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Abstract 

Background: Alternative splicing (AS) may cause structural and functional variations in the protein to promote the 
proliferation of tumor cells. However, there is no comprehensive analysis of the clinical significance of AS in Helicobac-
ter pylori-negative gastric cancer  (HP− GC).

Methods: The clinical, gene expression profile data and AS events of 138  HP− GC patients were obtained from the 
database named the cancer genome atlas. Differently expressed AS (DEAS) events were determined by a comparison 
of the PSI values between  HP− GC samples and adjacent normal samples. Unsupervised clustering analysis, propor-
tional regression and Kaplan–Meier analysis were used to explore the association between clinical data and immune 
features and to establish two nomograms about the prognosis of  HP− GC. Finally, splicing networks were constructed 
using Cytoscape.

Results: A total of 48141 AS events and 1041 DEAS events were found in  HP− GC. Various functions and pathways 
of DEAS events parent genes were enriched, such as cell-substrate junction, cell leading edge, focal adhension, and 
AMPK signaling. Seven overall survival (OS)-related and seven disease-free survival (DFS)-related AS events were used 
to construct the prognostic signatures. Based on the independent prognostic factors, two nomograms were estab-
lished and showed excellent performance. Then, splicing regulatory networks among the correlations suggested 
that splicing factors were significantly associated with prognostic DEASs. Finally, the unsupervised clustering analysis 
revealed that DEAS-based clusters were associated with clinical characteristics, tumor microenvironment, tumor 
mutation burden, and immune features.

Conclusion: Seven OS-related and seven DFS-related AS events have been found to be correlated with the progno-
sis of  HP− GC and can be used as prognostic factors to establish an effective nomogram.
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Background
Gastric cancer (GC) is the fifth most common malig-
nancy and the third leading cause of cancer-related 
death worldwide [1]. Among many carcinogens of GC, 
Helicobacter pylori (HP) infection is one of the most 

important factors [2]. And according to The propor-
tion of HP-positive gastric cancer (HP+ GC) is signifi-
cantly higher than that of HP-negative gastric cancer 
 (HP− GC) patients, and over 90% of patients with GC 
have been infected with HP [3]. Several studies showed 
significant differences in histology and prognosis 
between HP+GC patients and  HP− GC patients [4–6]. 
Marrelli et  al [5] concluded that  HP− GC had a more 
advanced stage and a more advanced pT classification 
than HP+ GC. And this result was consistent with 
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the conclusion of another study, which illustrated that 
 HP− GC patients are in stage IV more and have worse 
overall survival (OS) compared to HP+ GC patients 
[6]. Although the prognostic biomarkers of HP+ GC 
have been widely studied previously [7–9], the related 
research is few in  HP− GC. Therefore, it is necessary 
for us to explore the prognostic factors of  HP− GC 
patients.

In recent years, alternative splicing (AS) has received 
widespread attention for its abnormal forms may cause 
structural and functional variations in the protein, 
therefore it could benefit growth and survival for the 
tumors [10, 11]. Many studies have clarified the role 
of AS events as prognostic factors in cancers, such as 
hepatocellular carcinoma [12] and colorectal cancer 
[13]. However, the effect of AS events on the progno-
sis of patients with  HP− GC is still unknown. In addi-
tion, as the relationship between GC and immune 
mechanisms is revealed [14] and AS events can also 
affect tumor immunity [15], we are encouraged to fur-
ther understand the correlation between AS events and 
immune features in  HP− GC.

In this study, AS events data from the TCGA SpliceSeq 
data portal were used to identify the  HP− GC -related AS 
events,  and  we comprehensively analyze the prognostic 
potential of AS events on  HP− GC patients. Furthermore, 
we investigated the biological and immunological func-
tions associated with these AS events to explore their rel-
evant mechanisms.

Methods
Data acquisition and selection
The clinical data of  HP− GC patients and the correspond-
ing gene expression profile data were obtained from the 
cancer genome atlas (TCGA). And the inclusion criteria 
were as follows:(1) Histological diagnosis of  HP− GC; (2) 
With complete data of RNA sequencing; (3) With com-
plete clinical data, including gender, age, and AJCC TNM 
staging. In addition, patients with OS less than 30  days 
were excluded from the present study. Meanwhile, data 
of seven types AS events were collected from the TCGA 
SpliceSeq database [16], including alternate acceptor site 
(AA), alternate promoter (AP), alternate donor site (AD), 
alternate terminator (AT), exon skip (ES), mutually exclu-
sive exons (ME), and retained intron (RI). The percent 
spliced in (PSI) value, which ranges from 0 to 1, was used 
to quantify the AS events. To generate reliable AS events, 
the filter condition was set (percentage of samples with 
PSI values ≥ 75, an average of PSI values ≥ 0.05). Finally, 
the Upset plot generated by the UpSetR package was 
used to illustrate the interactive sets between seven types 
of AS events [17].

Identification of tumor‑associated AS events 
and enrichment analysis
Directly comparing the biomarkers at different patho-
logical state to screen hub biomarkers has been widely 
performed to determine tumor-associated biomarkers 
in past researches [13, 15]. Therefore, to determine the 
differential expression AS (DEAS) events, a compari-
son of the PSI values was made between the  HP− GC 
samples and the adjacent normal samples. AS events 
with adjusted P < 0.05 and |LogFC|>1.5 were defined 
as DEAS events. The parent genes of identified DEAS 
events were then incorporated into the enrichment 
analysis, including Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
with metascape [18].

Construction of the prediction model based on the DEAS
To further understand the role of DEAS events in  HP− 
GC patients, 138 patients with OS data were enrolled 
to study the OS-related DEAS events, and 116 patients 
with DFS data were selected to study the DFS-related 
DEAS events. Afterward, a univariate Cox proportional 
hazard model was performed to identify the prognostic 
DEAS events, including OS-related and DFS-related AS 
events. Then, the least absolute shrinkage and selection 
operator (LASSO) regression analysis was used to avoid 
overfitting [19]. After selecting the optimal OS-related 
and DFS-related AS events in the LASSO analysis, we 
further established two prognostic signatures based on 
the multivariate Cox proportional hazard model.

The risk scores of each patient were determined by 
the following formula:

β was defined as the regression coefficient.
The optimal cut-off value of the risk score was iden-

tified by the X-tile software [20]. Then, all patients 
were stratified into the low-risk group, moderate-risk 
group, and high-risk group. In order to compare the 
OS and DFS between the three groups, Kaplan–Meier 
survival analysis with log-rank test was performed. In 
addition, CIBERSORT package was used to quantify 
the 22 immune cells in all tumor samples, and samples 
with CIBERSORT P < 0.05 were enrolled in the analysis 
between risk score and immune cells. The correlation 
between risk score and immune cells was determined 
by the Spearman correlation test.

Risk score =

n∑

i

PSIi ∗ βi
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Development of nomogram based on the DEAS events 
and clinicopathological data
To establish the nomogram for  HP− GC patients, the 
prognostic predictors were determined by univariate Cox 
proportional hazard model. Then, the predictors with 
a P-value less than 0.1 in the univariate analysis were 
selected into the multivariate Cox analysis, and the inde-
pendent prognostic predictors were determined. After-
wards, two nomograms of OS and DFS were established 
by the “rms” package and C-index was selected to show 
the discrimination [21]. Moreover, calibration curves 
were generated to show the calibration of the nomogram. 
Finally, to investigate the clinical value of nomograms, 
the decision curve analysis (DCA) was performed [22, 
23].

Construction of splicing related network
The splicing factors (SFs) data were downloaded from the 
SpliceAid2 database. After that, the expression of 71 SFs 
was obtained from the TCGA data portal. Then, the dif-
ferential expression analysis between tumor samples and 
normal samples was performed to determine the tumor-
related SF. The Spearman test was performed to explore 
the relationship between tumor-related SFs and DEASs. 
It was considered as a significant association when r is 
more than 0.5 and p is less than 0.05. In addition, the 
interaction networks of DEASs and SFs were constructed 
using Cytoscape (3.7.2).

Evaluation of correlation between DEAS events and clinical 
data, tumor microenvironment, tumor mutation burden, 
and immune features
After DEASs were identified, the classification of  HP− 
GC cohort was performed by the unsupervised consen-
sus approach by the “Consensus Cluster Plus” package 
[24, 25]. According to the results, the optimal number of 
clusters could be identified and patients were divided into 
several clusters. Meanwhile, the ESTIMATE algorithm 
was performed to quantify the tumor microenviron-
ment, including immune score and stromal score. Then, 
Wilcoxon test analysis was performed to compare the 22 
types of immune cells, immune score and stromal score 
between clusters. Besides, the associations between clus-
ters and clinicopathological variables, including AJCC 
TNM staging, histologic grade, age, and gender were also 
analyzed.

Results
Overview of AS events and identification of  HP− GC 
‑related AS events
Based on the criteria, 138  HP− GC patients were 
included in our research. The characteristics and clinical 

data of the 138 patients were shown in Table 1. 31804 AS 
events were identified in 138 patients, including 2791 
AA-type AS events containing 2084 genes, 2394 AD-type 
AS events involving 1767 genes, 6281 AP-type AS events 
including 3602 genes, 5530 AT-type AS events involving 
3157 genes, 12524 ES-type AS events containing 5506 
genes, 146 ME-type AS events involving 141 genes, 2138 
RI-type of variable splicing event containing 1478 genes 
(Fig. 1a). Then, an Upset plot was generated to show the 
interactive sets of seven types of AS events. There are 
more than one AS events in most of the parent genes, 
and some single gene could have up to five distinct splic-
ing patterns (Fig.  1b). For example, the blue line in the 
figure includes two points (AD and ES) means that there 
are 267 genes with only AD and ES.

To identify the  HP− GC-specific AS events, differences 
of AS events between 138 primary  HP− GC tissue and 
seven adjacent normal tissues were compared to identify 
the DEASs profiling. Totally, 1041 DEASs were deter-
mined, which include 429 APs, 329 ESs, 139 ATs, 47 RIs, 
47 ADs, 45 AAs and 5 MEs (Fig. 1c, d, Additional file 1: 
Table  S1). Although most of the events in the  HP− GC 

Table 1 Clinicopathologic characteristics of  patients 
with  HP− GC

HP- GC Helicobacter pylori-negative gastric cancer

Characteristics Whole 
cohort (n = 
138)

Gender

 Male 95

 Female 43

Age

 < 65 51

 ≥ 65 87

T stage

 T1–2 38

 T3–4 100

N stage

 N0–1 66

 N2–3 72

M stage

 M0 131

 M1 7

AJCC

 I–II 55

 III–IV 83

Histologic grade

 G1 4

 G2 59

 G3 72

 Gx 3
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cohort were ES events, the AP accounted for the largest 
part of DEASs, which indicated important roles of AP in 
 HP− GC patients and different roles of DEASs in cancer 
development.

Enrichment and interaction analysis of DEAS
AS events could affect the protein function by various 
mechanisms [26]. Therefore, we should further under-
stand the function of DEAS events in  HP− GC by study-
ing the molecular mechanisms and pathways involved 

in the parent genes of DEAS events. The results of GO 
analysis were illustrated in Fig.  1e, which showed that 
specific GO categories were significantly related to  HP− 
GC, like cell-substrate junction, cell leading edge, actin 
binding, and actin filament-based process. In addition, 
some KEGG pathways that related to  HP− GC devel-
opment were enriched (Fig.  1f ), including focal adhen-
sion, AMPK signaling, hypertrophic cardiomyopathy, 
and rap1 signaling pathway. In a word, the enrichment 
analysis suggested corresponding genes of DEASs play 

Fig. 1 Overview of AS events and DEAS events and GO and KEGG enrichment analysis of parent genes in  HP− GC. a The number of AS events 
and parent genes in  HP− GC. b The Upset plot of interactions between seven types of AS events in  HP− GC. c The number of DEAS events and 
parent genes in  HP− GC. d The heat map shows the difference of PSI value of AS events between normal samples and  HP− GC; e, f GO and KEGG 
enrichment analysis of parent genes from DEAS events. DEAS differentially expressed alternative splicing, HP− GC Helicobacter pylori-negative gastric 
cancer, GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes pathways
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an essential role in  HP− GC, which helped reveal the 
potential modification mechanisms of protein function 
by DEAS events.

Development of the prognostic model for  HP− GC
Firstly, a univariate Cox proportional hazard model was 
conducted to determine the prognostic DEAS events, 
and 67 DEAS events were identified as the OS-related 
DEAS events, including 30 APs, 24 ESs, 6 ATs, 4 RIs, 2 
ADs, and 1 AA (Additional file 2: Table S2). Meanwhile, 

96 DEAS events were identified as the DFS-related DEAS 
events, which included 50 APs, 19 ESs, 8 ATs, 9 RIs, 5 
ADs, 4 AAs, and 1 ME (Additional file 3: Table S3). Then, 
the LASSO regression was used to select the significant 
OS-related and DFS-related DEAS events (Fig.  2a–d), 
and 11 OS-related DEAS events and 13 DFS-related 
DEAS events were determined (Additional file 4: Table S4 
and Additional file 5: Table S5). After the LASSO analy-
sis, the significant DEAS events identified were analyzed 
by the multivariate Cox proportional hazard model and 

Fig. 2 LASSO regression to select the significant OS-related DEAS events (a, b) and DFS-related DEAS events (c, d), respectively. LASSO: least 
absolute shrinkage and selection operator. AS alternative splicing, OS overall survival, DFS disease-free survival
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the prognostic models were established. Finally, seven 
OS-related DEASs and seven DFS-related DEASs events 
were determined as independent prognostic biomarkers 
(Tables 2, 3) in  HP− GC, which indicated that the DEAS 
events have both vital functions for biology and value for 
prognosis.

Risk scores were calculated based on the 
selected DEAS events in the multivari-
ate Cox analysis (risk score of OS signature = 
4.203*TTC39C_44852_AP+ 7.319*WDPCP_53726_
AP+ − 8.225*ANKRD13A_24394_AP+ − 3.641* 
BNIP3_13478_AT+ − 1.594* APOD_68181_ES+ 
-3.934*KLC1_29474_ES+ 3.072*RELL1_69003_AT; and 
risk score of DFS signature = 2.321* POLM_79446_RI + 
− 1.566* PLCD1_64008_AP+ 3.492* C9orf156_87024_
AP+ 2.629* ELMOD3_54213_RI+ − 6.138* 
TCF12_30789_ES+ − 4.891* SYBU_84909_AP+ 11.239* 
ZFYVE21_29513_ES), and  HP− GC patients were strati-
fied into low-,  middle− and high-risk groups through the 
X-tile software. The distribution of prognostic outcomes 
in these three risk stratifications was visualized in Fig. 3a, 
b. As shown in Fig.  3c, d, compared with the  low− risk 
group, the high-risk group had a significantly higher inci-
dence of deaths and shorter survival time of patients. In 
addition, the K-M survival curves and the log-rank test 
showed that both of the prediction models had excellent 

performance for predicting the prognosis of  HP− GC 
patients in these three groups (Fig. 3e, f ).

The tumor immune mechanisms play essential roles 
in the progress of various cancers [27]. Thus, we evalu-
ated the association between 22 types of immune cells 
and risk scores of OS and DFS to explore the correlation 
between immune cells and DEAS-based prognostic value 
in  HP− GC (Fig.  4a, c). It is showed that plasma cells 
(r = 0.45) and monocytes (r = 0.23) are associated with 
the risk score of OS, while monocytes (r = 0.41) and mast 
cells activated (r = 0.30) are related with a risk score of 
DFS (Fig. 4b, d).

Development of AS‑clinicopathologic nomogram
Nomogram is a tool used for the prediction of patients’ 
prognosis. The Cox analysis of clinicopathologic charac-
teristics showed that in addition to the risk score was one 
of the independent factors for OS and DFS in  HP− GC 
cohort, age and N stage were OS-related and DFS-related 
factors, respectively (Tables 4, 5). Then, two nomograms 
were established for predicting the OS (Fig. 5a) and DFS 
(Fig.  5d) in  HP− GC patients. And the plot of the AS-
clinicopathologic nomograms to predicting the possi-
bility of survival at 1-, 2-, and 3-years showed a strong 
consistency between the nomogram-predicted outcome 
and actual outcome (Fig.  5b, e). The C-index for OS 

Table 2 OS-related DEAS events for  HP− GC patients

OS overall survival, DEAS differently expressed alternative splicing, HP− GC Helicobacter pylori-negative gastric cancer, AP alternate promoter, AT alternate terminator, 
ES exon skip, HR hazard ratio, CI confidence interval

Gene Type ID Coef HR 95% CI P value

TTC39C AP 44852 4.203 66.893 7.273–615.256 0.000

WDPCP AP 53726 7.319 1509.442 61.883–36818.171 0.000

ANKRD13A AP 24394 − 8.225 0.000 0.000–0.403 0.028

BNIP3 AT 13478 − 3.641 0.026 0.001–0.671 0.028

APOD ES 68181 − 1.594 0.203 0.024–1.701 0.142

KLC1 ES 29474 − 3.934 0.020 0.001–0.359 0.008

RELL1 AT 69003 3.072 21.593 1.335–349.130 0.030

Table 3 DFS-related DEAS events for  HP− GC patients

DFS disease-free survival, DEAS differently expressed alternative splicing, HP− GC Helicobacter pylori-negative gastric cancer, RI retained intron, AP alternate promoter, 
ES exon skip, HR hazard ratio, CI confidence interval

Gene Type ID Coef HR 95% CI P value

POLM RI 79446 2.321 10.186 2.266–45.797 0.002

PLCD1 AP 64008 − 1.566 0.209 0.057–0.771 0.019

C9orf156 AP 87024 3.492 32.849 1.576–684.536 0.024

ELMOD3 RI 54213 2.629 13.856 1.331–144.215 0.028

TCF12 ES 30789 − 6.138 0.002 0.000–0.043 0.000

SYBU AP 84909 − 4.891 0.008 0.000–0.179 0.002

ZFYVE21 ES 29513 11.239 76,054.320 322.567–17,931,942.782 0.000
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nomogram was 0.762 (95% CI 0.729 to 0.795), which was 
higher than risk score (0.740, 95% CI 0.708 to 0.772) and 
age (0.552, 95% CI 0.519–0.585). And the C-index for 
DFS nomogram was 0.783 (95% CI 0.750 to 0.816), which 
was higher than risk score (0.767, 95% CI 0.738 to 0.796) 
and T stage (0.554, 95% CI 0.518–0.590). The DCA of 
nomograms for 1-, 2-, and 3-years was also established 
(Fig. 5c, f ). It is worth noting that the decision curves for 
1 year, 2 years, and 3 years all showed higher credibility, 
which suggested the nomogram based on AS events and 
clinical data is effective for predicting the survival prob-
ability and prognosis of patients.

Construction of AS‑SFs network
SFs are elements for regulating AS events. Compared 
with the normal tissues, alterations of SFs in tumors 
promote differential splicing patterns, which lead to an 
increase of pro-tumorigenic isoforms [28]. Therefore, it’s 
important for us to understand whether DEAS events 
are regulated by specific key SFs in  HP− GC. In order 
to understand this issue, we firstly identified six tumor-
related SFs through differential analysis (Additional file 6: 
Table  S6). Then, we analyzed the relationship between 
the expression of these SFs and prognostic DEAS events, 
including OS-related DEAS events and DFS-related 

DEAS events. Two splicing regulatory networks were 
shown in Fig. 6. Each SF was significantly correlated with 
more than one OS-related and DFS-related DEAS event, 
reflecting the intricately cooperative and competitive 
association between SFs and AS events [29].

AS‑based clusters associated with clinical data, tumor 
microenvironment, tumor mutation burden and immune 
features
Targeting at the individual level of cancer patients, the 
various expressions of each DEAS reflected the prog-
nosis of some patients and can predict different clinical 
outcomes [15]. Therefore, we further identified the dif-
ferent AS patterns by unsupervised analysis based on 
the DEASs. By using the Elbow method and Gap statis-
tic method to determine the optimal number of clusters, 
we finally determined the two clusters of samples: C1 
(n = 26, 18.8%) and C2 (n = 112, 81.2%) (Fig. 7a).

In order to expound the clinicopathologic characteris-
tics of the DEAS clusters, the association of clusters with 
clinal status was firstly explored and showed in a heat 
map (Fig. 7e). It revealed that the distribution of T stage 
and grade in  HP− GC samples between two clusters was 
not random. Then, by using the ESTIMATE algorithm, 
we calculated immune and stromal scores to perform 

Fig. 3 Establishment of the prognostic model for OS (a, c, e) and DFS (b, d, f) based on the independent DEAS events. (A, B) The risk curve of each 
sample based on risk score. c, d The scatter plot showed the survival status of  HP− GC patients. Kaplan–Meier survival curve of OS (e) and DFS (f) 
among three groups. OS overall survival, DFS disease-free survival, AS alternative splicing
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quantitative analysis of the presence of stromal cells and 
immune cells in  HP− GC patients. As shown in Fig. 7b, c, 
the stromal score of C1 is significantly higher than that 
of C2. In addition, the result showed in Fig. 7d suggested 
that C2 had a significantly higher tumor mutation burden 

compared to C1. Meanwhile, by comparing the composi-
tion of 22 types of immune cells between the C1 (n = 17) 
and C2 (n=54), we found that there were significant dif-
ferences between the two clusters in plasma cells, T cells 
CD4 memory resting, T cells regulatory (Tregs), NK cells 

Fig. 4 Association between 22 types of immune cells and risk score based on DEAS events. a The correlation between immune cells and the risk 
score of OS. b Correlation analysis of specific immune cells and risk score of OS. c The correlation between immune cells and risk score of DFS. 
d Correlation analysis of specific immune cells and risk score of DFS. OS overall survival, DFS disease-free survival, DEAS differentially expressed 
alternative splicing; *p<0.05; **p<0.01; ***p<0.001
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resting, monocytes, mast cells resting and neutrophils 
(Fig. 7f ).

Discussion
GC is one of the cancers with the highest morbidity and 
mortality [30]. Finding effective prognostic and diag-
nostic markers for GC has become the focus of future 
research. However, because of the limitations of tradi-
tional gene identification methods, it has not brought 
obvious advantages to disease diagnosis and clinical 

results. Recently, with the development of gene sequenc-
ing technology, AS events have been widely studied 
and has shown some progression [31]. The biochemical 
mechanisms of AS events are complex and remain poorly 
understood to a large extent, but its importance for gene 
regulation cannot be ignored [32]. Abnormality of AS 
events have been shown to be associated with the occur-
rence, development and distant metastasis in many can-
cers [33]. Compared with a previous study reporting the 
relationship between GC and AS events [34], this study 

Table 4 Univariate Cox analysis of clinicopathologic characteristics

OS overall survival, DFS disease-free survival, HR hazard ratio, CI confidence interval

OS DFS

HR 95% CI P value HR 95% CI P value

Age 1.854 1.040–3.305 0.036 2.02 0.775–5.266 0.150

Sex 1.714 0.939–3.131 0.079 2.67 1.299–5.488 0.008

T 1.864 0.913–3.803 0.087 1.364 0.713–2.608 0.348

M 1.362 0.492–3.776 0.552 0.735 0.175–3.09 0.674

N 1.999 1.160–3.445 0.013 1.597 0.916–2.783 0.099

AJCC 2.083 1.157–3.752 0.014 1.544 0.861–2.77 0.145

Grade (x) 1.040–3.305 0.504 0.775–5.266 0.993

Grade (1) 1.713 0.231–12.713 0.599 1.277 0.172–9.483 0.811

Grade (2) 2.469 0.337–18.112 0.374 1.326 0.180–9.779 0.782

Grade (3) 1.958 0.122–31.430 0.635 0.000 0.000–0.000 0.975

Low risk 0.000 0.000

Middle risk 4.442 2.122–9.299 0.000 4.027 2.018–8.038 0.000

High risk 11.614 5.783–23.323 0.000 24.974 10.726–58.147 0.000

Table 5 Multivariate Cox analysis of clinicopathologic characteristics

OS overall survival, DFS disease-free survival, HRHR: Hazard ratio,CI Confidence interval

OS DFS

HR 95%CI P value HR 95%CI P value

Low risk 0.000 0.000

Middle risk 0.292 0.188–0.455 0.000 3.910 1.953–7.828 0.000

High risk 1.169 0.790–1.728 0.435 22.745 9.479–54.577 0.000

Age 1.945 1.071–3.533 0.029

Sex 1.089 0.574–2.066 0.795 1.682 0.790–3.582 0.178

T 1.039 0.440–2.457 0.930

N 1.425 0.696–2.915 0.333 1.771 1.015–3.091 0.044

AJCC 1.468 0.6153.505 0.387

Fig. 5 Two nomograms and corresponding results showed the prognostic value of AS events and clinicopathologic data. Nomogram for 
predicting OS (a) and DFS (d) in the  HP− GC cohort. Calibration plot of the AS-clinicopathologic nomogram in terms of the agreement 
between nomogram-predicted and observed 1-, 2-, and 3-years OS (b) and DFS (e) in the  HP− GC cohort. c, f Decision curve analysis of the 
AS-clinicopathologic nomogram for 1-, 2-, and 3-years risk in the  HP− GC cohort. AS alternative splicing, OS overall survival, DFS disease-free survival, 
HP− GC Helicobacter pylori-negative gastric cancer, ROC receiver operating characteristic

(See figure on next page.)
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focused on the value of AS events in  HP− GC and visual 
display patients’ prognosis by nomograms. In addition, 
the correlation between DEASs and tumor microenvi-
ronment, immune features and tumor mutation burden 
was studied to provide the basis for  HP− GC immune 
and molecular mechanisms.

In the present study 1041 DEAS events from 930 
genes were identified in  HP− GC. In the results, a series 
of molecular mechanisms and pathways were signifi-
cantly enriched in these genes through GO and KEGG 
enrichment analyses. Several of the enriched molecu-
lar mechanisms have been shown to promote tumori-
genesis. For example, GTPase activity has a promoting 
effect on the metastasis and invasion of prostate can-
cer cells [35]. AMP-activated protein kinase (AMPK) 
can regulate cellular energy metabolism, and stimulate 
ATP generation [36]. Activated AMPK promotes gly-
colysis and enhances cellular differentiation of tumors 
[37]. These analysis results provide a basis for  HP− 
GC’s molecular mechanisms of AS events and provide 
a basic theory for subsequent experimental verification. 
In addition, to explore the tumor-related mechanisms 
of total parent genes in DEAS events, the parent genes 
of independent prognostic AS events have been discov-
ered. The gene of BNIP3 in the AS we found can pro-
mote hypoxic survival and autophagy of cancer cells 
[38]. And autoantibodies against proteins translated by 

the RELL1 gene are considered as underlying biomark-
ers for detecting early-stage breast cancer [39].

In order to further understand the prognostic value of 
AS events in  HP− GC, the seven OS-related and seven 
DFS-related prognostic AS events were included in the 
calculation of risk score to establish a prediction model. 
In previous studies, the median was often used as a cut-
off value to divided patients into high-risk and low-risk 
groups. For the accuracy of the results, X-tile, a new and 
useful tool for bioinformatic analysis, was chosen to con-
firm the cut-point of the risk score. The survival status of 
three groups suggested that AS events can affect patient 
survival time and prognosis of  HP− GC patients. Besides 
studying the relationship between AS events and progno-
sis, we also include clinicopathological data of  HP− GC 
patients into this research to describe the prognosis more 
comprehensively.

According to the discovery of the important role of 
immune mechanisms in the GC progression in a previ-
ous study [14], the immune environment is considered 
as a key determinant of GC. Macrophages, neutro-
phils, dendritic cells, and immune cells of various T 
cell lineages are the major components of the tumor 
microenvironment and are involved in many processes 
of tumorigenesis and growth [40]. Besides, previous 
studies showed that AS events may be associated with 
immune cell infiltration by regulating tumor-associated 

Fig. 6 Correlation network between OS-AS events (a) and DFS-AS events (b) and prognostic SFs in  HP− GC. The majority of prognostic AS events 
with poor prognosis (red dots) were positively (green lines) correlated with the expression of SFs, while the majority of AS events with good 
prognosis (green dots) were negatively (red lines) correlated with the expression of SFs. AS: alternative splicing; OS: overall survival; DFS: disease-free 
survival; SF: splicing factor;  HP− GC: Helicobacter pylori-negative gastric cancer.  HP− GC: Helicobacter pylori-negative gastric cancer
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immune cytolytic activity [41]. Therefore, in the AS 
events we determined, correlation analysis on 22 types 
of immune cells and risk scores was also be performed. 
From the results of the correlation coefficient, we can 
conclude that there was a strong correlation between 
monocytes and both DFS (r = 0.41) and OS (r = 0.23). 
Similarly, Zhang et  al. [42] found that infiltrating 
immune cells were associated with survival, therapeutic 

responses and prognosis of breast cancer patients and 
monocytes were decreased in cancer patients with 
higher-grade tumors. From the perspective of clusters 
to further explore the association between AS events 
with clinical data, tumor mutation burden and immune 
features. It is obvious that the T stage of C2 and tumor 
mutation burden is higher than that of C1, while the 
stromal score is lower. It indicated that the tumor 

Fig. 7 AS events-based clusters significantly associated with immune cells. a Consensus clustering analysis identification of two clusters (samples, 
n = 138). b, c Immune score and stromal score between AS-based clusters. d Tumor mutation burden between AS-based clusters. e Heat map of 
the DEAS events ordered by cluster, with annotations associated with each cluster. Chi square test was used. f Statistical differences in each type of 
immune cell between C1 and C2. AS alternative splicing, DEAS differentially expressed alternative splicing
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mutation burden may be positively associated with the 
T stage, while the stromal score may be negative with 
it. This conclusion was similar to the previous one that 
higher tumor mutation burden tends to achieve a prog-
nosis and to promote the infiltrations of immune cells 
such as T cells and NK cells in bladder cancer [43]. 
Pan et  al proved that the infiltration of immune cells 
is closely related to tumor progression and prognosis 
[44]. The reason that there is no difference in immune 
score between C1 and C2 in our study may be the small 
sample size. But in fact, the infiltration of immune cells 
being involved in the evolution of GC has been clari-
fied [45, 46]. From the comparison results of the two 
groups in 22 types of immune cells, it can be seen that 
there are differences in the composition ratios of some 
immune cells, indicating that immune features are sig-
nificantly associated with AS events. Different gene 
splicing patterns can be affected by antigen stimula-
tion to regulate immune cell activation thresholds and 
to maintain internal environment stability [47]. The 
type I membrane protein receptor carcinoembryonic 
antigen-related cell adhesion molecule 1 (CEACAM1) 
differently exhibits significant AS events and is highly 
expressed in various types of immune and parenchymal 
cell [48]. It can act on immunity such as inhibiting natu-
ral killer cell-mediated cytotoxicity, regulate neutrophil 
and monocyte development and function [48]. Besides, 
it also regulates T cell activation and mediates toler-
ance [49]. There are various splicing forms of PyTEPs 
in Yesso scallo, of which involvement participates in 
the immune response through different response mod-
els [50]. Various studies have shown that AS events are 
related to the distribution of immune cells, which were 
consistent with the conclusions of this study.

SFs can recognize and combine pre-mRNA codon-
regulated genes, and then influence the selection of exons 
and the choice of splice sites to achieve the purpose of 
regulating AS events [51]. Therefore, we comprehensively 
analyzed SFs and its expression to elucidate the splicing 
mechanism of  HP− GC. The abnormal expression condi-
tions of epithelial splicing regulatory protein 1 (ESRP1) 
and polypyrimidine tract binding protein 1 (PTBP1) are 
closely related to the expression of AS events. ESRP1 is 
one of the earliest epithelial restriction RNA binding pro-
teins discovered, which can regulate AS of multiple epi-
thelial transcripts [52]. Establishing the network between 
OS-related AS events and tumor-specific SFs, this 
research found that ESRP1 was associated with several 
OS-AS events that were correlated with OS. Similarly, 
ESRP1 was considered avital SF that leads to the progres-
sion and metastasis in pancreatic and prostate cancer [53, 
54]. While in addition to its role in splicing, PTBP1 also 
participates in the regulation of other aspects of RNA 

metabolism. Previous studies have shown that PTBP1 
suppresses cell viability and promotes apoptosis during 
lung tumorigenesis [55].

This study still has some limitations. Firstly, it was a ret-
rospective study, of which predictive models were on the 
basis of public databases. So, data from other regions are 
not included. Second, owing to the incidence of the dis-
ease was relatively low and the sample size included was 
small, the predictive power of some results needs to be 
increased and experimentally verify the role of AS events 
in  HP− GC by enlarging the sample size. Finally, there is 
less immune information, including only the situation 
of immune cells. In order to fully explore the immune 
mechanisms associated with  HP− GC, more immune 
information should be included, such as immunohisto-
chemistry results and immune checkpoint detection.

Conclusion
In summary, the present study showed the prognostic 
value of AS events which play important roles in  HP− GC 
tumorigenesis. Besides, our research also suggested that 
some prognostic SFs may be related to potential mecha-
nisms of the splicing forms by regulating AS events. More 
importantly, the  risk− classification based on AS events 
is not only crucial for deciphering tumorigenesis mecha-
nisms, but also reveals the correlation between molecular 
changes and immune characteristics, which can be used 
as underlying prognostic biomarkers and therapeutic tar-
gets for  HP− GC patients.
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