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Abstract 

Background:  Endometrial cancer (EnCa) ranks fourth in menace within women’s malignant tumors. Large numbers 
of studies have proven that functional genes can change the process of tumors by regulating the cell cycle, thereby 
achieving the goal of targeted therapy.

Methods:  The transcriptional data of EnCa samples obtained from the TCGA database was analyzed. A battery of 
bioinformatics strategies, which included GSEA, Cox and LASSO regression analysis, establishment of a prognostic sig-
nature and a nomogram for overall survival (OS) assessment. The GEPIA and CPTAC analysis were applied to validate 
the dysregulation of hub genes. For mutation analysis, the “maftools” package was used.

Results:  GSEA identified that cell cycle was the most associated pathway to EnCa. Five cell cycle-related genes 
including HMGB3, EZH2, NOTCH2, UCK2 and ODF2 were identified as prognosis-related genes to build a prognostic 
signature. Based on this model, the EnCa patients could be divided into low- and high-risk groups, and patients with 
high-risk score exhibited poorer OS. Time-dependent ROC and Cox regression analyses revealed that the 5-gene 
signature could predict EnCa prognosis exactly and independently. GEPIA and CPTAC validation exhibited that these 
genes were notably dysregulated between EnCa and normal tissues. Lower mutation rates of PTEN, TTN, ARID1A, and 
etc. were found in samples with high-risk score compared with that with low-risk score. GSEA analysis suggested that 
the samples of the low- and high-risk groups were concentrated on various pathways, which accounted for the differ-
ent oncogenic mechanisms in patients in two groups.

Conclusion:  The current research construct a 5-gene signature to evaluate prognosis of EnCa patients, which may 
innovative clinical application of prognostic assessment.
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Background
Endometrial cancer (EnCa) ranks fourth in menace 
within women’s malignant tumors. In 2015, the Ameri-
can Cancer Society statistics found 10,170 deaths among 

54,870 new cases with EnCa, which proved that the mor-
tality rate of EnCa had increased significantly in the past 
20  years. The average age of patients was 63  years old, 
about 90% of patients were over 50  years old, and only 
20% of patients could be diagnosed before menopause 
[1]. Although increased numbers of studies have been 
conducted, EnCa still lacks early and noticeable symp-
toms, hence need to be effectively screened and managed 
[2–5].

Cell cycle is tightly associated with the growth and pro-
liferation of cancer cells. Growing numbers of research 
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have proven that genes can change the process of tumors 
by regulating the cell cycle, thereby achieving the goal of 
targeted therapy. For instance, Wu et al. uncovered that 
PRC1 could change the proliferation of oral squamous 
cell carcinoma by controlling the cell cycle [6]. Guo et al. 
found that KAI1 overexpression inhibited cell cycle in 
nasopharyngeal carcinoma cells [7]. Sun et al. found that 
CDC45 promoted papillary thyroid cancer development 
through controlling cell cycle [8]. Aspirin has been found 
to participate in the cell cycle arrest of oral squamous cell 
carcinoma, which may be used in therapeutic approaches 
[9].

In EnCa, cell cycle is a hot research direction. Shyam 
et  al. found that centchroman induced cell-cycle arrest 
in human EnCa cells [10]. Qiu et al. discovered that JQ1 
inhibited tumor growth by mediating PTEN/PI3K/AKT 
axis in EnCa [11]. Zhou et  al. found that carfilzomib 
induced G2/M cell cycle arrest in EnCa cells [12]. There-
fore, this study will extensively screen out cell cycle genes 
that were related to EnCa, providing different kinds of 
directions to treat EnCa.

Material and method
Acquisition of data
Transcriptional data and the corresponding EnCa clini-
cal information were achieved from the TCGA database 
[13]. Platform Illumina HiSeq RNA‐seq [14] proceeded 
them and contained 552 EnCa patient samples and 35 
normal tissues. Then 520 samples were get after integrat-
ing clinical information. These specimens were divided 
into the training cohort (n = 260) and the testing cohort 
(n = 260) randomly. The training cohort was applied for 
the prognostic signature establishment, and the testing 
and entire cohorts were used for validation of the prog-
nostic signature.

Gene set enrichment analysis (GSEA)
GSEA was conducted in the molecular signatures data-
base (MSigDB) (http://softw​are.broad​insti​tute.org/gsea/
index​.jsp), which provided hallmark gene sets to predict 
biological processes between normal and EnCa samples 
[15]. Next, we analyzed the expression levels of 32704 
mRNAs in EnCa samples and normal tissues. The soft-
ware running parameters are set to: replacement type 
selection phenotype, data set into gene name selection 
no, expression database selection gene cluster file, phe-
notypic tag selection: Tumor vs Normal,replacement 
parameters 1000 times, False discovery rate (FDR) < 0.01 
were set as the cutoff.

Identification of prognosis‑related genes and their features
Univariate Cox regression, LASSO regression and multi-
variate Cox regression analyses were employed to explore 

the prognostic values of cell cycle-related genes in pre-
dicting EnCa patients’ overall survival (OS). In the uni-
variate Cox regression analysis, genes were identified to 
be potential prognostic genes when P value was < 0.05. 
LASSO-penalized and multivariate Cox analysis were 
further conducted for further screening and narrowing 
prognostic genes. Hazard ratios (HRs) and regression 
coefficient were calculated for each hub gene, and five 
satisfactory genes were ultimately extracted. The gene 
alteration types and frequency of hub genes were exhib-
ited by the cBioPortal tool [16].

Construction of the gene‐related prognostic model
The prognostic signature for OS assessment of EnCa 
patients was the combination of each optimal prognos-
tic transcriptional expression level multiplying relative 
regression coefficient weight calculated from the multi-
variate model according to the following formula:

All patients in the training cohort were classified into 
low- and high-risk groups based on the median of risk 
scores. The Kaplan–Meier survival curves of two groups 
and the ROC curve for OS evaluation were plotted to 
determine the sensitivity and specificity of the 5-gene sig-
nature [17]. Cox multivariate analysis including several 
clinical characteristics of EnCa patients was conducted as 
well to check the independency of the prognostic signa-
ture without clinical characteristics.

Validation of the prognostic signature
By comparing the patient’s risk score in the testing and 
entire cohort with the cut-off value obtained from the 
training cohort, each patient was categorized as the 
low- or high-risk group. Kaplan–Meier curve, time-
dependent ROC and multivariate cox analysis were also 
conducted. Furthermore, the subgroup survival analysis 
was performed according to different clinicopathological 
characteristics.

Construction of nomogram based on the 5‑gene signature
Nomogram and calibrate curves were established by the 
“rms” package in R language. The correctness was deter-
mined to check the consistency index between actual 
observation frequency and predicted probability. Next, 
we showed the predicted and observed results in the cali-
bration curve to visualize the performance of the nomo-
gram, and the 45° line represents the best prediction.

Risk Score(patient) =
∑

i

Coefficient(mRNAi)× Expression(mRNAi)

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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Validation of the hub genes
GEPIA website was used to validate the cell cycle-
related genes expression levels between EnCa and 
normal samples [18]. Besides, to further validate the 
protein levels of these five hub genes, the CPTAC anal-
ysis in UALCAN was applied [19].

Mutation analysis
To compare the mutational loading between two 
groups, mutation annotation format (MAF) based on 
the TCGA cohort was functioned by the “maftools” 
package [20].

Clinical specimens
We total collected 11 EnCa tissues and paired nor-
mal tissues in this research and all the patients were 
recruited by the Wuxi Maternal and Child Health Hos-
pital Affiliated to Nanjing Medical University. The clin-
icopathological details were shown as Additional file 1: 
Table S1. Ethical approval for the study was granted by 
the Clinical Research Ethics Committee, Wuxi Mater-
nal and Child Health Hospital Affiliated to Nanjing 
Medical University, and our research was conducted in 
accordance with the Declaration of Helsinki.

Total RNA extraction and quantitative real‑time PCR 
analysis
We used TRizol reagent (Thermo Fisher Scientific, 
Waltham, MA, USA) to extract total RNA from tis-
sue samples and Agilent Bioanalyzer 2100 (Agilent 
Technologies, Santa Clara, CA, USA) with RNA 6000 
Nano kit to evaluate the integrity of extracted RNA. We 
used a high-capacity cDNA reverse transcription kit 
(Thermo Fisher Scientific) to react with the extracted 
RNA to synthesize single-stranded complementary 
DNA from RNA, and then used the SYBR Green PCR 
kit (Thermo Fisher Scientific) for real-time quantifica-
tion. Record the cycle threshold (Ct) of each gene. The 
relative expression of the target gene was calculated 
using the 2 − ΔΔCt method. All program steps of real-
time quantitative RT-PCR (qRT-PCR) are performed 
in accordance with the instructions provided by the 
manufacturer. Primer sequences for five hub genes and 
GAPDH were shown in Table 1.

Result
Functional pathway screening using GSEA
Clinical data from 587 samples, which contained 552 
EnCa samples and 35 normal samples were obtained 
from the TCGA dataset. We performed GSEA to find 
the related functional pathway that might affect EnCa 
progression, which screened out 5 significant pathways 

that including E2F targets, G2M checkpoint, mtorc1 
signaling, myc targets v1 and myc targets v2 (Fig.  1). 
G2M checkpoint was part of the cell cycle pathway, 
which was shown to be the most relevant.

Establishment of cell cycle related genes prognostic model
We integrated transcriptional and clinical data to 
extracted 520 EnCa specimens. We analyzed 520 EnCa 
samples and obtained a total 193 related genes on the 
cell cycle pathway to investigate the association between 
cell cycle and the prognosis of EnCa patients. We ran-
domly extracted 260 samples from a total of 520 samples, 
which we named as training cohort. We constructed a 
prognostic model in the training cohort and the univari-
ate Cox regression analysis identified 13 genes according 
to the cutoff with P < 0.05. The 13 cell cycle genes were 
found to be associated with EnCa prognosis, which was 
further analyzed by LASSO Cox regression algorithm 
(Additional file 2: Figure S1A, B). Then multivariate Cox 
regression analysis was conducted for the risk signature. 
We established the prognostic signature and the risk 
scores were calculated for each sample. HMGB3, EZH2, 
NOTCH2, UCK2 and ODF2 were identified as signifi-
cantly prognostic-related genes. The risk score was calcu-
lated as the followed formula: risk score = 0.000142772 * 
HMGB3 + 0.000762595 * EZH2 + 0.000100702 * NOTCH
2 + 0.000430074 * UCK2 − 0.000400515 * ODF2.

We used the median level of the risk score to clas-
sify the EnCa patients into low- and high-risk groups. 
Kaplan–Meier survival analysis of this model suggested 
that low-risk patients had notably preferable OS than 
high-risk patients (Fig.  2a). ROC analysis was demon-
strated in Fig. 2b, AUC values for 1-, 3-, 5-year survival 
were 0.806, 0.682, 0.676, respectively. The risk score and 
survival status of this model were shown in Fig.  2c–e. 

Table 1  Primer sequences for five hub genes and GAPDH

Gene Primer sequences

EZH2 Forward: CCC​TGA​CCT​CTG​TCT​TAC​TTG​TGG​A

Reverse: ACG​TCA​GAT​GGT​GCC​AGC​AATA​

HMGB3 Forward: CCC​AGA​GGT​CCC​TGT​CAA​TTT​

Reverse: CGA​TCA​TAG​CGC​ACT​TTA​TCTGC​

NOTCH2 Forward: CAA​CCG​CAA​TGG​AGG​CTA​TG

Reverse: GCG​AAG​GCA​CAA​TCA​TCA​ATGTT​

UCK2 Forward: CTG​AGC​CAG​GAT​AGC​TTC​TACC​

Reverse: CAT​ACA​CGG​GGA​TCT​GGA​CTG​

ODF2 Forward: TGG​AGG​CGG​AAA​TGG​ATG​G

Reverse: CCT​TGT​CAG​GGT​GTT​GAT​GTC​

GAPDH Forward: ACC​ACA​GTC​CAT​GCC​ATC​AC

Reverse: TCT​AGA​CGG​CAG​GTC​AGG​TC



Page 4 of 15Liu et al. Cancer Cell Int          (2020) 20:329 

Univariate and multivariate models were built, including 
risk scores and clinical factorsto confirm whether they 
were independent predictor of EnCa. The results showed 
that those prognostic models were indeed independent 
predictors for cell cycle pathway (Fig. 2f, g).

Validation of the 5‑gene signature
In order to testify the veracity of the 5-gene prognos-
tic signature, we grouped the left 260 samples apart 
from the training cohort as the testing cohort, which 
was used to build another prognostic model. Accord-
ing to the median of risk score, samples were divided 
into low- and high-risk groups according to training 
cohort’ cut-off. Survival analysis exhibited that low-
risk patients had remarkably better OS than high-risk 
patients (Fig.  3a). ROC curve analysis exhibited AUC 
values for 1-, 3-, 5-year survival were 0.676, 0.666, 
0.681, respectively (Fig.  3b). Figure  3c–e also showed 
the risk score and survival status. The results of Univar-
iate and multivariate Cox regression analyses combined 
the risk scores with clinical features exhibited moderate 

and independent prognostic power for cell cycle path-
way (Fig. 3f, g). All of those conclusions were consistent 
with the results of training cohort, validating the reli-
ability of our hypothesis that cell cycle was involved in 
the progression of EnCa.

We named the whole 520 samples as the entire 
cohort, which was used to build the complete prog-
nostic model. Samples were also divided into low- and 
high-risk groups based on the median level of risk score 
and training cohort’ cut-off. Survival analysis indicated 
that low-risk patients had notably preferable OS than 
high-risk patients (Fig. 4a). ROC curve analysis exhib-
ited AUC values for 1-, 3-, 5-year survival were 0.739, 
0.673, 0.673, respectively (Fig.  4b). Figure  4c–e dis-
played the risk score and survival status which belong 
to the prognostic model. Univariate and multivariate 
Cox regression analyses which combined the risk scores 
and clinical features were exhibited that this prognostic 
signature was an independent predictor of EnCa as well 
(Fig. 4f–g). These results further validated the reliability 
of the established 5-gene prognostic signature.

Fig. 1  GSEA functioned to find the related functional pathway that might affect EnCa progression. Five significant pathways including E2F targets, 
G2M checkpoint, mtorc1 signaling, myc targets v1 and myc targets v2 were screened out
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Fig. 2  Prognostic model of the training cohort and risk signature with the 5 cell cycle-related hub genes. a Kaplan–Meier survival analysis of the 
low- and high- risk group patients in the training cohort. b ROC curve analysis according to the 1, 3, 5-year survival of the area under the AUC value. 
c, d The risk scores for all patients in the training cohort are plotted in ascending order and marked as low risk (blue) or high risk (red), as divided by 
the threshold (vertical black line). e The distribution of risk score, survival status, and the expression of 5 genes of each patient in training cohort by 
z-score, with red indicating higher expression and light blue indicating lower expression. f Univariate regression model. g Multivariate regression 
model
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Hierarchical analysis of hub genes and clinical features
Univariate and multivariate Cox proportional hazards 
regression analysis identified 5 cell cycle genes to be 

prognosis-related including HMGB3, EZH2, NOTCH2, 
UCK2 and ODF2. Significant differences were found 
in the expression levels of the five genes among the 

Fig. 3  Prognostic model of the testing cohort and risk signature with the 5 cell cycle-related hub genes. a Kaplan–Meier survival analysis of the 
low- and high- risk group patients in the testing cohort. b ROC curve analysis according to the 1, 3, 5-year survival of the area under the AUC value. 
c, d The risk scores for all patients in the testing cohort are plotted in ascending order and marked as low risk (blue) or high risk (red), as divided by 
the threshold (vertical black line). e The distribution of risk score, survival status, and the expression of 5 genes of each patient in testing cohort by 
z-score, with red indicating higher expression and light blue indicating lower expression. f Univariate regression model. g Multivariate regression 
model
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low- and high-risk groups (Fig. 5a). Besides, the expres-
sion of the 5 genes in low- and high-risk patients in the 
TCGA dataset was also demonstrated in the heatmap 

(Fig.  5b). We found significant differences between the 
high- and low-risk groups associated with tumor status, 
grade, histological type and stage. We deeply analyzed 

Fig. 4  Prognostic model of the entire cohort and risk signature with the 5 cell cycle- related hub genes. a Kaplan–Meier survival analysis of the 
low- and high- risk group patients in the entire cohort. b ROC curve analysis according to the 1, 3, 5-year survival of the area under the AUC value. 
c, d The risk scores for all patients in the entire cohort are plotted in ascending order and marked as low risk (blue) or high risk (red), as divided by 
the threshold (vertical black line). e The distribution of risk score, survival status, and the expression of 5 genes of each patient in the entire cohort 
by z-score, with red indicating higher expression and light blue indicating lower expression. f Univariate regression model. g Multivariate regression 
model
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the relationship between the 5 genes and different clinical 
factors. We found they were significantly relevant. Fur-
thermore, we analyzed the 5 genes for different clinical 
features, respectively. We found that expression levels of 
EZH2, HMGB3, NOTCH2 and ODF2 were significantly 
different in different grade groups (Additional file 3: Fig-
ure S2A–D). For different histological types, the expres-
sion levels of NOTCH2 and ODF2 were significantly 
different (Additional file 4: Figure S3A, B). For different 

age, the expression level of ODF2 was significantly dif-
ferent (Additional file 4: Figure S3C). For different tumor 
status, EZH2 and ODF2 expressed differently (Figure 
S4A-B). For different stages, EZH2, NOTCH2 and ODF2 
expressed differently (Additional file 5: Figure S4C–E).

Then, the subgroup analysis was conducted based on 
histological type, grade, age, tumor status and stage. Next 
patients were stratified into endometrioid subgroups, 
grade G1&G2 subgroup, grade G3&G4 subgroup, stage 

Fig. 5  Validation of the 5 cell cycle-related hub genes a Expression levels of 5 significant cell cycle-related hub genes in high- and low-risk groups. 
b Heatmap showed the expression of the 5 cell cycle-related hub genes in high- and low-risk patients in the TCGA dataset associated with tumor 
status, grade, histological type, age, risk and stage. ***P < 0.001
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III & stage IV subgroup, tumor-free subgroup, age > 60 
subgroup and age ≤ 60 subgroup. For the patients in 
endometrioid subgroup, the survival time of patients in 
the high-risk group was remarkably shorter than that of 
patients in the low-risk group (Additional file  6: Figure 
S5A), consistent with the trends for the grade G1&G2 
subgroup, grade G3&G4 subgroup, stage III & stage IV 
subgroup, tumor-free subgroup, age > 60 subgroup and 
age ≤ 60 subgroup. (Additional file 4: Figure S5B–G).

Building predictive nomogram
To achieve the goal of establishing a clinical strategy 
to predict the survival probability with EnCa patients, 
a nomogram was plotted using the TCGA cohort to 
evaluate the probability of the 1-, 3‐ and 5‐year OS. The 

predictors of the nomogram contained 6 prognostic fac-
tors including stage, age, histological type, grade, tumor 
status and risk score (Fig.  6a). The 45° line represented 
the best prediction. Calibration plots uncovered that the 
nomogram performed well (Fig. 6b–d). ROC curve anal-
ysis in Fig. 6e, f exhibited that the risk score AUC value 
of the model was 0.733, the clinical factors AUC value 
was 0.767, both remarkably higher than the clinical stage 
(AUC = 0.685), grade (AUC = 0.639), histological type 
(AUC = 0.568), tumor status (AUC = 0.700) and patients’ 
age (AUC = 0.539). Interestingly, when comprehensively 
conducted the ROC analysis based on the risk score 
with clinical features, the ROC curve was notably higher 
than each alone (AUC = 0.776). Principal component 
analysis based on the training, testing, and entire cohort 

Fig. 6  The nomogram to predict 1-, 3‐ or 5‐year OS and prognostic value of 5 genes in the entire set. a The nomogram for predicting the 
proportion of patients with 1-, 3‐ or 5‐year OS. b–d The calibration plots for predicting patient 1-, 3‐ or 5‐ year OS. Nomogram‐predicted probability 
of survival is plotted on the x‐axis; actual survival is plotted on the y‐axis. e, f Time-dependent ROC curve analyses of the 5-mRNA signature, age, 
tumor status, histological type and grade in the TCGA cohort
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displayed a different distribution pattern of low and high 
risk according to 5 cell cycle gene expression, indicating 
their difference in cell cycle aspect (Additional file 7: Fig-
ure S6A–C).

Genetic alterations and expression of 5 hub genes
cBioPortal software showed the genetic alterations of 5 
cell cycle-related genes. Additional file  8: Figure S7A, B 
showed that the 5 genes were altered in 89 (16%) of the 
547 patients/548 samples; NOTCH2 and UCK2 showed 
most diverse alteration types, including amplification, 
missense mutation, deep deletion, and etc.

GEPIA website validated the expression of the 5 
cell cycle-related hub genes (Fig.  7a), Besides, our 
recruited cohort also validated the differential expres-
sion levels of the 5 hub genes between normal tis-
sues and EnCa tissues (Fig. 7b). The AUC value of the 
5 hub genes was shown in Additional file 9: Figure S8, 
reflecting the diagnostic efficacy. Together, these genes 
had an AUC value of 0.978, proving that they can effi-
ciently distinguish normal tissues from cancerous tis-
sues. EZH2, HMGB3 and UCK2 expressed higher in 
tumor compared with normal tissues, while NOTCH2 
and ODF2 expressed lower in tumor compared with 
normal tissues. We also verified the protein levels of 
the above genes expression in the CPTAC database 
(Fig.  8a–e), and the protein levels of these genes were 

consistent with the results in GEPIA. Kaplan–Meier 
curves exhibited that overexpression of EZH2, HMGB3 
and NOTCH2 were significantly associated with poor 
prognosis, while the lower expression of ODF2 was sig-
nificantly correlated with poor prognosis (Additional 
file 10: Figure S9).

Mutational loading between two groups based 
on the 5‑gene signature
We next investigated whether EnCa with high-risk 
score was related to specific tumor mutation. Altera-
tion landscape EnCa with high or low-risk scores 
were exhibited in Additional file  11: Figure S10. Ten 
genes were mutated in > 22% of samples with high-
risk score: PTEN (50%), TP53 (50%), PIK3CA (45%), 
TTN (38%), ARID1A (37%), PIK3R1 (30%), KMT2D 
(26%), CTNNB1 (24%), CSMD3 (23%) and ZFHX3 
(22%). While ten genes were mutated in > 25% of sam-
ples with low-risk score: PTEN (80%), ARID1A (54%), 
PIK3CA (53%), TTN (39%), PIK3R1 (32%), CTCF 
(32%), KMT2D (27%), MUC16 (27%), KRAS (25%) and 
ZFHX3 (25%). Specifically, lower rates of PTEN muta-
tion, TTN mutation, ARID1A mutation, PIK3R1 muta-
tion, ZFHX3 mutation and PIK3CA mutation in EnCa 
with high-risk score were found compared with EnCa 
with low-risk score.

Fig. 7  Validation of the 5 hub genes. a GEPIA validated the expression levels of the 5 hub genes between normal tissues and EnCa tissues. b 
Recruited cohort validated the expression levels of the 5 hub genes between normal tissues and EnCa tissues
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Identification of risk score associated biological pathways
GSEA further analyzed low and high-risk group samples, 
revealing the primary enrichment pathway. The samples 
of the high-risk group were mainly enriched in pathways 
such as cell cycle, DNA sensing pathway and myeloid leu-
kemia, which was consistent with the results we obtained 
above. The samples of the low-risk group were mainly 
enriched in pathways such as tyrosine metabolism and 
alpha linolenic acid metabolism (Fig. 9).

Discussion
EnCa is a widespread malignant tumor that threatens 
women’s lives worldwide, which usually occurs in post-
menopausal women and is difficult to diagnose at the 
early stage [1]. Cell cycle is tightly associated with the 
growth and proliferation of cancer cells. Increasing num-
bers of research have proven that genes can change the 
process of tumors by regulating the cell cycle, thereby 
achieving the goal of targeted therapy. Therefore, we ana-
lyzed EnCa samples by GESA, cell cycle was found to be 
the most highly enriched pathway.

We next tried to develop a cell cycle-related prognos-
tic signature. EnCa samples were then randomly divided 
into the training cohort and the testing cohort. We used 
the training cohort to establish a prognostic model by 
Cox and LASSO regression analysis, testing cohort and 
entire cohort were used for validation of prognostic sig-
nature. HMGB3, EZH2, NOTCH2, UCK2 and ODF2 
were screened out. Although new biomarkers are discov-
ered every day, the use of gene signature can highlight 

the most important in practical application. Compared 
to other established signatures to assess OS in EnCa [21, 
22], our model was constructed and validated from more 
comprehensive cohorts and it seemed to be more con-
venient to be applied in clinical practice with fewer num-
bers of genes.

High mobility group box  3 (HMGB3) is a member 
of the high-mobility group box (HMGB) family. The 
HMG-Box subfamily acts significant roles in DNA rep-
lication, transcription, recombination and repair [23, 24]. 
HMGB3 has been widely researched in tumors. Research 
by Zhang et al. proved that overexpressed HMGB3 pro-
moted proliferation and migration of cancer cells, accel-
erating the progression of colorectal cancer [25]. Studies 
by Gu et al. demonstrated that silencing HMGB3 expres-
sion suppressed breast cancer cell proliferation, thus 
inhibited tumor growth [26]. It has been proved that the 
regulation of HMGB3 by tumor suppressive miR-205-5p 
suppressed cancer cell aggressiveness and participated in 
prostate cancer progression [27]. HMGB3 was proved to 
promote the proliferation and invasion of glioblastoma 
cells as well [28]. However, there is no research on the 
role of HMGB3 in EnCa up to now, which should be fur-
ther explored.

Enhancer zeste homolog 2 (EZH2) is the catalytic 
subunit of PRC2, which methylates Lys27 of histone H3, 
resulting in transcriptional repression of the target genes 
[29]. Wang et  al. found that EZH2 played a tumor-sup-
pressive role in K-Ras-mutation-driven lung adenocarci-
noma [30]. Studies by Böhm et al. have shown that Loss 

Fig. 8  The protein expression difference of (a) EZH2, (b) HMGB3, (c) UCK2, (d) NOTCH2 and (E) ODF2. ***P < 0.001
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of EZH2 at tumor invasion front was associated with an 
aggressive phenotype of cancer cells in colorectal cancer 
[31]. EZH2 has also been shown to promote hepatocel-
lular carcinoma progression [32]. Interestingly, EZH2 has 
been shown to be an oncogene and promote EnCa pro-
gression by multiple studies, which is consistent with our 
findings [33–35]. For example, EZH2 mRNA and protein 
expression in EnCa specimens were significantly higher 
than in matched-normal tissue [36]. Besides, EZH2 
siRNA in combination with taxanes produced more 
robust anti-tumor effects versus those induced by mono-
therapies [37].

NOTCH2 seems to be proven to be an oncogene by 
Xiu et  al. [38] and the pathogenic effects were mainly 
mentioned in lung cancer [39]. Research by Devor et al. 
found that dysregulated miR-181c expression influenced 
the recurrence of endometrial endometrioid adenocarci-
noma by regulating NOTCH2 expression [40]. Combined 
with our conclusions, this has become a direction worthy 
of further research.

Uridine-cytidine kinase 2 (UCK2) and ODF2 have not 
been studied in EnCa. UCK2 was proved to promote 
migration and invasion of hepatocellular carcinoma cells 
[41], which was also seen to be a latent diagnostic and 
prognostic indicator for lung cancer [42]. Overexpres-
sion of UCK2 was exhibited to be correlated with breast 
cancer progression and worse prognosis [43]. Yang et al. 
reported that ODF2 could maintain centrosome cohe-
sion by restricting β-catenin accumulation [44]. ODF2 is 
also named as Cenexin 1, which is a molecular marker of 
mature centriole. ODF2 has been reported to be essential 
for maintaining proper centriole orientation and micro-
tubule organizing [45, 46]. However, there is less research 
on ODF2 in tumors, it is a novel gene and it is worth our 
further exploration.

The somatic mutations in specific genes between low- 
and high-groups were examined by maftools package. 
The results exhibited that the various mutated genes 
could contribute to the different sore of genes in EnCa 
patients. It was uncovered that PTEN, ARID1A, PIK3R1 

Fig. 9  Gene set enrichment analysis in the TCGA database. Enrichment map were used for visualization of the GSEA results
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and ZFHX3 were important suppressors that partici-
pated in cancer development [47–50]. A study conducted 
by Chung et al. found that PIK3CA mutation was associ-
ated with cervical cancer in Hong Kong Chinese women 
[51].

In addition to the cell cycle pathway, GSEA also sug-
gested that the samples of the high-risk group were 
mainly enriched in pathways such as DNA sensing path-
way. The samples of the low-risk group were mainly 
enriched in pathways such as tyrosine metabolism and 
alpha linolenic acid metabolism. Research by Deng et al. 
proved that STING-dependent cytosolic DNA sensing 
promoted radiation-induced type I interferon-dependent 
antitumor immunity in immunogenic tumors [52]. Cheng 
et  al. found tyrosine metabolism to be associated with 
esophageal squamous cell carcinoma [53]. Chamberland 
et al. found that alpha linolenic acid could downregulate 
the malignant potential of human and mouse colon can-
cer cells [54]. These research results prove that our GSEA 
analysis results are credible.

The current study also has several limitations. Although 
the number of samples in our research is currently the 
largest for EnCa, which is fewer than other cancer data 
sets. Besides, screened genes are not actually validated in 
clinical samples and cells. The specific mechanism will be 
designed in detail in future research.

Conclusion
The current research found that the cell cycle pathway 
was associated with EnCa and screened for hub genes on 
the cell cycle pathway, which may be used as novel targets 
for the treatment of EnCa. Besides, a 5-gene prognostic 
signature was constructed based on cell-cycle related 
genes, which could be used for prognostic assessment for 
EnCa patients.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​5-020-01428​-z.

Additional file 1: Table S1. The clinicopathological parameters of EnCa 
patients involved in this research. 

Additional file 2: Figure S1. Part prognostic model of the training cohort. 
(A-B) The coefficients calculated by LASSO. 

Additional file 3: Figure S2. Expression levels of EZH2, HMGB3, NOTCH2 
and ODF2 in different grade group. (A) EZH2, (B) HMGB3, (C) NOTCH2, (D) 
ODF2. 

Additional file 4: Figure S3. (A-B) Expression levels of NOTCH2 and ODF2 
in different histological type, (C) expression level of ODF2 in different age 
group. 

Additional file 5: Figure S5. Survival time of patients in high-risk and 
low-risk group of different subgroups. (A) endometrioid subgroup, (B) 
grade G1&G2 subgroup, (C) grade G3&G4 subgroup, (D) stage III & stage 

IV subgroup, (E) tumor free subgroup, (F) age>60 subgroup, (G) age≤60 
subgroup. 

Additional file 6: Figure S5. Survival time of patients in high-risk and 
low-risk group of different subgroups. (A) endometrioid subgroup, (B) 
grade G1&G2 subgroup, (C) grade G3&G4 subgroup, (D) stage III & stage 
IV subgroup, (E) tumor free subgroup, (F) age>60 subgroup, (G) age≤60 
subgroup. 

Additional file 7: Figure S6. Principal component analysis of the training 
cohort, the testing cohort, and the entire EnCa cohort. (A) The training 
cohort, (B) The testing cohort, (C) The entire cohort. 

Additional file 8: Figure S7. The gene mutation overview of 5 prognostic 
cell cycle-related genes in the TCGA EnCa patients. (A) Five genes were 
altered in 89 (16%) of the 547 patients/548 samples. (B) The summary of 
mutation types of 5 genes in EnCa patients. 

Additional file 9: Figure S8. AUC value was used to identify the diagnos-
tic efficacy of distinguishing normal and cancerous tissues. 

Additional file 10: Figure S9. Kaplan-Meier curves of the EZH2, HMGB3, 
NOTCH2 and ODF2. The yellow line indicates samples with highly 
expressed genes (above best-separation value), and the green line des-
ignates the samples with lowly expressed genes (below best-separation 
value) 

Additional file 11: Figure S10 Alteration landscape for EnCa samples 
with high risk score and low-risk in the TCGA cohort. Lower rates of PTEN 
mutation, TTN mutation, ARID1A mutation, PIK3R1 mutation, ZFHX3 
mutation and PIK3CA mutation in EnCa with high-risk score were found 
compared with EnCa with low risk score.

Abbreviations
EnCa: Endometrial cancer; GSEA: Gene set enrichment analysis; MsigDB: 
Molecular signatures database; FDR: False discovery rate; OS: Overall survival; 
HRs: Hazard ratios; MAF: Mutation annotation format; Ct: Cycle threshold; qRT-
PCR: Real-time quantitative RT-PCR; HMGB: High-mobility group box; EZH2: 
Enhancer zeste homolog 2; UCK2: Uridine-cytidine kinase 2.

Acknowledgements
Not applicable.

Authors’ contributions
YZ had contribution on project design and funding supports; JL and JM had 
contribution on data curation and bioinformatics analysis. JM, SL and ZW had 
contribution on writing-original draft. JL and YZ had contribution on writing-
review & editing. All authors read and approved the final manuscript.

Funding
This work was founded by the Wuxi Science and Technology Bureau Project 
(No. CSE31N1720) and the Jiangsu Provincial Six Talent Peaks Project (No. 
YY-124).

Availability of data and materials
All data are included in the article.

Ethics approval and consent to participate
Ethical approval for the study was granted by the Clinical Research Ethics 
Committee, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing 
Medical University.

Consent for publication
All authors read the final manuscript and agreed to publish it.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Gynecology, The First Affiliated Hospital of Nanjing Medi-
cal University, Nanjing 210029, Jiangsu, China. 2 Department of Oncology, 
Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, 

https://doi.org/10.1186/s12935-020-01428-z
https://doi.org/10.1186/s12935-020-01428-z


Page 14 of 15Liu et al. Cancer Cell Int          (2020) 20:329 

Jiangsu, China. 3 Department of Urology, The Affiliated Sir Run Run Hospital 
of Nanjing Medical University, Nanjing 211166, China. 4 Department of Gyne-
cology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated 
to Nanjing Medical University, No. 48, Huaishu Road, Wuxi 214000, Jiangsu, 
China. 

Received: 2 May 2020   Accepted: 15 July 2020

References
	1.	 Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and management 

of endometrial cancer. Am Fam Physician. 2016;93(6):468–74.
	2.	 Suri V, Arora A. Management of endometrial cancer: a review. Rev Recent 

Clin Trials. 2015;10(4):309–16.
	3.	 McAlpine JN, Temkin SM, Mackay HJ. Endometrial cancer: not your grand-

mother’s cancer. Cancer. 2016;122(18):2787–98.
	4.	 Bendifallah S, Ballester M, Darai E. Endometrial cancer: predictive models 

and clinical impact. Bull Cancer. 2017;104(12):1022–31.
	5.	 Lee YC, Lheureux S, Oza AM. Treatment strategies for endometrial 

cancer: current practice and perspective. Curr Opin Obstet Gynecol. 
2017;29(1):47–58.

	6.	 Wu F, Shi X, Zhang R, Tian Y, Wang X, Wei C, et al. Regulation of prolifera-
tion and cell cycle by protein regulator of cytokinesis 1 in oral squamous 
cell carcinoma. Cell Death Dis. 2018;9(5):564.

	7.	 Guo Z, Wang Y, Yang J, Zhong J, Liu X, Xu M. KAI1 overexpression 
promotes apoptosis and inhibits proliferation, cell cycle, migration, 
and invasion in nasopharyngeal carcinoma cells. Am J Otolaryngol. 
2017;38(5):511–7.

	8.	 Sun J, Shi R, Zhao S, Li X, Lu S, Bu H, et al. Cell division cycle 45 promotes 
papillary thyroid cancer progression via regulating cell cycle. Tumour Biol. 
2017;39(5):1010428317705342.

	9.	 Zhang X, Feng H, Li Z, Guo J, Li M. Aspirin is involved in the cell cycle 
arrest, apoptosis, cell migration, and invasion of oral squamous cell carci-
noma. Int J Mol Sci. 2018;19(7):2029.

	10.	 Shyam H, Singh N, Kaushik S, Sharma R, Balapure AK. Centchroman 
induces redox-dependent apoptosis and cell-cycle arrest in human 
endometrial cancer cells. Apoptosis. 2017;22(4):570–84.

	11.	 Qiu H, Li J, Clark LH, Jackson AL, Zhang L, Guo H, et al. JQ1 suppresses 
tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer. Onco-
target. 2016;7(41):66809–21.

	12.	 Zhou Y, Wang K, Zhen S, Wang R, Luo W. Carfilzomib induces G2/M 
cell cycle arrest in human endometrial cancer cells via upregula-
tion of p21(Waf1/Cip1) and p27(Kip1). Taiwanese J Obstet Gynecol. 
2016;55(6):847–51.

	13.	 Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas 
(TCGA): an immeasurable source of knowledge. Contemp Oncol. 
2015;19(1a):A68–77.

	14.	 Toh H, Shirane K, Miura F, Kubo N, Ichiyanagi K, Hayashi K, et al. Software 
updates in the Illumina HiSeq platform affect whole-genome bisulfite 
sequencing. BMC Genomics. 2017;18(1):31.

	15.	 Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a 
desktop application for gene set enrichment analysis. Bioinformatics. 
2007;23(23):3251–3.

	16.	 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio 
cancer genomics portal: an open platform for exploring multidimen-
sional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

	17.	 Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC 
curves. Biometrics. 2005;61(1):92–105.

	18.	 Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer 
and normal gene expression profiling and interactive analyses. Nucleic 
Acids Res. 2017;45(W1):W98.

	19.	 Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, 
Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitat-
ing tumor subgroup gene expression and survival analyses. Neoplasia. 
2017;19(8):649–58.

	20.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28(11):1747–56.

	21.	 Zeng Z, Cheng J, Ye Q, Zhang Y, Shen X, Cai J, et al. A 14-Methylation-
driven differentially expressed RNA as a signature for overall survival 
prediction in patients with uterine corpus endometrial carcinoma. DNA 
Cell Biol. 2020;39(6):975–91.

	22.	 Liu J, Li S, Feng G, Meng H, Nie S, Sun R, et al. Nine glycolysis-related gene 
signature predicting the survival of patients with endometrial adenocar-
cinoma. Cancer Cell Int. 2020;20:183.

	23.	 Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin 
Genet Dev. 2003;13(2):170–8.

	24.	 Stros M. HMGB proteins: interactions with DNA and chromatin. Biochem 
Biophys Acta. 2010;1799(1–2):101–13.

	25.	 Zhang Z, Chang Y, Zhang J, Lu Y, Zheng L, Hu Y, et al. HMGB3 promotes 
growth and migration in colorectal cancer by regulating WNT/beta-
catenin pathway. PLoS ONE. 2017;12(7):e0179741.

	26.	 Gu J, Xu T, Huang QH, Zhang CM, Chen HY. HMGB3 silence inhibits breast 
cancer cell proliferation and tumor growth by interacting with hypoxia-
inducible factor 1alpha. Cancer Manage Res. 2019;11:5075–89.

	27.	 Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, et al. Regula-
tion of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggres-
siveness and is involved in prostate cancer pathogenesis. J Hum Genet. 
2018;63(2):195–205.

	28.	 Liu J, Wang L, Li X. HMGB3 promotes the proliferation and metastasis 
of glioblastoma and is negatively regulated by miR-200b-3p and miR-
200c-3p. Cell Biochem Funct. 2018;36(7):357–65.

	29.	 Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in 
life. Nature. 2011;469(7330):343–9.

	30.	 Wang Y, Hou N, Cheng X, Zhang J, Tan X, Zhang C, et al. Ezh2 Acts as a 
tumor suppressor in Kras-driven lung adenocarcinoma. Int J Biol Sci. 
2017;13(5):652–9.

	31.	 Bohm J, Muenzner JK, Caliskan A, Ndreshkjana B, Erlenbach-Wunsch K, 
Merkel S, et al. Loss of enhancer of zeste homologue 2 (EZH2) at tumor 
invasion front is correlated with higher aggressiveness in colorectal 
cancer cells. J Cancer Res Clin Oncol. 2019;145(9):2227–40.

	32.	 Chen S, Pu J, Bai J, Yin Y, Wu K, Wang J, et al. EZH2 promotes hepatocel-
lular carcinoma progression through modulating miR-22/galectin-9 axis. 
J Exp Clin Cancer Res. 2018;37(1):3.

	33.	 Oki S, Sone K, Oda K, Hamamoto R, Ikemura M, Maeda D, et al. Oncogenic 
histone methyltransferase EZH2: a novel prognostic marker with thera-
peutic potential in endometrial cancer. Oncotarget. 2017;8(25):40402–11.

	34.	 Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJ, et al. EZH2 inhibi-
tion suppresses endometrial cancer progression via miR-361/Twist axis. 
Oncotarget. 2017;8(8):13509–20.

	35.	 Gu Y, Zhang J, Guan H. Expression of EZH2 in endometrial carcinoma and 
its effects on proliferation and invasion of endometrial carcinoma cells. 
Oncol Lett. 2017;14(6):7191–6.

	36.	 Krill L, Deng W, Eskander R, Mutch D, Zweizig S, Hoang B, et al. Overex-
pression of enhance of Zeste homolog 2 (EZH2) in endometrial carci-
noma: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol 
Oncol. 2020;156(2):423–9.

	37.	 Roh JW, Choi JE, Han HD, Hu W, Matsuo K, Nishimura M, et al. Clinical and 
biological significance of EZH2 expression in endometrial cancer. Cancer 
Biol Ther. 2020;21(2):147–56.

	38.	 Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel 
therapeutic target. Am J Cancer Res. 2019;9(5):837–54.

	39.	 Motooka Y, Fujino K, Sato Y, Kudoh S, Suzuki M, Ito T. Pathobiology of 
Notch2 in lung cancer. Pathology. 2017;49(5):486–93.

	40.	 Devor EJ, Miecznikowski J, Schickling BM, Gonzalez-Bosquet J, Lankes 
HA, Thaker P, et al. Dysregulation of miR-181c expression influences 
recurrence of endometrial endometrioid adenocarcinoma by modulat-
ing NOTCH2 expression: an NRG Oncology/Gynecologic Oncology Group 
study. Gynecol Oncol. 2017;147(3):648–53.

	41.	 Zhou Q, Jiang H, Zhang J, Yu W, Zhou Z, Huang P, et al. Uridine-cytidine 
kinase 2 promotes metastasis of hepatocellular carcinoma cells via the 
Stat3 pathway. Cancer Manage Res. 2018;10:6339–55.

	42.	 Wu Y, Jamal M, Xie T, Sun J, Song T, Yin Q, et al. Uridine-cytidine kinase 2 
(UCK2): a potential diagnostic and prognostic biomarker for lung cancer. 
Cancer Sci. 2019;110(9):2734–47.

	43.	 Shen G, He P, Mao Y, Li P, Luh F, Ding G, et al. Overexpression of Uridine-
Cytidine Kinase 2 correlates with breast cancer progression and poor 
prognosis. J Breast Cancer. 2017;20(2):132–41.



Page 15 of 15Liu et al. Cancer Cell Int          (2020) 20:329 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	44.	 Yang K, Tylkowski MA, Huber D, Contreras CT, Hoyer-Fender S. ODF2 
maintains centrosome cohesion by restricting beta-catenin accumula-
tion. J Cell Sci. 2018;131(20).

	45.	 Colicino EG, Stevens K, Curtis E, Rathbun L, Bates M, Manikas J, et al. 
Chromosome misalignment is associated with PLK1 activity at cenexin-
positive mitotic centrosomes. Mol Biol Cell. 2019;30(13):1598–609.

	46.	 Kierszenbaum AL, Rivkin E, Tres LL. Cytoskeletal track selection during 
cargo transport in spermatids is relevant to male fertility. Spermatogen-
esis. 2011;1(3):221–30.

	47.	 Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and progno-
sis. Clin Sci. 2017;131(3):197–210.

	48.	 Zhu YP, Sheng LL, Wu J, Yang M, Cheng XF, Wu NN, et al. Loss of ARID1A 
expression is associated with poor prognosis in patients with gastric 
cancer. Hum Pathol. 2018;78:28–35.

	49.	 Yan LX, Liu YH, Xiang JW, Wu QN, Xu LB, Luo XL, et al. PIK3R1 targeting by 
miR-21 suppresses tumor cell migration and invasion by reducing PI3K/
AKT signaling and reversing EMT, and predicts clinical outcome of breast 
cancer. Int J Oncol. 2016;48(2):471–84.

	50.	 Hu Q, Zhang B, Chen R, Fu C, Jun A, Fu X, Li J, Fu L, et al. ZFHX3 is indis-
pensable for ERbeta to inhibit cell proliferation via MYC downregulation 
in prostate cancer cells. Oncogenesis. 2019;8(4):28.

	51.	 Chung TKH, Cheung TH, Yim SF, Yu MY, Chiu RWK, Lo KWK, et al. Liquid 
biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese 
women. Gynecol Oncol. 2017;146(2):334–9.

	52.	 Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-depend-
ent cytosolic DNA sensing promotes radiation-induced type I interferon-
dependent antitumor immunity in immunogenic tumors. Immunity. 
2014;41(5):843–52.

	53.	 Cheng J, Zheng G, Jin H, Gao X. Towards tyrosine metabolism in esopha-
geal squamous cell carcinoma. Comb Chem High Throughput Screen. 
2017;20(2):133–9.

	54.	 Chamberland JP, Moon HS. Down-regulation of malignant potential by 
alpha linolenic acid in human and mouse colon cancer cells. Fam Cancer. 
2015;14(1):25–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Establishment of a novel cell cycle-related prognostic signature predicting prognosis in patients with endometrial cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Material and method
	Acquisition of data
	Gene set enrichment analysis (GSEA)
	Identification of prognosis-related genes and their features
	Construction of the gene‐related prognostic model
	Validation of the prognostic signature
	Construction of nomogram based on the 5-gene signature
	Validation of the hub genes
	Mutation analysis
	Clinical specimens
	Total RNA extraction and quantitative real-time PCR analysis

	Result
	Functional pathway screening using GSEA
	Establishment of cell cycle related genes prognostic model
	Validation of the 5-gene signature
	Hierarchical analysis of hub genes and clinical features
	Building predictive nomogram
	Genetic alterations and expression of 5 hub genes
	Mutational loading between two groups based on the 5-gene signature
	Identification of risk score associated biological pathways

	Discussion
	Conclusion
	Acknowledgements
	References




