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Multi-dimensional omics characterization 
in glioblastoma identifies the purity-associated 
pattern and prognostic gene signatures
Yi Xiong1,2 , Zujian Xiong1,2, Hang Cao1,2 , Chang Li1,2, Siyi Wanggou1,2 and Xuejun Li1,2* 

Abstract 

Background: The presence of tumor-associated stroma and tumor-infiltrated immune cells have been largely 
reported across glioblastomas. Tumor purity, defined as the proportion of tumor cells in the tumor, was associated 
with the genomic and clinicopathologic features of the tumor and may alter the interpretation of glioblastoma 
biology.

Methods: We use an integrative approach to infer tumor purity based on multi-omic data and comprehensively 
evaluate the impact of tumor purity on glioblastoma (GBM) prognosis, genomic profiling, and the immune microenvi-
ronment in the Cancer Genome Atlas Consortium (TCGA) cohort.

Results: We found that low tumor purity was significantly associated with reduced survival time. Additionally, we 
established a purity-relevant 5-gene signature that was an independent prognostic biomarker and validated it in the 
TCGA, CGGA and GSE4412 cohort. Moreover, we correlated tumor purity with genomic characteristics and tumor 
microenvironment. We identified that gamma delta T cells in glioblastoma microenvironment were positively corre-
lated with purity and served as a marker for favorable prognosis, which was validated in both TCGA and CGGA dataset.

Conclusions: We observe the potential confounding effects of tumor purity on GBM clinical and molecular informa-
tion interpretation. GBM microenvironment could be purity-dependent, which provides new insights into the clinical 
implications of glioblastoma.
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Background
Glioblastoma (GBM), Grade IV glioma, is an incur-
able CNS malignancy of adults with high heterogeneity. 
Despite advances in surgery, radiotherapy, and chemo-
therapy, the prognosis of GBM patients has not improved 
significantly, and the median survival remains around 
15 months [1]. Recently, increasing evidence has shown 
that tumor microenvironment plays a pivotal role in 
tumor biology, including tumor progression and drug 

resistance [2, 3]. The presence of specific immune infil-
trates or the absence of immunosuppressive signaling 
were found to indicate positive prognostic features [4]. 
Much emphasis was placed on tumor-associated mac-
rophages (TAMs), which could participate in tumor 
progression and metastasis, and influence response to 
chemotherapy or radiotherapy [5, 6].

Tumor purity is defined as the proportion of tumor 
cells in the tumor tissue. Over the past few years, tumor 
purity is routinely determined by pathologists through 
visual inspections such as immunohistochemistry (IHC) 
staining, which could be affected by the sensitivity of his-
topathology, interobserver bias, and variability in accu-
racy [7]. Several alternative purity estimation methods by 
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computational approaches were developed recently,  and 
they were based on transcriptome data, DNA methyla-
tion data or genome data [8–10]. However, purity esti-
mates inferred by one certain omics data still confines 
the interpretation of purity in tumor biology systemically 
in previous studies [11, 12]. To overcome this, a recent 
study proposed a computational method for calculating 
the value of purity, namely, the consensus purity esti-
mation (CPE), which was based on ABSOLUTE, ESTI-
MATE, LUMP and IHC methods [13].

Despite these discoveries, however, little is known 
regarding the association between the purity and the 
genomic or clinicopathological features in glioblastoma. 
Besides, the relationship between purity and glioblas-
toma microenvironment remains unclear. In this study, 
we employed the CPE method to estimate the tumor 
purity and sought to identify the potential confounding 
effects between tumor purity and clinical or molecular 
characteristics (Fig.  1a). Thus, we investigated the cor-
relation between tumor purity and genomic alterations, 
biological pathways as well as immune cell composi-
tions in the microenvironment, which could deepen our 
understanding of glioblastoma biology and provide new 
insights into the clinical management of glioblastoma.

Materials and methods
Datasets and data processing
A total of 583 patients with glioblastoma from the TCGA 
cohort were enrolled in this study. Clinical informa-
tion and data of molecular biomarkers were acquired 
from TCGA publications as previously described [14]. 
In CGGA (Chinese Glioma Genome Atlas) cohort, Illu-
minaHiSeq RNA-seq data and clinical and molecular 
information from 144 patients with glioblastoma were 
obtained via the CGGA database (http://www.cgga.
org.cn). The raw data for the GSE4412 dataset and cor-
responding clinical data were acquired from the Gene 
Expression Omnibus (https ://www.ncbi.nlm.nih.gov/
geo/query /acc.cgi?acc=GSE44 12).

Tumor purity analysis
Tumor purity scores were inferred by the consensus purity 
estimation (CPE) method as previously described [13]. The 
tumor purity score was derived from the median value 
estimated from ABSOLUTE, ESTIMATE, LUMP and IHC 
methods after normalization [9, 10]. To prevent confu-
sion, we defined the CPE score as purity score and used it 
throughout the article, unless specifically noted.

Transcriptomic data analysis
TCGA AffyU133a gene expression array data and Illu-
minaHiSeq RNA-seq data of GBMs were downloaded 
from https ://tcga-data.nci.nih.gov/ via Xena Browser 

developed by UCSC. Statistical ranking for purity 
scores by the top and bottom quartiles were defined as 
high-purity and low-purity, respectively. Differentially 
expressed genes (DEGs) between high-purity and low-
purity samples were identified using the R/DESeq 2 pack-
age or R/Limma package. DEGs with false Discovery Rate 
(FDR) < 0.05 and fold change > 2 (or < 0.5) were included 
in further analysis. Both the enrichment analysis and 
GSEA were performed using R package clusterProfiler 
and ReactomePA [15–17]. GSVA analysis of hallmark 
pathways and metabolic pathways was implemented as 
previously described [18] by R/GSVA package [19]. GO 
Enrichment network was drawn using EnrichmentMap 
software [20] for interpretation.

Methylation analysis
Illumina Infinium DNA methylation platform arrays 
HumanMethylation450 data in the TCGA-GBM cohort 
were downloaded from https ://tcga-data.nci.nih.gov/ via 
Xena Browser developed by UCSC. Data were separated 
into different datasets according to purity. Data were fur-
ther normalized and processed by using ChAMP pack-
age with default parameters [21].

Survival analysis
R package survival and survminer were used for overall 
survival analysis. Cox proportional hazard (PH) model 
was executed by Coxph and Survfit functions from R 
packages. The Kaplan–Meier curves were employed to 
estimate overall survival distribution.

Genomics analysis, intra‑tumor heterogeneity (ITH) 
analysis
Somatic copy number alterations (SCNA) data (minus 
germline CNV) were downloaded from GDAC Firehose 
and separated into different datasets according to the 
purity. SCNA events were detected by GISTIC2.0 using 
the segmented Affymetrix SNP 6.0 microarray data [22]. 
Somatic variants files of GBMs in MAF format were 
downloaded from https ://tcga-data.nci.nih.gov/ via Xena 
Browser developed by UCSC and downstream analysis 
was performed by R/maftools package [23]. For somatic 
nucleotide variations (SNVs), we calculated the total 
mutation count. We used Mutant-allele tumor heteroge-
neity (MATH) as a quantitative estimate of intra-tumor 
heterogeneity (ITH) [24]. Subclone numbers within each 
sample were inferred by pyclone software as previously 
described and were normalized with tumor purity [25].

Immune cellular fraction estimates
The relative fractions of 24 immune cell types within 
the leukocyte compartment were estimated using gene 
sets introduced by Gabriela et  al. [26]. IlluminaHiSeq 
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RNA-seq raw counts across all genes for each sample 
were divided by the gene’s maximum transcript length 
to represent a coverage depth estimate, which was then 
rescaled to sum to a total depth of 1e6 and thus can be 
interpreted as transcripts per million (TPM) [27]. We 
used the RNA-seq TPM data as input and the enrichment 

of an immune cell type meta-gene in a given sample were 
then scored using single-sample gene set enrichment 
(ssGSEA) analysis [28], as implemented in the GSVA R 
package [19], with subsequent z-scoring across samples. 
Note that these enrichments should not be interpreted as 
deconvolutions of actual cell-type proportions.
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Fig. 1 a The workflow of this study. b Heatmap of clinical and molecular characteristics of glioblastoma patients in TCGA-GBM cohort (n = 583). c 
The data distribution of tumor purity estimates. d Correlations (Spearman’s Rho) between tumor purity estimates inferred by different methods
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Statistics analysis
All statistical analyses were performed using R software, 
version 3.5.1 (The R Foundation for Statistical Com-
puting, http://www.rproj ect.org/). Continues variables 
between groups were compared by the Student’s t test, 
one-way analysis of variance (ANOVA) test or the Wil-
coxon rank-sum test. Correlations between continuous 
variables were evaluated by Spearman or Pearson corre-
lation analyses. For all statistical analyses, the P value of 
0.05 was taken as the significant threshold in all tests.

Results
Tumor purity and clinicopathological and molecular 
features
An overview of the analytical strategy here is shown in 
Fig.  1a. Tumor purity scores were calculated by con-
sensus purity estimation (CPE) method based on 
ABSOLUTE, ESTIMATE, LUMP and IHC algorithms 
(Additional file 1: Table S1). The purity inferred by CPE 
is the normalized purity scores inferred from the above 
four methods (Fig. 1b, c). We observed that tumor purity 
inferred by the CPE method was significantly positively 
correlated with purity calculated based on ABSOLUTE, 
LUMP, ESTIMATE (Spearman’s correlation, rho = 0.90, 
0.90, 0.76, respectively) (Fig. 1d), suggesting the rational-
ity of this method.

We next identified the relationship between tumor 
purity and clinicopathological/molecular features in the 
TCGA-GBM cohort (Fig.  1b). We observed that tumor 
purity was significantly enriched in IDH-mutant sam-
ples or MGMT-promoter-methylated samples (student’s 
t-test, P < 0.001, P = 0.024, respectively) (Additional file 2: 
Fig. S1), which were associated with favorable prognosis. 
Meanwhile, we analyzed the purity distribution among 
four GBM molecular subtypes, namely proneural, clas-
sical, mesenchymal and neural, based on transcriptome 
profile [29]. We found that decreased tumor purity lev-
els were enriched in neural or mesenchymal molecu-
lar subtypes, which were generally connected with the 
malignant progression of glioma (Fig. 2a). These findings 
emphasized that purity was closely related to specific 
clinicopathological/molecular features.

The prognostic role of tumor purity in glioblastoma
To illustrate the correlation between purity and overall 
survival, patients were divided into three groups accord-
ing to the quantiles of the purity score. Kaplan–Meier 
curve showed that low purity GBM samples (tumors in 
the bottom 25th percentile) display significantly worse 
clinical outcomes (High vs Low, HR = 0.75, p = 0.028, 
Log-Rank Test) (Fig. 2b). Subgroup analysis revealed that 
the low tumor purity has dismal prognosis in the female, 

G-GIMP subtype, proneural subtype, and MGMT pro-
moter methylated patients (Additional file 2: Fig. S2).

Construction of a purity‑associated gene signature using 
transcriptomic data
The workflow of data processing and signature construc-
tion is shown in Fig.  2c. We first take TCGA RNA-seq 
dataset as a training set. We divided patients into high-
purity cohort (tumors in the top 25th percentile) and 
low-purity cohort (tumors in the bottom 25th percen-
tile) and differentially expressed genes (DEGs) analysis 
were performed. By comparing low-purity samples with 
high-purity samples, we found that 3307 differentially 
expressed genes, including 2465 upregulated (highly 
expressed genes in low-purity samples) and 842 down-
regulated genes (highly expressed genes in high-purity 
samples). We next evaluated the prognostic impact of 
those genes in training set using univariate Cox regres-
sion analysis. Finally, we identified a purity-relevant 
5-gene signature using the least absolute shrinkage and 
selection operator (LASSO) Cox regression algorithm. 
We calculated a risk score by integrating the z-score 
gene expression data and the corresponding coefficients 
derived from the multivariate Cox regression analysis. 
The risk score is as follow: risk score = 0.152*SNCB + 0.
003*KCNN4 + 0.012*FCGR2C + 0.348*PLAUR + 0.067*
LSP1. As a result, a significant difference in overall sur-
vival (OS) between the high-risk group and the low-risk 
group in the training set (HR = 2.24, 95% CI 1.48–3.38, 
p < 0.001) (Fig. 2d). Moreover, we validated the prognos-
tic value of this gene signature in the TCGA-GBM micro-
array set, CGGA-GBM RNA-seq set and GSE4412 set 
(Fig. 2d, Additional file 2: Fig. S3). Finally, we performed 
a multivariate Cox analysis including tumor purity, gen-
der, age, IDH mutation status, risk score as covariates. 
We identified that the purity-relevant gene signature was 
an independent prognostic indicator (HR = 1.17, 95% CI 
1.01–1.36, p = 0.031) (Fig. 2e, Additional file 1: Table S2).

Functional annotation of transcriptomic and methylation 
analysis in tumor purity
We first performed unsupervised clustering of tran-
scriptomic data based on t-SNE or PCA (principle com-
ponents analysis), which could also divide patients into 
different groups according to purity (Additional file  2: 
Fig. S4). To further elucidate the mechanism underlin-
ing purity subgroups in transcriptomic architecture, we 
annotated DEGs using either functional enrichment 
pathway analysis or gene set enrichment analysis (GSEA) 
in the TCGA-GBM RNA-seq dataset. GO enrichment 
analysis of biological processes for the upregulated genes 
in low-purity samples revealed significant enrichment in 
“immune response” GO terms (Fig. 3a). Further, GSEA of 

http://www.rproject.org/
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the pre-ranked gene list revealed that low-purity samples 
were significantly enriched in immune-related pathways, 
including B cell receptor signaling pathway, Fc gamma 
R-mediated phagocytosis, and IL-17 signaling pathway 

(Fig.  3b). In addition, to illustrate activated reactions, 
pathways and biological processes in all samples, Reac-
tome enrichment analysis was performed. As expected, 
samples with low-purity was significantly enriched in 
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immune-related signaling pathways and immunoregu-
latory interactions whereas samples with high-purity 
showed significant enrichment in cell cycle regulation 
and DNA repair pathways (Fig. 3c).

Furthermore, we set out to identify the differences in 
pathway activity among two purity subgroups. We per-
formed gene set variation analysis (GSVA) to assign 
pathway activity estimates to individual samples. We 
observed that immune-regulation pathways such as IL6-
JAK-STAT3 signaling pathway, and IL2-STAT5 signaling 

pathway showed high pathway activity in the low-purity, 
whereas cell cycle regulation pathways such as G2M 
checkpoint signaling pathway, E2F signaling pathway dis-
played high pathway activity in the high-purity (Fig. 3d). 
All these results suggested the crucial role of regulation 
of the immune system in low-purity samples.

Comparing malignancy tissues with normal tissues 
is a common strategy to identify genes associated with 
tumor progression or tumor-specific markers. Thus, we 
used the R/Limma package to perform DEGs analysis to 
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compare the GBM samples (from TCGA cohort) with the 
normal brain samples (from GTEx cohort) [30]. As purity 
could be a confounding factor, we controlled purity in 
DEGs analysis. We observed marked differences in gene 
expression level before and after purity adjustment and 
large number of genes were identified as differentially 
expressed genes after purity adjustment (Additional 
file  1: Table  S3). Genes upregulated in tumor samples 
could be a marker for tumorigenesis. Here we detected 
7460 genes that were upregulated in tumor after purity 
adjustment, which could be novel genes altered in tumo-
rigenesis (Additional file 2: Fig. S5). Meanwhile, expres-
sion values of immune checkpoints genes were important 
markers in immunotherapy. However, we found that 
programmed death 1 (PD-1, encoding by PDCD1 gene) 
could be upregulated in traditional DEGs analysis. How-
ever, when purity was controlled, we did not detect sta-
tistically significant results in DEGs analysis (Additional 
file 1: Table S4).

We also compared DNA methylation profile of GBM 
samples between high-purity and low-purity samples. 
We identified differentially methylated probes (two-sided 
t-test FDR < 0.05) and probes resided in gene promo-
tor were selected as we considered DNA methylation 
regulation in these genes could be purity-associated. As 
expected, KEGG enrichment analysis showed that several 
immune-related pathways are involved in these differen-
tially methylated genes, which could partially explain 
the differentially expressed genes in the transcriptome 
(Additional file  2: Fig. S6). In summary, these observa-
tions suggested the importance of considering purity as 
a confounding factor in transcriptome and methylatome 
analysis.

Genomics alterations and tumor purity
Genomic data from TCGA-GBM dataset were further 
analyzed to unveil the possible mechanisms affecting 
tumor purity in terms of the inter-patient genomic het-
erogeneity. The oncoprint showed the distinct landscape 
of somatic single nucleotide variants (SNVs) and indels 
in two tumor purity subgroups (Fig.  4a). TP53, TTN, 
EGFR, PTEN are the most frequently mutated genes in 
high-purity subgroups while PTEN, TTN, TP53, EGFR 
genes are the most frequently altered in the low-purity 
subgroup. We further explored the genomic mutations in 
pathways. By analyzing ten canonical oncogenic signal-
ing pathways [31], we found the significantly high muta-
tion frequency in cell cycle pathways for the low-purity 
group (P = 0.0253, Fisher’s exact test) (Additional file  1: 
Table S5). In addition, we observed that mutation abun-
dance was significantly positively correlated with purity 
(Fig. 4b).

Next, we explored the association between SCNA and 
purity (Additional file  2: Fig. S7a). A large number of 
cytobands are either significantly amplified or deleted 
regardless of the influence by purity (Additional file  2: 
Fig. S7b). We performed GO enrichment analysis of 
biological processes of genes that exclusively altered in 
either high-purity or low-purity subgroup, which showed 
mainly differences in the immune regulation process 
(Additional file  2: Fig. S8). Furthermore, after overlaid 
with DEGs identified by RNA-seq, we found that 606 
genes locate within aberrantly amplified regions, includ-
ing 35 (5.8%) genes up-regulated in low purity subgroup, 
suggesting that differential expression of these genes 
were partially due to copy number variations.

The impact of purity on clonal architecture remains 
poorly investigated. We next performed a clonality analy-
sis and calculated the MATH value to infer intra-tumoral 
heterogeneity (ITH). However, there is no significantly 
statistical difference in MATH value between the two 
groups (Wilcoxon rank-sum test, P = 0.414). Interest-
ingly, we observed that decreased subclone numbers 
were associated with low-purity samples (Fig.  4c). We 
also found that high-purity was associated with high per-
cent aneuploidy, suggesting genome instability may be 
enriched in the high-purity (Additional file  2: Fig. S9). 
Taken together, these findings confirm that purity can be 
a confounding factor in genomic architecture and purity 
was an important feature at the genomic level.

Tumor infiltration and tumor purity
To explore the tumor microenvironment of GBM, the 
cell abundance of tissue-infiltrating immune cells was 
estimated in the RNA-seq dataset from the TCGA and 
CGGA cohort. We estimated 24 subpopulations of 
immune cells by using ssGSEA strategy. As immune cells 
composed the majority of non-tumor components of the 
microenvironment, the proportion of main immune cells 
is inversely correlated with tumor purity (Fig. 5a, b). We 
also investigated the association between immune cell 
types and prognosis of patients (Fig. 5b). The association 
was varying in different cohorts. The cell types associated 
with worse prognosis are iDCs and Tregs in TCGA-GBM 
cohort while aDCs, DCs, macrophages, neutrophils cor-
related with worse prognosis in CGGA-GBM cohort. 
Interestingly, we found that gamma delta T cells (Tgd) 
were enriched in high-purity samples and were associ-
ated with favorable prognosis (Fig. 5b) in both TCGA and 
CGGA cohort (Log-Rank Test, P < 0.05). Furthermore, 
we observed a significant correlation between multi-
ple cell types (Spearman’s correlation, P < 0.05) (Fig. 5c). 
Also, we used a simple formula to estimate immune 
cytolytic activity (CYT), which is assessed by a geomet-
ric mean of GZMA and PRF1 expression (TPM value). 
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We found that CYT was significantly correlated with 
tumor purity (rho = − 0.63, P < 0.001) (Fig.  5d). Consist-
ently, the cytolytic activity could also be a biomarker for 
unfavorable prognosis [32]. However, we did not identify 

a significant correlation between mutation abundance 
and CYT (Additional file 2: Fig. S10). Finally, we examine 
the impact of tumor purity on the expression of immune 
checkpoints genes. As expected, the expression level of 

a

b c

Fig. 4 a Oncoprint summarizing recurrently altered genes and their distribution in TCGA-GBM high- purity samples (upper panel) or low-purity 
samples (lower panel). (b, c) Correlation plot showing Spearman’s Rho between purity and mutation count or subclone numbers
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HAVCR2, CD40, SIGLEC7, CD86 genes are inversely cor-
related with tumor purity (Fig. 5d). Taken together, these 
findings demonstrated that purity was an important 
characteristic of tumor microenvironment.

Discussion
To our knowledge, this is the first comprehensive study 
to investigate the confounding effects of tumor purity 
based on the CPE method in a series of clinicopathologi-
cal, genomic, immune parameters for GBM patients. The 
key findings of this study were: 1. We identified purity-
dependent distinct patterns associated with genomic and 
clinicopathologic features, which supports the hypothesis 
that tumor purity is an intrinsic characteristic of samples 
reflecting differences in the tumor microenvironment [13]. 
2. We constructed a purity-associated gene signature which 
would be prognostically relevant. 3. By analyzing the GBM 
tumor microenvironment, we revealed that gamma delta 
T cells were positively associated with purity and were a 
favorable prognostic indicator.

Gene expression subtypes of GBM identified by unsu-
pervised clustering have emerged as an important tool to 
understand GBM biology [29, 33]. We demonstrated that 
the low-purity was tightly associated with mesenchymal or 
neural subtypes. In accordance with previous studies, mes-
enchymal subtype was reported to be linked with tumor-
associated glial and microglial cells and neural subtype was 
related to the tumor margin where normal neural tissue 
could be easily collected [33]. To analyze the confound-
ing effect of purity based on transcriptomic data, we per-
formed two parallel strategies. First, we assessed the DEGs 
between tumor and normal tissue samples, identified 
before and after purity adjustment, which is a well-estab-
lished approach to screen tumor-associated biomarkers. 
We revealed that up-regulated genes identified after purity 
adjustment may play important roles in the biomarker 
setting, which requires further validation. Second, we 
also analyzed the upregulated and downregulated genes 
regarding their correlations with purity. We observed 
that, genes associated with high-purity, were significantly 
enriched in pathways related to the tumor-intrinsic char-
acteristics such as abnormalities in cell cycle regula-
tion and impaired DNA repair machinery; In low-purity 
samples, upregulated genes were commonly enriched in 

immunoregulation and cellular interaction pathways, sug-
gesting a phenotype of tumor microenvironment with 
increased immune-infiltration in these patients. Moreo-
ver, several pathways were activated in the low-purity 
phenotype. For instance, in tumor immunity, IL-10 signal-
ing pathways plays a dual role that IL-10 promotes tumor 
immune escape by inhibiting inflammatory cytokines, and 
conversely induces tumor-specific  CD8+ T cells infiltra-
tion and promotes their cytotoxic activity [34]. In addition, 
IL-17-producing cells, on the other side, were found pro-
moting tumor infiltration and acquired survival benefits in 
the metabolites-deficiency tumor microenvironment [35]. 
We also found that the IL6-JAK-STAT3 signaling path-
way, which drives the proliferation, survival, invasiveness, 
and metastasis of tumor cells and suppresses the antitu-
mor immune response in the tumor microenvironment 
[36], displayed high pathway activity by GSVA analysis 
in this study. Hyperactivation of this pathway is gener-
ally associated with poor prognosis and thus this pathway 
could be therapeutically targeted by inhibitors [36].

In previous studies, purity levels were associated with 
histological subtypes and histological grades, as well as 
survival time [11–13, 37]. Consistent with these findings, 
tumor purity could be a potential prognostic indicator for 
GBM since low purity cases were associated with poor 
prognosis in our study. As tumor purity could not be an 
independent prognostic factor while controlling other 
factors such as IDH mutation status, age, etc., we were 
motivated to establish a purity-associated gene signature. 
In our 5-gene signature, to take the PLAUR  gene as an 
example, the PLAUR  gene encodes the urokinase recep-
tor (uPAR) and had the largest positive coefficient in the 
Cox regression model. The prognostic value of PLAUR  
gene has been reported [38]. PLAUR  could be function-
ally related to tumor growth and angiogenesis [39].

In this study, we also reported that the tumor muta-
tion burden (TMB) of the samples  was positively cor-
related with purity. Of note, we also identified that 
high-purity phenotype correlates with high aneu-
ploidy, that is, increased genome instability. The pos-
sible explanations are that high genome instability is 
often associated with high TMB and increased pro-
inflammatory activity that causes a higher percent of 
tumor necrosis component with decreased immune cell 

Fig. 5 a The landscape of immune cell infiltrates sorted by increasing purity in TCGA-GBM RNA-seq dataset. Immune cell infiltrates were estimated 
by ssGSEA algorithm. b The correlation between the proportion of immune cell infiltrates and survival (upper panel) or purity estimates (lower 
panel) in TCGA-GBM or CGGA RNA-seq cohort. Purity values in CGGA cohort were inferred by ESTIMATE method. c Correlation plot showing 
Spearman’s Rho between cell types in TCGA-GBM. d Scatter plot of correlation of tumor purity and CYT (a geometric mean of GZMA and PRF1; 
y-axis in log2 scale). e Correlation between immune checkpoints gene expression (TCGA RNA-seq dataset) and tumor purity. Pearson’s correlation 
coefficients (r) are stated

(See figure on previous page.)
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infiltration [5]. Strikingly, we observed a decreased total 
number of subclonal numbers in low-purity samples, 
which is consistent with a recent study in renal cell car-
cinoma [40]. The possible mechanism behind this phe-
nomenon is that during immune selection, increased 
immunoediting was found to eliminate tumor clones in 
samples with high immune infiltration [41].

We set out to analyze the immune microenvironment 
architecture for glioblastoma. We demonstrated that 
most immune cells inversely correlate with the purity 
whereas Tgd (T gamma delta) cells are highly infiltrated 
in the high purity subgroup. Consistent with the pre-
vious study [42], increasing Tgd infiltration conferred 
favorable prognosis in both the TCGA and CGGA 
cohort, which could partially help to explain favorable 
prognosis in the high-purity subgroup. In mechanism, 
gamma delta T cells have been reported with well-
established protective roles in cancer, largely based 
on their potent cytotoxicity and interferon-γ produc-
tion [43], implying a potential predictive role in GBM 
immunotherapy.

One of the main advantages of our research was the 
use of CPE to evaluate the tumor purity and system-
atic analysis of the purity in multidimensional profiles 
for GBM. Nevertheless, the present study has several 
limitations. First, due to the retrospective setting of the 
TCGA and CGGA samples, results need to be carefully 
assessed and validated in future prospective studies. 
Second, immune infiltration analysis was performed 
based on transcriptomic data. Thus, our analyses were 
limited without cell phenotype confirmation by other 
methods. Due to the natural complexity of glioblastoma 
tumor microenvironment, further studies to promote 
its understanding might be helpful.

Conclusion
In summary, we systematically evaluated the role of 
tumor purity in the GBM prognosis, genomics, and 
transcriptome alterations as well as tumor immunity 
microenvironment. The tumor purity influences the 
intra-tumor heterogeneity and genomic architecture. It 
is important for further studies in glioblastoma biology 
to consider tumor purity as a confounding effect in the 
design.
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