibit angiogenesis or rebuild the structure of vascu-
lature is a promising approach to cancer therapy (Fig. 4, 
Table 2).

CircRNA and vascular mimicry
Tumor cell vascular mimicry (VM), also known as vas-
culogenic mimicry, is a vessel like channel made up 
of tumor cells featuring cancer stem cell-like, trans-
endothelial phenotype. Like real vessels, the de novo 
vascular structure also provides blood supply to nour-
ish cancer cells and is closed associated to malignant 
behavior of various cancer and poor prognosis of cancer 
patients. Various molecular mechanisms are involved in 
VM, including MMP we talked in ECM section, VEGFR 

and HIF-1a in angiogenesis section, vascular endothelial 
(VE)-cadherin and phosphatidyl inositol 3-kinase (PI3K). 
Hypoxia is an important condition for VM, as it induces 
the functional plasticity of tumor cell and promotes VM. 
It is suggested that VM could be a potential therapeutic 
target to intensify angiogenic treatment [132–134].

Boeckel et al. found that circRNA ZNF292 (cZNF292) 
was upregulated under hypoxia circumstance and func-
tioned as a promoter for angiogenesis in vitro, while the 
exact molecular mechanism remained unclear [135]. 
Yang et  al. found that hypoxia-responsive manner of 
cZNF292 was independent of HIF1A and the knock-
down cZNF292 in HCC SMMC7721 cells increased 
SRY (sex determining region Y)-box  9 (SOX9) nuclear 
translocation, which suppressed Wnt/β-catenin pathway 
and thereby inhibited cancer cell proliferation. Micro-
scopic examination of vasculogenic mimicry density also 
revealed a decrease when cZNF292 was knocked down. 
The decrease of cancer cell proliferation should partially 
owe to the decrease of VM [136]. Similarly, Huang et al. 
found that exosomal circRNA-100,338 in serum of HCC 
patients could also regulate VM formation by upregulat-
ing VE-cadherin [137]. Their studies suggested circRNA 
played a part in VM regulation.

CircRNA and tumor antigens
CircRNAs are generated specifically in tumorigenesis 
due to genetic mutations and chromosomal changes. 
Aberrant differentially expressed circRNAs may serve as 
tumor antigens to induce the immune response. Newly 
synthesized circRNAs in tumors may be packaged in 
exosomes [138] and transported to immunocytes [139] as 
tumor antigens to activate antitumor immunity or bind 
to miRNAs [140] and proteins to regulate immunocyte 
activity [51].

It remains incompletely clear how a foreign circRNA 
acting as a tumor antigen is sensed. The nucleic acid sen-
sor RIG-I is a kind of pattern recognition receptor (PRR) 
for immune monitoring that can recognize 5′ triphos-
phate on short dsRNAs [141]. RIG-I, m6A modification 
and the immune factors NF90/NF110 are important reg-
ulators of the immune response and colocalize with for-
eign circRNAs [51, 52, 142]. Endogenous circRNAs with 
different introns that program their back-splicing will 
undergo m6A modification, suggesting that endogenous 
and exogenous circRNAs vary in their m6A modifica-
tion. RIG-1 can bind both unmodified and m6A -modi-
fied circRNAs but can distinguish between them and can 
only be activated by the former. M6A is not the only RNA 
modification pathway involved in exogenous circRNA 
recognition [52, 143]. Once foreign circRNA is recog-
nized, the double-stranded RNA-binding domain-con-
taining immune factors NF90/NF110 promote circRNA 
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biogenesis in the nucleus. They also interact with mature 
circRNAs in the cytoplasm to enhance the stability of 
circRNAs [142]. During viral infection, NF90/NF110 dis-
sociate from circRNA-binding proteins and bind to viral 
mRNA to regulate antiviral immunity [91]. Chen et  al. 
previously demonstrated that foreign circRNAs could 
trigger the immune response [51]. Given their stability 
and specificity, circRNAs can act as potent tumor anti-
gens to enhance tumor immunity.

With bioinformatics analyses, circRNA databases such 
as MiOncoCirc [144] can be used to predict whether a 
circRNA can regulate tumor immunity-associated miR-
NAs, such as miR-148/152, miR-487b, and miR-17-92. 
Potential new circular tumor antigens may be identified 
based on these predictions.

A perspective on circRNA in cancer therapy
With the rapid development of next-generation sequenc-
ing technology and bioinformatics tools, circRNAs are 
being increasingly identified. Extensive studies, numer-
ous new software applications and databases have 
allowed us to gain detailed insight into the versatil-
ity of circRNAs. As multifaceted regulators, circRNAs 
contribute to tumor progression by modulating tumor 
cells directly or regulating the TME. In this review, we 
described the roles of circRNAs in tumor immunity, 
especially their roles in specific immune cell types.

Notably, the bidirectional communication between 
TME and specific cancer, such as pancreatic cancer, in 
which a small portion of cancer cell island immersed 
in the dense collagenous stroma, is tremendously cru-
cial for the carcinogenesis, progression, and metastasis 
and therapy efficacy. Although the novel therapy such 
as programmed cell death-1 (PD-1) immune checkpoint 
inhibitor has made a great breakthrough, it has come to a 
dilemma as pancreatic cancer cells are endowed with the 
ability to escape or defend the therapy by the intangible, 
subtle and dynamic TME [145]. Hence, regulating TME 
by targeting the immune cells is substantial to break the 
bottleneck of immunotherapy for pancreatic cancer and 
some other cancers. Given the evidence above and exist-
ing related studies, the powerful regulating roles of cir-
cRNA in TME and their specific characteristics, such as 
stability and abundance, present circRNAs as promising 
targets to improve the treatment of pancreatic cancer.

CircRNAs can be utilized in tumor immunotherapy by 
serving as tumor antigens, vaccine adjuvants or working 
with other molecules, such as miRNAs or proteins, in 
immunocytes. Introducing circRNA which can suppress 
onco-miRNAs by serving as antisense into the targeted 
enemy is one approach as specific miRNAs are crucial 
regulators of carcinogenesis [146]. CircRNAs can be 
transferred into cells by various delivery techniques, such 

as exosomes or viroid. Artificially constructing and trans-
porting specific circRNAs into target cells can affect the 
communication between normal cells and tumor cells in 
the carcinogenesis process, and some experiments have 
already shown promising results [147]. In osteosarcoma 
patients, circ-0000190 was downregulated in extracel-
lular nanovesicles and tissues, which could be utilized 
to distinguish osteosarcoma patients. The encapsulated 
circ-0000190 delivered to osteosarcoma cells from nor-
mal cells impaired osteosarcoma cells’ ability to migrate, 
proliferate and invade, hinting that constructing artificial 
nanovesicles with circ-0000190 encapsulated could give 
osteosarcoma cells a strike [97].

However, the studies on circRNA are still in infant age, 
as the whole regulatory process is much more compli-
cated. The regulating manner of circRNA could be tumor 
type-dependent and TME type-dependent. Algorithms 
and experiments detecting circRNA are not developed 
enough [38, 148]. Also, one controversy on circRNAs 
focuses on their expressive abundance. Physiological 
expressive levels of circRNAs may not be sufficient to 
sequester and suppress associated miRNAs. While most 
existing algorithms and experiments cannot take expres-
sive levels into account, which makes some results not 
reliable. The relationship between circRNA and miRNA 
cannot be mapped to one-to-one, given that specific cir-
cRNAs interact with tens of miRNA, only if they have 
corresponding binding sites. The complex network 
involves many branches which may take positive or nega-
tive feedback roles in the downstream response. Besides, 
although the majority of circRNA do not have binding 
sites for miRNA, at present, most existing studies focus 
on the sponge function of circRNAs. The other functions, 
such as pseudogene translation and posttranscriptional 
regulation, have been underestimated. It is hard to crack 
these difficult questions. There is still a thick veil swath-
ing on circRNAs. Therefore, the roles of circRNAs in the 
TME are still a gold mine waiting to be explored further.

Conclusions
Reprogramming TME is a potent strategy to eradicate 
tumors, and new targets need to be characterized. Cir-
cRNAs are multifunctional molecules that play essen-
tial roles in tumor progression. CircRNAs inducing 
aberrant functions in the TME can be valuable new 
targets to treat cancer or become novel biomarkers for 
immunotherapy. In this review, we discussed the cross-
talk of circRNAs between immune cells, CAFs, and the 
vasculature in the TME and summarized the potential 
clinical applications of circRNA-based therapeutics. 
Considering the evidence collectively, we believe that 
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circRNA-based therapeutics will contribute promis-
ingly to treat cancer.
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