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Abstract 

The NF1 gene encodes neurofibromin, which is one of the primary negative regulatory factors of the Ras protein. 
Neurofibromin stimulates the GTPase activity of Ras to convert it from an active GTP-bound form to its inactive GDP-
bound form through its GTPase activating protein-related domain (GRD). Therefore, neurofibromin serves as a shut-
down signal for all vertebrate RAS GTPases. NF1 mutations cause a resultant decrease in neurofibromin expression, 
which has been detected in many human malignancies, including NSCLC, breast cancer and so on. NF1 mutations 
are associated with the underlying mechanisms of treatment resistance discovered in multiple malignancies. This 
paper reviews the possible mechanisms of NF1 mutation-induced therapeutic resistance to chemotherapy, endo-
crine therapy and targeted therapy in malignancies. Then, we further discuss advancements in targeted therapy for 
NF1-mutated malignant tumors. In addition, therapies targeting the downstream molecules of NF1 might be potential 
novel strategies for the treatment of advanced malignancies.
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Background
With the aging population and changes in lifestyle, the 
morbidity and mortality rates of malignancies in the 
world are rising drastically. In 2018, 18.1 million new 
cases and 9.6 million cancer deaths were registered 
worldwide [1]. Treatments for advanced malignant 
tumors, including traditional treatment (surgery com-
bined with radiotherapy and chemotherapy), targeted 
therapy and immunotherapy, significantly prolong the 
survival of patients with malignancies. To date, targeted 
therapies have achieved significant advances. The studies 
on the driven mutations of malignancies, such as epider-
mal growth factor receptor (EGFR), anaplastic lymphoma 
kinase (ALK), ROS proto-oncogene 1 (ROS1) and 
human epidermal growth factor receptor-2 (HER2), have 
brought clinical benefits and more therapeutic options 
for patients with malignancies [2–4]. Patients harboring 

sensitive mutations benefit from targeted therapy. How-
ever, drug resistance remains a serious problem dur-
ing treatment. Drug resistance limits the use of targeted 
therapy in malignant tumors and is one of the foremost 
challenges in malignant tumors today [5].

Neurofibromin 1 (NF1) mutations cause an autoso-
mal dominant genetic susceptibility syndrome known 
as neurofibromatosis type 1 [6]. Furthermore, genomic 
data from the cBioPortal for Cancer Genomics datasets 
indicate that somatic NF1 mutations can be detected in 
a variety of malignancies, including non-small-cell lung 
cancer (NSCLC), ovarian cancer, breast cancer, liver 
cancer, and esophagogastric cancer. The alterations and 
frequencies of NF1 in malignancies are shown in Fig. 1. 
According to previous studies, NF1 mutations have been 
detected in patients with primary and acquired resist-
ance to tyrosine kinase inhibitors (TKIs) [7, 8]. In this 
case, we conclude the latest advancement in targeted 
therapy of malignant tumors with NF 1 mutations and 
further clarify the role of NF1 mutations in the treatment 
of malignancies to establish the viability of the treatment 
targeting NF1 mutations.
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NF1 gene and neurofibromin
The NF1 gene was initially discovered as a tumor sup-
pressor in the early 1990s [9–12]. It is located on the 
long arm 11.2 of chromosome 17 (17q11.2). The types of 
NF1 mutations are diverse, including missense/nonsense 
(27.7%), microdeletions (26.9%), gross deletions (> 20 bp; 
13.3%), splicing (16.3%), microinsertions (11.1%), indels 
(2.0%), gross insertions (> 20  bp; 2.0%), complex rear-
rangements (0.6%) and several putative regulatory 
mutations [13]. Neurofibromin, encoded by the NF1 
gene, is a large multi-domain 2818 amino acid protein 
with a molecular weight of approximately 220 kDa [14]. 
Neurofibromin contains several domains, including a 

cysteine–serine-rich domain (CSRD), a central GTPase-
activating protein-related domain (GRD), a tubulin-bind-
ing domain (TBD), a SEC14 domain, a carboxy-terminal 
domain (CTD), a pleckstrin homology (PH) domain and 
a syndecan-binding domain (SBD). The different domains 
of the neurofibromin protein is shown in Additional 
file 1: Figure S1. Neurofibromin binds to GTP-bound Ras 
through its GRD to regulate the function of Ras. The NF1 
gene contains 60 exons and produces multiple alterna-
tive splicing isoforms [15]. Exon 23 encodes part of the 
GRD. An exon  23 splice variant inserts an alternative 
exon 23a, and exon 23a inclusion specifically decreases 
the Ras-GAP (GTPase activating protein) activity of 

Fig. 1  The types and frequencies of NF1 alterations in different malignancies (data cited from cBioPortal for Cancer Genomics). a NSCLC; b 
esophagogastric cancer; c liver cancer; d ovarian cancer; e breast cancer
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neurofibromin [16]. Several mechanisms have been con-
firmed to be associated with the downregulation or even 
the loss of neurofibromin expression in tumors, such as 
mutations of the NF1 gene, ubiquitin-mediated protea-
somal degradation of neurofibromin [17] and promoter 
methylation or miRNA-mediated degradation, which 
inactivates the transcription of the NF1 gene [18, 19].

The biological function of the NF1 gene
The relationship between NF1 and Ras
NF1 is a tumor suppressor gene and a negative regulator 
of Ras protein. Under physiological conditions, neurofi-
bromin, encoded by the NF1 gene, stimulates the GTPase 
activity of Ras to convert it from an active GTP-bound 
form to its inactive GDP-bound form through GRD [20]. 
Therefore, neurofibromin can serve as a shutdown signal 
for all vertebrate RAS GTPases (including KRAS, NRAS, 
HRAS, MRAS, RRAS and RRAS2) [21]. The functional 
loss of neurofibromin caused by NF1 mutations will lead 
to sustained activation of intracellular RAS-GTP and 
prolonged activation of the RAS/RAF/MAPK signal-
ing pathway, which eventually results in increased cellu-
lar proliferation and even uncontrollable tumor growth. 
In addition to the loss of the function of the shutdown 
signal, NF1 mutations increase the number of possible 
subsequent mutations, which can further upregulate Ras 
signaling [22]. Ras proteins regulate cell fates by cycling 
between active GTP–bound and GDP–bound conforma-
tions [23] and the activation of the Ras signaling path-
way is one of the major driving pathways of malignancies 
(Table 1).

The relationship between NF1 and other proteins
Mammalian target of rapamycin (mTOR), an evolu-
tionarily conserved serine-threonine protein kinase, is 
a downstream effector of Ras and regulates cell prolif-
eration and other biological behaviors [24]. Johannessen 
et al. demonstrated that neurofibromin was essential for 
moderately suppressing mTOR signaling in the absence 
of mitogenic stimuli. They identified NF1 as one of 
the oncogenes involved in mTOR activation [25]. In 

mammalian cells, the mTOR complex is a complex with 
two forms: mTORC1 and mTORC2 [26]. Malone et  al. 
found that mTORC1 was the key PI3K pathway compo-
nent in malignancies of NF1 mutations, while mTORC2 
was dispensable [27]. In addition to Ras and mTORC1, 
NF1 is associated with various protein molecules, such 
as focal adhesion kinase (FAK) and valosin-containing 
protein (VCP). Study by Tsai. et al. reveals NF1 has rela-
tionship with integrin/FAK signaling in synapse growth 
modulation. Genetic and protein–protein interaction 
between NF1 and FAK suggested that NF1 functions 
downstream of and forms a protein complex with FAK 
that mediates NF1 signaling activity and synaptic locali-
zation [28]. Wang.et al. showed that neurofibromin and 
VCP interact and work together to control the density of 
dendritic spines [29]. These studies suggested neurofibro-
min, encoded by the NF1 gene, has been shown to regu-
late synaptogenesis. In this review, we mainly discuss the 
relationship between NF1 and cancer therapeutic resist-
ance, especially resistance to TKIs; therefore, the rela-
tionship between NF1 and other protein molecules will 
not be restated.

The role of NF1 in anticancer therapies
Relationship between NF1 mutations and radiotherapy
Studies have shown that radiotherapy increased the inci-
dence of second malignant neoplasms (SMNs) in patients 
with NF1 mutations [30–32]. Unlike primary cancers, 
SMNs are therapy-induced malignancies and are becom-
ing a problem that cannot be ignored in cancer survivors.

Choi et  al. found that both irradiated wild-type and 
NF1 mutated mice developed multiple malignancies in a 
dose-dependent manner in the irradiation field. However, 
at each radiation dose level, NF1-mutated mice devel-
oped more malignancies than matched wild-type mice. 
They then further analyzed clinical SMN samples and 
confirmed that among patients with radiation-induced 
breast cancer, the loss of constitutional heterozygosity 
(LOH) of NF1 was identified in unrelated individuals 
without neurofibromatosis type 1 [31]. The mechanism 
by which NF1 mutations promote radiation-induced 

Table 1  The mechanisms of therapeutic resistance induced by NF1 mutations

“↓”means down regulation of expression; “↑”means upregulation of expression

Alteration induced by NF1 mutations Downstream factors Related therapeutic resistance References

Inhibition of cisplatin-induced apoptosis MCL1↓ Cisplatin [35]

Heat shock response HSF1↑ Trastuzumab, lapatinib [44–48]

EMT Invasion and migration Targeted therapy [51–54]

mTOR-HIF-1α-VEGF pathway↑ VEGF↑ TKIs [57–60]

Ras-dependent pathways Ras↑ TKIs [8, 41, 49]
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SMNs is poorly understood. Several studies speculated 
that it might be related to the hyperactivity of the Ras 
signaling pathway and the loss of tumor protein p53 
(TP53) adjacent to NF1 on the chromosome [31, 32], but 
the specific mechanism needs further research.

The role of NF1 in resistance to chemotherapy 
and endocrine therapy
Myeloid cell leukemia 1 (MCL1), which is an antiapop-
totic protein in ovarian cancer [33], allows cancer cells 
to evade apoptosis when its expression is upregulated 
[34]. Su et al. demonstrated that the loss of NF1 observ-
ably upregulated MCL1 expression and endowed ovarian 
cancer cells with antiapoptotic capability through miR-
142-5p. They further confirmed that NF1 loss inhibited 
cisplatin-induced apoptosis and resulted in resistance to 
chemotherapy in ovarian cancer cells [35].

Sokol et  al. demonstrated that NF1 mutations lead to 
tamoxifen acquired resistance in invasive lobular car-
cinomas (ILCs) of breast cancer. NF1 mutations are 
enriched in ILCs, especially in metastatic ILCs, which 
exhibit a higher frequency of NF1 mutations. Under the 
appropriate conditions, the loss of NF1 can enhance the 
competitive growth advantages of breast cancer cells 
harboring NF1 mutations. Loss of NF1 was detected to 
cooccur with cadherin 1 (CDH1) inactivation and AKT 
pathway activation, and either or both of these pathway 
alterations may facilitate endocrine therapy resistance, 
which remains to be further studied [36].

The underlying mechanisms of TKI resistance 
induced by NF1 mutations
The relationship between NF1 mutations and resist-
ance to TKIs in malignancies has not been extensively 
explored. Previous studies have demonstrated that 
mutations in NF1 are related to TKI resistance [8, 20, 
37]. However, the mechanism of resistance to TKIs 
induced by NF1 mutations remains unclear. Neverthe-
less, research data have suggested that treatments tar-
geting MEK or mTOR are effective and even synergetic 
for malignancies with NF1 mutations [38–40]. Clinically, 
mutations of NF1 have also been confirmed to be related 
to resistance to other agents of targeted therapy. Retinoic 
acid (RA) is one of the few targeted therapies currently 
used in the clinic for invasive neuroblastoma. Loss of 
NF1 contributes to resistance to RA; moreover, the inhi-
bition of MEK signaling downstream restores responsive-
ness to RA treatment [41]. Another recent clinical study 
revealed that low expression of NF1 is associated with 
more extensive lymph node metastases and poor prog-
nosis in epithelial ovarian cancer patients [42]. According 
to the latest studies, the underlying mechanisms of TKI 

resistance induced by NF1 mutations are summarized as 
follows.

Activation of heat shock factor 1
Heat shock factor 1 (HSF1), an essential conserved mas-
ter transcriptional regulator in eukaryotic cells, is critical 
for maintaining homeostasis of the cell proteome [43]. 
Studies have shown that HSF1 plays an important role in 
a variety of basic cellular processes essential for carcino-
genesis, including cell cycle control, glucose metabolism, 
ribosome biogenesis, and protein translation. Genetic 
aberrant HSF1 might attenuate tumorigenesis and cellu-
lar transformation driven by oncogene activation or the 
loss of tumor suppressors both in mice and human cell 
lines [44, 45]. Dai et al. found that NF1 was a potent regu-
lator of HSF1 and changed the expression and activation 
of HSF1. NF1 deficiency upregulated HSF1 and activated 
the heat shock response [46]. A study identified that the 
augmentation of the HSF1-mediated heat shock response 
is responsible for lapatinib resistance in breast cancer 
[47]. Another study showed that increased glycolysis via 
HSF1 contributes to trastuzumab resistance [48]. There-
fore, although there is no direct verification, it is feasible 
that NF1 mutations might participate in the resistance 
to TKIs by upregulating HSF1. This mechanism requires 
further study.

Inhibition of tumor cell apoptosis
Shapira et  al. confirmed that neurofibromin exerted its 
tumor suppressor function by enhancing the sensitiv-
ity of apoptosis via Ras-dependent pathways. In their 
study, the administration of farnesyl thiosalicylic acid 
(FTS), which is a Ras inhibitor, increased the apopto-
sis of neurofibromin-deficient mouse embryonic fibro-
blasts (MEFs) and malignant peripheral nerve sheath 
tumor (MPNST) cells [49]. A study provided evidence 
to suggest that NF1 silencing decreased the sensitivity 
of erlotinib-induced cell apoptosis and/or growth arrest 
in lung adenocarcinoma cells. The study revealed that 
the reduction of neurofibromin expression increased 
Ras activity and weakened the effect of erlotinib on the 
downstream MAPK pathway, thereby decreasing the sen-
sitivity of EGFR inhibitory drugs and eventually leading 
to the resultant resistance to erlotinib. Neurofibromin 
influenced erlotinib sensitivity through its function as a 
negative regulator of Ras protein [8]. Therefore, the antia-
poptotic effect caused by NF1 mutations through the 
Ras-dependent pathway may be one of the mechanisms 
of TKI resistance in malignancies.

Promotion of epithelial‑mesenchymal transformation
Epithelial-mesenchymal transition (EMT) is a process of 
the loss of epithelial characteristics and the acquisition 
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of a mesenchymal phenotype, which is mediated by the 
activation of EMT transcription factors (EMT-TFs) [50]. 
The EMT process is associated with the resistance of 
multiple therapeutics in tumor cells by enhancing the 
migration and invasion of tumor cells. Tumor cells har-
boring the EMT phenotype showed intrinsic resistance 
to EGFR TKIs [51–53]. Arima et  al. demonstrated that 
silencing NF1 induced the expression of EMT-TFs in nor-
mal human Schwann cells and epithelioid breast cancer 
cells, suggesting that the loss of neurofibromin expres-
sion might activate the EMT-related signaling pathway 
[54]. As a result, neurofibromin might inhibit the EMT 
process, while NF1 mutations, which contribute to the 
loss of neurofibromin expression, could be the underlying 
mechanism of TKI resistance in malignancies.

Promotion of sustained angiogenesis
Angiogenesis is necessary for tumor growth and metas-
tasis, and the transition to an angiogenic phenotype 
depends on the result of a balance between pro-angio-
genic and anti-angiogenic factor expression for most 
tumors [55]. Using NF1 heterozygous mice model, Wu 
et al. demonstrated increased neovascularization in both 
the retina and cornea in response to hypoxia and bFGF, 
which was associated with heightened endothelial cell 
proliferation and migration, and increased infiltration 
of inflammatory cells including macrophage and mast 
cells [56]. Thomas et  al. found that compared to nor-
mal human Schwann cells, neurofibromin deficiency 
was associated with the upregulation of proangiogenic 
factors and the downregulation of antiangiogenic fac-
tors, which enhanced the carcinogenicity of carcino-
genic Schwann cells [57]. Kawachi et  al. demonstrated 
that NF1 gene silencing in both Schwann cells and 
non-Schwann cells directly leads to activation of the 
mTOR- hypoxia-inducible factor-1α (HIF-1α)- vascu-
lar endothelial growth factor (VEGF) pathway, which 
in turn increases VEGF expression [58]. Bevacizumab, 
a well-known VEGF inhibitor, inhibits tumor prolif-
eration and angiogenesis through the inhibition of the 
VEGF pathway. A study showed that after treatment 
with bevacizumab, adult recurrent high-grade  glioma 
patients harboring NF1 mutations had prolonged pos-
trecurrence survival [59]. Angiogenesis was proven to be 
related to TKI resistance [60], and NF1 mutations might 
participate in the resistance to TKIs by promoting tumor 
angiogenesis. However, this mechanism has not been 
directly verified, and further research is needed. The role 
of NF1 mutations in chemotherapy and TKI resistance is 
shown in Fig. 2.

Based on the findings above, NF1 mutations might 
directly or indirectly lead to changes in several important 

biological behaviors of malignancies, including cell pro-
liferation, antiapoptosis, angiogenesis, and metastasis. 
These behaviors are related to not only resistance to 
targeted therapy but also other anticancer therapeutics. 
This suggests that NF1 mutations play an important 
role in the generation and development of malignancies 
and might induce resistance to anticancer therapy.  The 
mechanisms of therapeutic resistance  induced by NF1 
mutations are also summarized in Table 1.

Novel therapies for NF1 mutant malignancies
As a negative regulator of Ras signaling, NF1 loss results 
in Ras-dependent drug resistance. Previous studies have 
shown that the application of inhibitors of Ras and its 
downstream targets could overcome drug resistance 
induced by NF1 mutations. Ras inhibitors, such as FTS, 
and mTOR inhibitors, such as everolimus, can inhibit 
the growth of NF1 mutated malignancies [61, 62]. Beau-
champ et al. found that for NF1-mutated lung adenocar-
cinoma resistant to dasatinib, the knockdown of ERK1/2 
was sufficient to kill dasatinib-resistant cells [37]. Treat-
ment of lung cancer with low levels of  NF1  expression 
with MAP-ERK kinase (MEK) inhibitors can restore 
sensitivity to erlotinib and reverse erlotinib resistance. 
Therefore, concurrently using EGFR and MEK inhibi-
tors might be superior to monotherapy for TKI-resistant 
NF1-mutated lung cancer [8]. In other studies, inhibi-
tors of PI3K, the downstream effector of the Ras path-
way, were shown to inhibit the growth of NF1-mutated 
MPNST cells and neurofibromin-deficient human breast 
cancer xenografts in mice [63, 64]. STAT3 is a down-
stream molecule of the PI3K/Akt/mTOR pathway, and 
natural cucurbitacin-I is a potent STAT3 inhibitor that 
inhibits the growth of NF1-mutated MPNST cells in vitro 
and in vivo [65].

Other therapies for NF1 mutated malignancies, such 
as anti-angiogenic drugs and HSF1 inhibitors, have been 
reported. However, further research is still needed [46, 
58, 66].

Conclusion
In conclusion, drug resistance is a serious problem in 
the clinical treatment of malignancies. Understanding 
the mechanisms of drug resistance is critical for the 
development of new therapeutic strategies. According 
to our review, NF1 mutations play an important role 
in the generation, development and drug resistance of 
malignancies. NF1 mutations are involved in chemo-
therapy and targeted therapy resistance in tumor cells 
through multiple mechanisms. Inhibition of NF1 down-
stream targets is an effective strategy for overcoming 
resistance induced by NF1 mutations. Therefore, NF1 
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mutations might be novel therapeutic targets for cancer 
treatment.
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Fig. 2  The role of NF1 in resistance to anticancer therapeutics. NF1 might be involved in resistance to anticancer therapeutics through 
several mechanisms, which included: NF1 downregulated MCL1 expression and endowed cells with cisplatin resistance; NF1 mutations 
leaded to tamoxifen acquired resistance and the mechanism was still uncertain; NF1 mutations participated in TKIs resistance via promoting 
glycolysis, angiogenesis, EMT, cellular proliferation and survival. GTP = guanosine triphosphate. RAS = rat sarcoma viral oncogene homologue. 
GDP = guanosine diphosphate. RAF = murine sarcoma viral oncogene homologue. MEK = MAPK-ERK kinase. PI3K = phosphatidylinositol-3–kinase. 
AKT = V-akt murine thymoma viral oncogene homologue 1. mTOR = mammalian target of rapamycin. Rac1 = Ras-related C3 botulinum toxin 
substrate 1. PAK1 = P21-Activated Kinase
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