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Abstract 

Background: Osteosarcoma is a highly aggressive bone tumor that most commonly affects children and adoles-
cents. Treatment and outcomes for osteosarcoma have remained unchanged over the past 30 years. The relationship 
between osteosarcoma and the immune microenvironment may represent a key to its undoing.

Methods: We calculated the immune and stromal scores of osteosarcoma cases from the Target database using the 
ESTIMATE algorithm. Then we used the CIBERSORT algorithm to explore the tumor microenvironment and analyze 
immune infiltration of osteosarcoma. Differentially expressed genes (DEGs) were identified based on immune scores 
and stromal scores. Search Tool for the Retrieval of Interacting Genes Database (STRING) was utilized to assess pro-
tein–protein interaction (PPI) information, and Molecular Complex Detection (MCODE) plugin was used to screen hub 
modules of PPI network in Cytoscape. The prognostic value of the gene signature was validated in an independent 
GSE39058 cohort. Gene set enrichment analysis (GSEA) was performed to study the hub genes in signaling pathways.

Results: From 83 samples of osteosarcoma obtained from the Target dataset, 137 DEGs were identified, including 
134 upregulated genes and three downregulated genes. Functional enrichment analysis and PPI networks dem-
onstrated that these genes were mainly involved in neutrophil degranulation and neutrophil activation involved in 
immune response, and participated in neuroactive ligand–receptor interaction and staphylococcus aureus infection.

Conclusions: Our study established an immune-related gene signature to predict outcomes of osteosarcoma, which 
may be important targets for individual treatment.
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Background
Osteosarcoma is the primary malignant bone cancer that 
most commonly affects children, adolescents, and young 
adults [1]. For patients who have metastatic disease at 
diagnosis or who relapse, the 5-year survival rate is below 
30% [2]. Osteosarcoma exhibits a predilection to occur 
in the metaphysis of long bones, and most commonly 
occurs in the distal femur (43%), proximal tibia (23%), 
or humerus (10%) [3]. Clinical outcomes and treatment 
modalities for osteosarcoma have not changed for more 
than 30 years. EURAMOS-1 study investigating whether 
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intensified postoperative chemotherapy for high-grade 
patients failed to improve survival [4, 5], underscoring a 
critical need for new treatment strategies. The high mor-
bidity and mortality burden in osteosarcoma necessitates 
additional research to characterize and understand the 
underlying mechanisms [6, 7].

Tumor microenvironment (TME) was the cellular envi-
ronment including immune cells, mesenchymal cells, 
endothelial cells, inflammatory mediators and extracel-
lular matrix molecules. The osteosarcoma bone micro-
environment consists of osteoclasts, osteoblasts and 
hematopoietic cells from which monocytes/macrophages 
derive [8–10]. All of these cells release multiple growth 
factors and cytokines with contrasting effects. It is widely 
considered that the microenvironment plays a significant 
role in tumor development [11]. Therefore, the compre-
hensive analysis of the correlation between immune-
related gene signatures and overall survival may shed 
light on pathogenesis of osteosarcoma.

In our study, we calculated immune and stromal scores 
based on the ESTIMATE algorithm to detect the correla-
tion between immune/stromal scores and clinical param-
eters. We also calculated the percentage of every kind of 
immune cells according to the CIBERSORT algorithm 
to explore the relationship between immune score and 
immune cells. The above two algorithms can be applied 
to predict the immune microenvironment of osteosar-
coma and better understand the immune characteristics 
of osteosarcoma.

Our study aimed to construct an immune-related 
gene signature to predict the prognosis of osteosarcoma 
patients. We found that 137 genes were dysregulated in 
83 osteosarcoma samples, including 134 upregulated 
genes and three downregulated genes. Two hub genes, 
SIGLEC7 and SP140, were positively associated with 
outcomes in osteosarcoma patients. Additionally, the 
prognostic power of the genes was verified in another 
independent Gene Expression Omnibus (GEO) dataset.

Methods
Data preparation
Clinical information of osteosarcoma patients was down-
loaded from the Target database (https ://ocg.cance r.gov/
progr ams/targe t). For validation, the gene expression 
profiles of GSE39058 cohort were downloaded from GEO 
database (https ://www.ncbi.nlm.nih.gov/geo/) [12–14].

Immune scores and stromal scores were calculated 
based on the ESTIMATE algorithm [15]. We divided 
osteosarcoma patients into high vs. low score groups 
according to the median value of immune/stromal 
scores. Based on their scores, we constructed Kaplan–
Meier survival curves, and analyzed the association 

between immune/stromal scores and clinicopathologic 
parameters.

We calculated the relative percentage of immune cell 
types in each osteosarcoma sample according to the CIB-
ERSORT algorithm [16]. The proportion of immune cells 
in high- and low-immune score groups was depicted in 
the heatmap. We further applied the Wilcox test to com-
pare the differences in microenvironment between high 
and low immune score groups. Using Spearman corre-
lation analysis, we confirmed the relationship between 
immune cells and immune/stromal scores. All analyses 
were carried out by R version 3.5.2.

Identification of differentially expressed genes (DEGs) 
and UpSet plot
We divided osteosarcoma samples into high vs. low 
immune-score and stromal-score groups according to the 
median value. Data analysis was performed using pack-
age limma [17]. Fold change > 1.5 and adj. p < 0.05 were 
set as the cutoffs to screen for DEGs.

Intersections between different groups of osteosarcoma 
were investigated by UpSet R [18]. UpSet R is a novel R 
package which provides intersecting sets using matrix 
design, along with visualizations of several common sets, 
element, and attribute related tasks.

Enrichment analysis of DEGs
Functional enrichment analysis of DEGs was performed 
by clusterProfiler R [19] to identify Gene ontology (GO) 
categories by biological processes (BP), molecular func-
tions (MF), or cellular components (CC) [20]. Pathway 
enrichment analysis of DEGs was also performed by clus-
terProfiler R. False discovery rate (FDR) < 0.05 was used 
as the cut-off. Then, the most significant top 30 pathways 
were chosen for visualization.

Human protein–protein interaction (PPI) analysis
Human PPIs were deposited in the search tool for the 
retrieval of interacting genes (STRING) database (http://
strin g-db.org/) [21], from which we performed a com-
prehensive analysis and annotation of functional interac-
tions of genes. The STRING database integrates multiple 
databases that provide information sufficient for the pre-
diction of candidate protein interaction relationships. 
Cytoscape (http://cytos cape.org/) was used to visualize 
the PPI network [22, 23]. The hub genes were calculated 
and identified by using CytoHubba. Molecular Complex 
Detection (MCODE) plugin was then used to identify 
gene modules [24]. Enrichment analysis of genes in the 
top two significant modules was performed by using GO 
and KEGG.

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
http://string-db.org/
http://string-db.org/
http://cytoscape.org/
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Survival analysis
Clinical information of the osteosarcoma cohort with 83 
patients was available in the Target database. The patients 
were divided into two groups according to gene expres-
sion value. Kaplan–Meier survival curves were per-
formed using R/Bioconductor (version 3.5.2) [25].

Gene set enrichment analysis (GSEA)
In the Target cohort, osteosarcoma samples were divided 
into two groups according to the expression level of two 
hub genes, respectively. GSEA analysis was performed to 
identify the potential function of selected hub genes [26]. 
p value < 0.05 was set as the cutoff to visualize signifi-
cantly pathways.
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Fig. 1 Immune scores and stromal scores are associated with osteosarcoma overall survival and their pathological location. a Osteosarcoma 
cases were divided into two groups based on high and low immune scores. As shown in the Kaplan–Meier survival curve, median overall survival 
of the high score group is longer than the low score group, as indicated by the log-rank test, p = 0.002. b Similarly, osteosarcoma patients were 
divided into high and low stromal score groups. The median overall survival of the high score group is longer than the low score group by the 
log-rank test, p = 0.01. c Distribution of immune scores of osteosarcoma pathological location. Box-plot shows that there is significant association 
between osteosarcoma pathological location and the level of immune scores (n = 83, p = 0.025). d Distribution of stromal scores of osteosarcoma 
pathological location. Box-plot shows that there is no significant difference between osteosarcoma pathological location and the level of stromal 
scores (n = 83, p = 0.611)
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Results
Immune scores and stromal scores are associated 
with osteosarcoma clinical status
We downloaded gene expression profiles and clinical 
information of all 83 osteosarcoma patients with ini-
tial pathologic diagnosis from the Target database. To 
find out the potential correlation of overall survival with 
immune scores and/or stromal scores, we divided the 83 
osteosarcoma cases into top and bottom halves (high vs. 
low score groups) based on their scores. Kaplan–Meier 
survival curves (Fig.  1a) showed that median overall 
survival of cases with the high score group of immune 
scores is longer than the cases in the low score group 
(p = 0.002). Consistently, cases with higher stromal scores 
also showed longer median overall survival compared to 
patients with lower stromal scores (Fig. 1b, p = 0.01).

To explore the potential correlation between immune/
stromal scores and clinical information, we divided oste-
osarcoma patients according to tumor location, age, gen-
der, metastasis status and race. Based on the ESTIMATE 
algorithm, the average immune scores of lower extremity 
cases ranked the highest of all, followed by upper extrem-
ity and pelvis clinical (Fig.  1c, p = 0.025). Similarly, the 
rank order of stromal scores across pathological loca-
tion from highest to lowest is lower extremity > pelvis 
clinical > upper extremity (Fig.  1d, p = 0.611), indicating 
that immune scores are meaningful in the correlation of 

pathological location classification. While, there was no 
statistical difference based on other clinical information 
classification (Additional file 1: Figure S1).

Difference of immune cell subsets between high immune 
score and low immune score groups
To further analyze the relationship between immune score 
and immune cells, we used the CIBERSORT algorithm 
to calculate the percentage of each type of immune cells 
in osteosarcoma cases (n = 83). When deconvoluted into 
individual immune cell types, 72 (out of the original 83) 
samples had CIBERSORT deconvolution p-value less than 
0.05. The 22 immune cell proportions of osteosarcoma 
were observed in Fig. 2a. Macrophages M0, macrophages 
M2, T cells CD4 memory resting, T cells CD4 naïve, and 
B cells naïve account for a large proportion of osteosar-
coma immune cell infiltration. Figure 2b showed distinct 
immune cell profiles of cases belong to high immune score 
(n = 38) vs. low immune score (n = 34) groups. Many dif-
ferential immune cell types existed between high immune 
score and low immune score groups (Fig.  2c). Immune 
score and macrophages M1 showed the strongest posi-
tive correlation (Pearson correlation = 0.55), while stromal 
score and macrophages M2 showed positive correlation 
(Pearson correlation = 0.28) in the Target database at a 
CIBERSORT p< 0.05 (Fig. 2d). Of these samples, the least 
variable immune cell type was eosinophils (0%).
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Fig. 2 Performance of CIBERSORT across immune cells. a The mean proportion of 22 immune cells in the Target dataset. b Correlation analysis 
between high/low immune scores and percentage of 22 immune cells is summarized in the heatmap. c Violin plot of high immune score and low 
immune score groups for the Target cohort, red for high immune score group and blue for low immune score group. The p values showed different 
infiltration types of immune cells by Wilcox test. d Correlation matrix of 21 immune cell proportions and immune/stromal score in the Target 
datasets. Variables have been ordered by average linkage clustering. For comparison, immune/stromal score has been rescaled to range between 
zero and one separately in each study
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Analysis of differentially expressed genes
To reveal the correlation of gene expression profiles 
with immune score and/or stromal score, we compared 
83 osteosarcoma cases obtained in the Target database. 
Heatmaps in Fig.  3a, b showed distinct gene expression 

profiles of cases belong to high vs. low immune/stromal 
score groups. For comparison based on immune scores, 
459 genes were upregulated and 111 genes were down-
regulated in the high immune score group than the low 
score group (fold change > 1.5, p < 0.05). Similarly, based 

a b

c

d e

Fig. 3 Comparison of gene expression profile with immune and stromal scores of osteosarcoma. a, b Heatmap of significantly differentially 
expressed genes based on immune and stromal scores. Red indicates genes with higher expression and blue indicates genes with lower expression. 
c UpSet diagram analysis of aberrantly expressed genes based on immune and stromal scores. d Top 30 GO terms was analyzed by clusterProfiler 
package. e KEGG analysis of immune-related pathways
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on stromal scores, there were 645 upregulated genes and 
29 downregulated genes in the high stromal score group 
(fold change > 1.5, p < 0.05) (Fig. 3c). Moreover, UpSet plot 
(Fig. 3c) showed that 134 genes were upregulated in the 
high score groups, and three genes were downregulated.

To outline the potential function of the DEGs, we per-
formed functional enrichment analysis of the 134 upreg-
ulated genes and three downregulated genes (Table  1). 
GO terms and pathways were indicated by GO and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis. 
Top GO terms identified included regulation of leukocyte 
activation, external side of plasma membrane, and pep-
tide binding (Fig.  3d). The results suggested that these 
genes were enriched in staphylococcus aureus infection 
and tuberculosis (Fig. 3e).

Protein–protein interactions among DEGs
To better understand the interplay among the identi-
fied DEGs, we obtained PPI networks using the STRING 
tool. The network was made up of five modules, which 
included 277 intersections and 94 nodes (coincidence 
interval ≥ 0.7, Fig.  4a). The relationship and function of 
DEGs were revealed using the PPI network (Fig. 4b). The 
top 30 genes with the most weight were visualized, which 
meant they had more connections with other DEGs 
(Fig.  4c). Figure  4d showed top 30 hub genes based on 
CytoHubba MCC algorithm by Cytoscape (version 3.7.1). 
MCODE plugin was used to analyze significant modules 
in the PPI network, and two modules that had the highest 
degree were stood out. In the module 1 (Fig. 4e), 45 edges 
involving 10 nodes were formed in the network. CXCR6, 
FPR1, ADORA3, CCR5, LPAR5, C3AR1, C5AR1, S1PR4, 
FPR3, and P2RY13 were the remarkable nodes, as they 
had the most connections with other members of the 
module. There were 14 nodes and 33 edges in the module 
2 (Fig.  4f ). FCER1G, ITGAM, and PFAFR occupied the 
center of the module. Moreover, genes in the module 1 
and module 2 were identified with GO and KEGG analy-
sis. p value < 0.05 and q value < 0.05 were set as the cutoffs 
to visualize significantly pathways. We found that these 
genes were mainly involved in neutrophil degranulation 
and neutrophil activation involved in immune response, 
and participated in neuroactive ligand–receptor interac-
tion and staphylococcus aureus infection (Fig. 4g, h).

Validation in the GEO database
To verify that the genes identified from the Target data-
base were also significant in additional osteosarcoma 
cases, we downloaded and analyzed a cohort of osteo-
sarcoma cases from the GEO database (n = 65), an 
independent osteosarcoma dataset (Accession number 
GSE39058). In all, 42 of 65 samples were enrolled for 

Table 1 Gene list of  134 up-regulated and  three down-
regulated genes

Gene Regulation

CYBB Up

ZAP70 Up

CD5 Up

FCGR2A Up

SIRPG Up

SIGLEC1 Up

LCP2 Up

LTB Up

PCED1B Up

APOE Up

FPR1 Up

TLR4 Up

ITGAM Up

PLEK Up

GIMAP8 Up

IL2RA Up

CD69 Up

SIT1 Up

TIGIT Up

P2RY6 Up

GJA4 Up

VMO1 Up

FASLG Up

TNFSF13B Up

CXorf21 Up

PTPRC Up

APOC1 Up

CTSS Up

HPGDS Up

C1QC Up

XCL2 Up

CCR5 Up

FCMR Up

GIMAP1 Up

FPR3 Up

SLAMF8 Up

CSF2RB Up

CD300LB Up

SIGLEC7 Up

GIMAP6 Up

MS4A6A Up

VSIG4 Up

LGALS9 Up

DOCK2 Up

CLECL1 Up

MFNG Up

FUT7 Up

SIGLEC5 Up

OSM Up
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further analysis with complete follow-up data. A total 
of 70 genes were shown to significantly predict overall 
survival (Additional file 2: Table S1), of which two genes 
were associated with better outcomes in osteosarcoma 
patients (Fig. 5a, b, Target database; c, d, GEO dataset).

Table 1 (continued)

Gene Regulation

MNDA Up

CYP2S1 Up

TREM2 Up

MPEG1 Up

CD274 Up

KLRC4-KLRK1 Up

FCGR1A Up

AGMO Up

GPR65 Up

SP140 Up

FCGR2B Up

PTAFR Up

NFAM1 Up

CECR1 Up

SASH3 Up

CXCR6 Up

FCGR3A Up

CD200R1 Up

SLCO2B1 Up

FYB Up

P2RY13 Up

IL10RA Up

TLR8 Up

C1orf162 Up

C10orf128 Up

LILRA1 Up

TMEM176B Up

IL1B Up

SAMSN1 Up

RASGRP4 Up

MSR1 Up

FCGR1B Up

SIGLEC9 Up

IRF8 Up

GPR34 Up

PDE1B Up

CSPG5 Down

RPRML Down

HAND2 Down

Table 1 (continued)

Gene Regulation

APOL1 Up

C1QB Up

CASP1 Up

TLR7 Up

TMC8 Up

C1QA Up

ADAP2 Up

TMEM150B Up

C5AR1 Up

RGS18 Up

TFEC Up

PILRA Up

CD37 Up

WDFY4 Up

ACSL5 Up

TMIGD3 Up

S1PR4 Up

FCER1G Up

MS4A4A Up

CD74 Up

GPR84 Up

C3AR1 Up

LYZ Up

CD209 Up

PLD4 Up

EBI3 Up

IRF5 Up

IKZF1 Up

LILRB5 Up

ALOX5AP Up

NPL Up

CD163 Up

LAIR1 Up

LPAR5 Up

LRRC25 Up

LY86 Up

LTC4S Up

HMOX1 Up

NRROS Up

GIMAP5 Up

CETP Up

ARHGAP30 Up

SH2D1A Up

CD14 Up

TNFSF8 Up

GPBAR1 Up

MS4A7 Up

SOX17 Up

FGL2 Up
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GSEA analysis
We confirmed that there existed six significant KEGG 
pathways based on GSEA analysis, including B cell recep-
tor signaling pathway, leukocyte transendothelial migra-
tion, lysosome, nod like receptor signaling pathway, 
primary immunodeficiency, and leishmania infection 
(Fig. 6).

Discussion
Osteosarcoma is a rare bone cancer which mainly affects 
adolescents and young adults. Current standard treat-
ment consists of neoadjuvant chemotherapy, surgical 
resection of the primary tumor, and adjuvant chemo-
therapy [27]. Although immunotherapy has heralded 
much promise for osteosarcoma [28, 29], no biomark-
ers to stratify patients to distinct therapeutic options 
currently exist. Moreover, the combination of osteo-
sarcoma genome complexity with the low incidence of 
these tumors is an obstacle to thorough investigation of 
osteosarcoma genome biology [30]. Therefore, we sought 
to identify immune-related prognostic genes that con-
tributed to patients’ overall survival by investigating the 
TME.

Some reports have applied the ESTIMATE algorithm to 
several cancers [31–33], demonstrating the effectiveness 

of the algorithm when applied to expression data. Using 
the ESTIMATE algorithm, Vincent et al. [31] calculated 
the purity of breast cancer and demonstrated that differ-
ences between tumors and cell lines were attributed to 
the loss of stromal and immune components in vitro. To 
understand the microenvironment of osteosarcoma, we 
utilized the ESTIMATE algorithm to obtain immune and 
stromal scores. In our study, immune scores were corre-
lated with tumor location of osteosarcoma. In addition, 
patients with high immune and stromal scores had longer 
overall survival, suggesting that tumor microenviron-
ment was closely associated with clinical outcomes.

In several studies, the CIBERSORT algorithm was 
used to examine the relative proportion of infiltrating 
immune cell subsets in each tumor sample [34–36]. Our 
work revealed that immune score was positively corre-
lated with macrophage M1, and stromal score was posi-
tively associated with macrophages M2. Zhao et al. [35] 
found that mast cells, natural killer cells, and dendritic 
cells using CIBERSORT conferred improved distant 
metastasis-free survival (DMFS), whereas macrophages 
and T-cells conferred worse DMFS. Whereas, there 
was no significant correlation between M1-like mac-
rophage or CD8 cell proportion by CIBERSORT with 
improved DMFS in another study [37]. The results based 
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on CIBERSORT algorithm will need to be compared 
with other methods such as single-cell RNA sequenc-
ing, which might provide a more detailed analysis of the 
immune cell infiltrates.

Then we divided tumor samples into high and low 
immune-score and stromal-score groups to identify 
DEGs. Through GO and KEGG analysis we found that 
many of them were involved in tumor microenviron-
ment, such as regulation of leukocyte activation, posi-
tive regulation of cytokine production, and regulation of 
lymphocyte activation (Fig. 3). The results were consist-
ent with previous studies that immune cells and extra-
cellular matrix molecules were interrelated in building 
osteosarcoma microenvironment [38, 39]. Moreover, 
we constructed protein–protein interaction modules 

to reveal the relationship and function of DEGs (Fig. 4). 
Nodes with a high connectivity degree in the modules 
were related to immune/inflammation response.

Finally, we performed overall survival analysis of 137 
DEGs and identified that 70 genes were associated with 
outcomes in osteosarcoma patients from the Target data-
base. By cross-validation with the GEO dataset, an inde-
pendent cohort of 42 osteosarcoma cases, we identified 
two prognostic immune-related genes (Siglec7, SP140) 
consistent with the Target database. Both genes have not 
previously been reported in relation to osteosarcoma, 
indicating potential prognostic biomarkers for further 
study [40–42].

Depicting a comprehensive landscape of osteosarcoma 
microenvironment may help to interpret the responses 
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of osteosarcoma to immunotherapies and provide new 
treatment strategies for patients. The results of our study 
should be further validated in a prospective cohort of 
patients receiving immunotherapy. As not all patients 
have greater benefit from immunotherapy, more clinical 
factors should be incorporated to construct prediction 
models.

Several limitations should be considered when inter-
preting the results. Firstly, owing to the small sample 
size of the cohort, further verification with big data was 
necessary. Secondly, due to heterogeneity of osteosar-
coma, DEGs identified at the population level may not 
accurately describe individual tumor sample well. Fur-
ther experiments were needed to directly determine 
the specific cell type and proportion of immune infiltra-
tion. Thirdly, as the limited availability of osteosarcoma 
samples, the integration of data from multiple datasets 
has become a key source of data to study osteosarcoma. 
However, this method is highly influenced by batch 
effects due to the lack of statistical controls.

In summary, immune scores and stromal scores calcu-
lated based on the ESTIMATE and CIBERSORT algo-
rithms could facilitate the quantification of the immune 
and stromal components in each tumor sample. Then 
according to their immune/stromal scores, we catego-
rized osteosarcoma cases in the Target database into high 
and low score groups, and identified DEGs. Functional 
enrichment analysis and protein–protein interaction 
networks further showed that these genes mainly par-
ticipated in immune/inflammation response. Finally, we 
validated these genes in an independent osteosarcoma 
cohort from the GEO database. Thus, we obtained a list 
of tumor microenvironment-related genes that predicted 
better prognosis in osteosarcoma patients.

Conclusions
Our study established an immune-related gene signature 
to predict overall survival of osteosarcoma, which may 
help in clinical decision making for targeted molecular 
therapies.
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