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Abstract 

Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one‑third of 
annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic bio‑
marker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are 
a class of non‑coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splic‑
ing and transcription, and as interactors with RNA‑binding proteins (RBPs). Therefore, circRNAs have been investigated 
as specific targets for diagnostic and prognostic detection of CRC. These non‑coding RNAs are also linked to metas‑
tasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance 
of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this 
review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential 
role in CRC.
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Background
Colorectal cancer (CRC) is one of the most common 
malignancies ranking third in the incidence and sec-
ond in mortality among other cancers in the world. The 
global incidence of CRC is increasing, with approxi-
mately 3640 deaths and 17,930 new cases in 2020 [1, 2]. 
The exact mechanisms underlying CRC development 
remain unknown, however, risk factors that are strongly 
related to CRC include genetics, diet, tobacco smoking, 
heavy alcohol consumption, inactive lifestyle and age, 
where > 50 is a significant risk factor for CRC. However, 
recent evidence has also detected an increased risk for 

young adults [3]. Clearly the disorder is multifactorial in 
nature, with no common identifiable predictor of pre-dis-
position [4]. Here, we will review the molecular evidence 
to date.

Genetic and epigenetic alterations have both been 
found in CRC patients; changes in chromosomal copy 
number, aberrant gene methylation, and dysregulated 
gene expression, including tumor suppressor genes such 
as APC, BRAF, DCC, TP53, SMAD4, SMAD2, oncogenes 
such as KRAS and NRAS, and DNA repair genes includ-
ing MLH1 and MSH6 [5, 6].

Dividing these mutation types into functional pathways 
broadly identifies three separate mechanisms: Chromo-
somal instability, which is the most common cause of 
genomic instability in CRC, significantly linked to altera-
tions in APC and KRAS genes [7, 8]. In hereditary and 
sporadic colorectal cancer, microsatellite instability (MSI) 
is another key pathway. Germline mutation in one of the 
DNA mismatch repair genes, MLH1, MSH2, MSH6, or 
PMS2 leads to hereditary nonpolyposis colorectal cancer 
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(HNPCC), while MSI in sporadic colorectal cancer is 
predominantly due to hypermethylation of the MLH1 
promoter and sometimes sporadic mutations [9]. Defects 
in the mismatch repair mechanisms can also lead to MSI 
status [10]. A third pathway is via epigenetic alteration. 
CpG island methylator phenotype (CIMP) differences 
can result in changes in gene expression or function 
without changing the DNA sequence of that particular 
gene [11]. Taken together; these three pathways indicate 
the genetic heterogeneity of CRC.

CRCs are classified into 4 subtypes: CMS1-CMS4 with 
different clinical and biological characterizations [12]. 
Despite recent advances in our knowledge of signaling 
pathways involved in CRC, chemo- and radiotherapy 
resistance remains the most significant hurdle in CRC 
treatment. Therefore, a novel methodology for improved 
early diagnosis is essential. Non-coding RNAs (ncRNAs) 
play important roles in the regulation of chemo-and 
radio resistance of CRC [13]. Thus, ncRNAs could serve 
as targets for the development of new therapeutic strat-
egies for drug and radiation resistance in CRC [14, 15]. 
circRNAs are a significant facet in ncRNAs biology, thus 
understanding of the role of circRNAs in CRC progres-
sion is pivotal to identifying new diagnostic, prognostic 
and predictive biomarkers for CRC [16]. In this review, 
we summarize the potential clinical implications of 
human circRNAs in CRC, for use as predictive biomark-
ers and/or therapeutic targets.

The non‑coding RNAs
The majority of the human genome (~ 90%) is transcribed 
as ncRNAs, which contain multiple classes of RNAs with 
various lengths [17]. Many studies have identified func-
tional roles for ncRNAs, in various physiological and 
pathological processes, such as diabetes, cardiovascular 
disease, and cancer [18–20]. Classes of short ncRNAs 
include microRNAs (miRNAs), small interfering RNAs 
(siRNAs) and short piwi-interacting RNAs (piRNAs), 
meanwhile, linear lncRNAs (long non-coding RNAs) and 
circular RNAs are both classed as long noncoding RNAs 
[21]. circRNAs, however, are a new class of long ncRNAs, 
processing largely from exotic or intronic sequences, 
and are remarkably unique in structure and chemical 
characteristics compared with linear RNAs. circRNA 
biogenesis is based on the back‐splicing process, and 
closed 5-3ʹ ends negate degradation by RNA exonucle-
ase or RNase R [22]. Classification of circRNAs is largely 
based on sequence origin, where subgroups include the 
circular intronic RNAs (ciRNAs), the exonic circRNAs 
(EcircRNAs), and exon–intron circRNAs (EIciRNAs) 
[23]. EcircRNAs, which predominantly exist in the cyto-
plasm, comprise the majority of all circRNAs. EcircRNAs 
can be formed by three different mechanisms, including 

lariat-driven circularization, RNA-binding protein (RBP)-
driven circularization, and back splicing. EIciRNAs how-
ever, are formed only by back splicing of ciRNAs, which 
depends on a 7-nt GU-rich element and an 11-nt C-rich 
element, important in escaping debranching and exonu-
cleolytic degradation [23, 24]. circRNAs have relatively 
stable structure and show tissue-specific expression, also 
displaying developmental stage regulation, with evolu-
tionary conservation among species [25].

Functions of circRNAs
circRNAs have regulatory roles in gene expression by 
sponging miRNAs, competing with other RNAs for bind-
ing to miRNAs and RNA binding proteins (RBPs) to mod-
ulate the local concentration of RBPs and RNAs as part of 
the competing endogenous RNA (ceRNA) network [26]. 
circRNAcircRNACDR1as (ciRS-7), for example, which 
has more than 70 conserved binding sites for miR-7, and 
is highly expressed in human and mouse brains [27, 28]. 
SRY, which encodes both linear and circular RNAs, is 
involved in sex determination in testis development. cir-
cRNA SRY can control metastasis and invasion of tumor 
cells via sponging miR-138 [29, 30]. Another circRNA, 
known as CircITCH, plays similar roles as a miRNA 
sponge, via miR-7, miR-17, and miR214, to inhibit pro-
liferation through the Wnt/β-catenin signaling pathway 
[31], which is illustrated in Fig. 1A.

Although circRNAs are considered to be non-coding 
RNAs due to lack of 5’-cap structure and 3’-polyadenyla-
tion tail, circRNAs have been shown to generate protein 
products in a cap-independent manner [32]. Interest-
ingly, many circRNAs are sometimes translated, indeed 
using high-content genomic screening, Legnini et  al. 
found Circ-ZNF609 can translate into a protein in a 
splicing-dependent and cap-independent manner [33]. 
Yang Y et al. discovered CircFBXW7, produced from the 
FBXW7 gene, encoding a novel 21-kDa protein FBXW7-
185aa, which reduced the half-life of c-Myc by antagoniz-
ing USP28-induced c-Myc stabilization [34].

The overall activities of circRNAs are intricately inter-
twined with RNA binding proteins, modulating the sta-
bility of mRNAs, regulating gene transcription, and 
translating proteins [35] and are involved in the regula-
tion of cell proliferation, pluripotency and early line-
age differentiation, epithelial-mesenchymal transition 
(EMT), cancer progression and chemoradiotherapy 
resistance, as shown in Fig. 2.

Upregulation of circRNAs in CRC 
Among all the validated aberrantly expressed circRNAs in 
colorectal cancer, upregulation of circRNAs more often 
associates with oncogenesis. Xia et al. found abnormally 
expressed circRNAs through CircRNA high-throughput 
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sequencing, identifying Circ-0053277 as having the abil-
ity to sponge miR‐2467‐3p, and as being significantly 
upregulated in CRC tissues, where it facilitated CRC cell 
migration, proliferation, and epithelial‐mesenchymal 
transition [36]. Similarly, Li et  al. identified CircVAPA 
as being upregulated in tissues and plasma, serving as a 
sponge for miR-101. Furthermore, they showed that the 
expression level of miR-125a was decreased in CRC cells, 
and CircVAPA knockdown repressed CRC cells cycle 
progression, invasion, and migration [37]. Knockdown of 
CircVAPA can also suppress CRC cell cycle progression, 
invasion, and migration by sponging miR-125a [38].

Yahang et  al. found that Hsa_Circ_0026416 which 
was upregulated in CRC tissues and plasma, and has 

a key role in promoting the progression of CRC both 
in vitro and in vivo, may function as a ceRNA to sponge 
miR-346 [39].

Knockdown of another upregulated circRNA, Cir-
cACAP2 (hsa_circ_0007331), which was reported to 
be significantly upregulated in CRC tissues and colon 
cancer cells lines, suppressed proliferation and inva-
sion by downregulating T lymphoma invasion and 
metastasis protein 1 (Tiam1) expression, through 
upregulated miR-21-5p expression (40). Another 
highly overexpressed circRNA in CRC is Hsa_
circ_0136666, derived from the PRKDC gene, which 
can regulate proliferation and migration of CRC cells 
by sponging miR-136 [41].

Fig. 1 (A) Circ0001313 was found to be the most significantly upregulated circular RNA in CRC. where it can sponge miR‑338 and affect apoptosis 
radiosensitivity in CRC. (B) Circ‑ITCH is overexpressed in colorectal cancer and it can develop proliferation by sponging miR7, miR214, miR17 via 
Wnt/ β‑catenin pathway signaling

Fig. 2 circRNAs and their targeted pathways in CRC including carcinogenesis, metastasis, and chemoresistance
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Downregulated circRNAs in CRC 
As well as being overexpressed, other circRNAs are 
downregulated in CRC. Wang X et  al. showed hsa_
Circ_001988 was significantly downregulated in 31 
matched colorectal cancer tissue samples, proposing 
this circRNA as a novel diagnosis potential biomarker 
in the CRC [42]. Geng Y reported hsa_Circ_0009361 to 
be significantly downregulated in both CRC tissues and 
derived cells. circRNA promoting the proliferation, epi-
thelial-mesenchymal transition, migration, and invasion 
of CRC cells by sponging of miR-582. Conversely, overex-
pression of hsa_Circ_0009361 caused upregulation in the 
expression of adenomatous polyposis coli 2 (APC2) and 
blocked the activity of the Wnt/β-catenin pathway [43]. 
Circ-ITGA7, which sponges’ miR-370-3p to increase 
ITGA7 transcription–, through inhibition of RREB1 via 
oncogenic Ras has been shown to be down-regulated 
in CRC tissue samples [44]. Indeed, Circ-ITGA7 has 
also been shown to directly act as a tumor suppressor 
in CRC, with clinical features including cancer differen-
tiation, lymph node metastasis, distant metastasis, and 
alterations in the TNM stage [45]. circRNA Circ-FBXW7 
silencing was previously reported to enhance the prolifer-
ation, cell migration, and invasion of CRC cells in culture. 
In contrast, overexpression of Circ-FBXW7 significantly 
suppressed CRC cell proliferation, migration, and inva-
sion. Similarly, Circ-FBXW7 silencing was also shown 
to stimulate tumor growth in SW480 and SW620 tumor 
models, whereas Circ-FBXW7 overexpression repressed 
tumor progression in the same system. This suggests that 
Circ-FBXW7 could serve as a target biomarker of CRC. 
Potential mechanisms have been proposed, including 
upregulated mRNA and protein expressions of NEK2 and 
mTOR, and diminished the PTEN expression (46). circR-
NACirc_021977 is another circRNA found to be down-
regulated in CRC. Circ_021977 was shown to sponge 
miR-10b-5p, with a regulatory axis inhibiting prolifera-
tion, migration, and invasion in CRC via p21 and p53 
[47]. Dysregulated circRNA expression in CRC is sum-
marized in Table 1.

circRNAs in predicting response 
to chemoradiotherapy
Targeted therapy, chemotherapy, and multiagent regi-
mens, for example, FOLFIRI (5-FU and irinotecan) 
and FOLFOX (5-FU oxaliplatin) can be applied as the 
standard treatment of CRC. However, chemotherapy 
has its limitations, including toxicity, low response 
rates, unpredictable innate and acquired resistance 
mechanisms, and low tumor-specific selectivity [137]. 
Recent studies have shown that different ncRNAs such 

as circRNAs, may play important roles in the regula-
tion of chemoresistance and affect the sensitivity of 
tumors to chemotherapy and radiotherapy through 
modification of various signaling pathways, including 
cell cycle, proliferation, apoptosis, and DNA damage 
repair [84, 112]. hsa_circRNA_0001313 is one of the 
upregulated circRNAs in radio-resistant CRC tissues. 
Inhibition of hsa_circRNA_0001313 induces radio-sen-
sitivity, reduced cell viability, and increases caspase-3 
activity and colony formation by negatively modifying 
miR-338-3p in CRC cells, which has shown in Fig.  1B 
[124]. Another recent study reported that CircDDX17 
was down-regulated in CRC, and its overexpression 
induced inhibition of 5-Fu resistance, blocked tumor 
growth, and CRC progression via sponging miR-31-5p 
[131]. Interestingly, Circ-32883 was upregulated in 
CRC tissues and its overexpression was positively 
associated with chemoresistance through its potential 
action as a sponge for miR-501-5p. This miRNA binds 
to EML5 mRNA, inhibiting its expression. Thus, pro-
moting resistance to FOLFOX therapy [112]. Other 
circRNAs related to chemotherapy resistance are sum-
marized in Table 2.

circRNAs as biomarkers for colorectal cancer
Through improvements in high-throughput sequenc-
ing, circRNA microarray, and chip analysis we now 
know circRNAs are differentially expressed in CRC, 
and certain circRNAs are involved in various biologi-
cal processes such as proliferation, migration, invasion, 
and apoptosis. Due to the unique structure of circR-
NAs, which confers resistance to RNase and longer 
half-lives, they can therefore be potential candidates for 
diagnostic biomarkers. However, the underlying biolog-
ical function of circRNAs requires further investigation 
[138, 139].

Several circRNAs have been proposed as useful thera-
peutic targets for CRC. For instance, hsa_circ_022382 
which is derived from the human FADS2 gene is over-
expressed in 200 CRC tissues, where CircFADS2 
overexpression was positively associated with clin-
icopathological features. CircFADS2 expression may 
therefore be a promising biomarker for prognostic 
investigation in CRC patients [95]. In another study, 
hsa_circ_0026344 was shown to be significantly down-
regulated in 32 CRC patients compared to paired 
adjacent non-tumorous tissues. The expression of hsa_
circ_0026344 was correlated with tumor size and lymph 
metastasis. Functionally, circRNA-0026344 overexpres-
sion significantly suppressed CRC cell proliferation 
and colony formation as well as promoted apoptosis by 
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Table 1 The characteristics of dysregulated circRNAs in CRC 

CircRNA GENE
Related miRNA

Expression Targeted molecules/
pathways

Function References (DOI)

circ_0007142 miR‑455‑5p Up SGK1 Regulates cell prolifera‑
tion, apoptosis, migra‑
tion, and invasion

[48] 2021

hsa_circ_102049 miR‑761, miR‑192‑3p Up FRAS1 Promoting liver metas‑
tasis

[49] 2021

LONP2 Mir‑17 Up DGCR8 Prognostic predictor for 
anti‑metastasis target

[50] 2020

CircPTK2 (hsa_
circ_0005273)

Up binding to vimentin 
protein

Metastasis and may 
serve as a potential 
therapeutic target for 
CRC metastasis,
Promote EMT

[51] 2020

circPACRGL miR142‑39
506‑3p

Up TGF‑β1 Promoted CRC cell 
proliferation, migration, 
and invasion, as well as 
differentiation

[52] 2020

hsa_circ_0053277 miR‑2467‑3p Up MMP14 Facilitated the develop‑
ment of CRC acceler‑
ated cell proliferation

[37] 2020

Hsa_circ_001680 miR‑340 Up BMI1 Enhance the prolif‑
eration and migration 
capacity of CRC cells

[53] 2020

circSAMRCC1 miR‑140‑3p Up MMP‑2, MMP‑9, VEGF Cell viability, migration, 
and invasion

[54] 2020

CircHIPK3 miR‑1207‑5p Up FMNL2 Promote Cell Progres‑
sion, migration, and 
invasion in CRC 

[55] 2020

circ‑HIPK3 Mir‑7 Up FAK/IGF1R/EGFR/YY1 Promotes CRC growth 
and metastasis
Prognostic

[56] 2020

circHUWE1 miR‑486 Up Promotes Cell Prolif‑
eration, Migration, and 
Invasion

[57] 2020

circVAPA miR‑101 Up CREB5 Promotes CRC cell 
proliferation, migration, 
invasion, and inhibit 
apoptosis

[38] 2020

CircAPLP2 miR‑101‑3p Up Notch
Signaling
Notch1

Promotes proliferation 
and metastasis

[58] 2020

circ‑FARSA miR‑330‑5p Up LASP1 Proliferation, migration, 
and invasion of CRC 
cells in vitro

[59] 2020

CircAGFG1 miR‑4262 and miR‑
185‑5p

Up WNT/β‑catenin
CTNNB1

Promote metastases [60] 2020

circ5615 miR‑149‑5p Up WNT/β‑catenin path‑
way

Exerted oncogenic 
function

[61] 2020

circular RNA 001,971 miR‑29c‑3p Up VEGFA CRC cell proliferation,
Invasion and angio‑
genesis

[62] 2020

CircPRMT5 miR‑377 Up E2f3 Cell proliferation and 
migration

[63] 2020

CircularRNA NOX4 microRNA‑485‑5p Up CKS1B Promotes the develop‑
ment of colorectal 
cancer

[64] 2020

circRAE1 miR‑338‑3p Up TYRO3 Promotes colorectal 
cancer cell migration 
and invasion

[65] 2020



Page 6 of 16Ameli‑Mojarad et al. Cancer Cell Int          (2021) 21:496 

Table 1 (continued)

CircRNA GENE
Related miRNA

Expression Targeted molecules/
pathways

Function References (DOI)

Hsa_circ_0079662 Up TNF‑α
HOXA9

Induces the resistance 
mechanism of the 
chemotherapy drug 
oxaliplatin through the 
TNF‐α pathway

[66] 2020

Hsa_circ_0026416 miR‑346 Up NFIB Promotes proliferation 
and migration

[39] 2020

circ_0136666 miR‑383 Up CREB1
proteins (HK2 and 
LDHA)

Accumulation on the 
proliferation and glyco‑
lysis and the promoting 
impact on the apopto‑
sis of CRC 

[67] 2020

hsa_circRNA_102209 miR‑761 Up Promotes the growth 
and metastasis

[68] 2020

Hsa_circ_0005963 miR‑122 Up PKM2 Chemoresistance. 
In vitro and in vivo 
studies

[69] 2020

Circ TUBB Interacting with 
smoking can enhance 
colorectal cancer risk

[70] 2020

CircRNA_101951 Up KIF3A Promote migration and 
invasion

[71] 2020

Circ‑PNN
hsa_circ_0101802)

miR‑6833
miR‑1301‑3P

Up [72] 2020

circ‑ABCC1
hsa_circ_0000677

Up Wnt/β‑catenin pathway circ‑ABCC1 was con‑
firmed to facilitate CRC 
progression

[73] 2020

CircFNDC3B miR‑937‑5p Up circFNDC3B‑enriched 
exosomes can inhibit 
angiogenesis and CRC 
progression

[74] 2020

circ_0060745 miR‑473,6 Up CSE1L Promotes Colorectal 
Cancer Cell Proliferation 
and Metastasis

[75] 2020

circRUNX1 miR‑145‑5p Up IGF1 signaling Promote Cell Growth 
Metastasis/Proliferation/ 
migration

[76] 2020

circHOMER1 miR‑138‑5p Up HEY1 A decrease in glucose 
consumption
Treated with lidocaine, 
indicating the inhibition 
of CRC cell viability 
mediated by lidocaine 
through suppressing 
aerobic glycolysis

[77] 2020

Hsa_circ_0001806 miR‑193a‑5p Up COL1A1 Correlated with TNM 
stage, depth of invasion, 
lymphatic metastasis, 
and distant metastasis

[78] 2020

circMAT2B miR‑610 Up E2F1 Induces Colorectal 
Cancer Proliferation

[79] 2020

circ_0000512 miR‑296‑5p/ Up RUNX1 Cell Proliferation cell 
viability and colony 
formation

[80] 2020

Circ_0056618 miR‑206 Up CXCR4 VEGF‑A Promoted cell prolif‑
eration, migration, and 
angiogenesis

[81] 2020

CircRNA_0001946 MicroRNA‑135a‑5p Up EMT A tumor promoter by 
activating the miR‑135a

[82] 2020
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Table 1 (continued)

CircRNA GENE
Related miRNA

Expression Targeted molecules/
pathways

Function References (DOI)

Hsa_circ_0038646 miR‑331‑3p Up GRIK3 Promotes cell prolifera‑
tion and migration

[83] 2020

Circ_0007031 miR‑760 Up DCP1A Regulate the Growth 
and Chemoradiother‑
apy Resistance might 
play a positive role

[84] 2020

Circ‑PRKDC miR‑375/ Up FOXM1 Axis and Wnt/β‑
Catenin

Circ‑PRKDC enhanced 
5‑FU resistance in CRC 

[85] 2020

CircRNA UBAP2 Mir‑199a Up VEGFA Facilitated CRC progres‑
sion

[86] 2020

Hsa_circ_0000231 miR‑502‑5p Up MYO6 CRC progression
It has a role in glycolysis

[87] 2020

circGLIS2 miR‑671 Up NF‑κB Promotes colorectal 
cancer cell motility

[88] 2020

Circular RNA CCDC66 Up PI3KK Apoptosis [89] 2020

circCCDC66 miR‑3140 Up autophagy Promotes the tumori‑
genesis

[90] 2020

circ‑CCDC66 miR‑33b/miR‑93/ Up DNMT3B/EZH2/
MYC/YAP1

Promotes CRC growth 
and metastasis

[91] 2020

Hsa_circ_0128846 hsa‑miR‑1184 Up YAP signaling Promotes tumorigen‑
esis

[92] 2020

Hsa_circ_0007534 miR613
SLC25A22

Up SLC25A22 Promote proliferation 
was correlated with 
tumor stage and lymph 
node metastasis

[93] 2020

CircFAT1 miR‑520b
miR‑302c‑3p

Up UHRF1 CRC cell proliferation, 
apoptosis, and glyco‑
lysis

[94] 2020

CircFADS2 Up Biomarkers of CRC [95] 2020

Circ‑000166 miR‑326 Up LASP1 Cell growth and apop‑
tosis in CRC cell lines

[96] 2020

circ‑ACAP2 Mir21‑5p Up Tiam1 Promotes CRC cell 
proliferation, migration, 
and invasion

[49] 2020

circ‑ZNF609 miR‑150 Up Gli1 Promotes CRC cell 
migration

[33] 2020

circ‑NSD2 miR‑199b Up 5p/DDR1/JAG1 Promotes CRC metas‑
tasis

[97] 2020

Circ‑DENND4C miR‑760 Up SLC2A1 Promote Migration and 
glycolysis

[98] 2020

circ‑Lgr4 Up circLgr4‑peptide/Lgr4/
Wnt/β‑catenin

Promotes CRC stem cell 
self‑renewal, tumori‑
genesis and invasion

[99] 2020

hsa_circ_000984 miR‑106b Up CDK6 Promotes CRC growth 
and metastasis

[100] 2020

Has _circ ‑140,388
(circHUWE1)

Mir486 .5p Up PLAGL2
IGF2
WNT‑ β CATENIN

Proliferation, migration, 
invasion,

[57] 2020

Has‑circ‑0004680
circCCT3

Mir‑ 613 Up CCT3
/WNT3/VGFR

Metastasis [101] 2020

Has _circ ‑001,900
circCAMSAP1

Mir328‑5p
Mir7

Up E2F1
EGFR
IGF1R
CAMSAP1

Promotes CRC progres‑
sion

[102] 2020

hsa_circ_0007534 Up Promotes proliferation 
and inhibits apoptosis

[93] 2021

Has‑circ‑ 0,007,843 Mir‑ 518‑5p Up ARHGAP32 Migration, invasion, [103] 2020
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Table 1 (continued)

CircRNA GENE
Related miRNA

Expression Targeted molecules/
pathways

Function References (DOI)

circRNA_100876 miR‑516b Up Inhibit proliferation and 
metastasis

[104] 2020

CircRNA_0000392 miR‑193a‑5p Up PIK3R3/AKT Promoter proliferation 
of CRC 

[105] 2020

circRNA_002144 miR‑615‑5p Up LARP1 Promotes growth and 
metastasis

[106] 2020

Circ‑Erbin miR‑125a‑5p and miR‑
138‑5p,

Up 4EBP‑1 Promotes growth and 
metastasis of CRC 

[107] 2020

CircRNA 100,146 miR‑149 Up HMGA2 Promotes Colorectal 
Cancer Progression

[108] 2020

circ‑NSUN2 Up IGF2BP2/HMGA2 Promotes CRC liver 
metastasis

[109] 2019

circCCT3 Mir613 Up VEGFA; WNT signaling Contributes to metas‑
tases

[101] 2019

Circ_0000218 miR‑139‑3p Up RAB1A Promoted CRC prolifera‑
tion and metastasis via

[110] 2019

circFMN2 miR‑1182 Up hTERT Cell proliferation and 
migration

[111] 2019

Circ 32,883 Mir501‑5p Up EmL5 Promote resistance to 
folfox

[112] 2019

Circ ACC1 Up c‑Jun/AMPK Promotes CRC cell fatty 
acid β‑oxidation, glyco‑
lysis and growth

[113] 2019

hsa_circ_102958 miR‑585 Up CDC25B Promotes CRC tumori‑
genesis

[114] 2019

Has‑ circ‑101555 Mir 597‑5p Up CDK6
RPA3

Promote progression [115] 2019

Has‑circ‑0079993 Mir 139‑3p Up CREB1 Promotes CRC cell 
proliferation

[116] 2019

Has‑circ‑ PIP5K1A Mir1273
Irf4 cdx2
ZIC1

Up Promote progression 
CRC 

[117] 2019

hsa_circ_0055625 ITGB8 Up miR‑106b Increases colon cancer 
cell growth was associ‑
ated with pathological 
TNM stage and metas‑
tasis

[118] 2019

hsa_circ_0136666 PRKDC
SH2B1

Up Mir136 Promote proliferation 
and invasion

[41] 2019

hsa_circ_0073195 miR‑199‑b Up Ddr1 and Jag1 signaling Promotes metastasis [97] 2019

hsa_circ_0071589 MIR‑600 Up Fat1
EZH2

Promotes carcinogen‑
esis tumor growth, inva‑
sion, and migration

[119] 2018

circRNA_100290 FZD4
SLC30A7
WNT/β‑catenin

Up Mir516b Promotes colorectal 
cancer

[120] 2018

Cirs7 miR‑7 Up EGFR and IGF1R Promotes progression [27, 121] 2017

Circ0000504 Mir485‑5p Up Tubgcp3
Stat3

Promote resistance 
to 5fu

[122] 2017

hsa_circ_000984 CDK6 Up Mir 106b Promotes cells prolifera‑
tion and metastasis

[100] 2017

hsa_circ_0020397
(circBANP)

DOCK1
PD_L1
TERT

Up Mir138 Can regulate CRC cell 
viability, apoptosis, and 
invasion

[123] 2017

Circ‑0001313 miR‑3383p
33b5p
935p

Up Ccdc66 Promote resistance to 
radiotherapy and 5fu

[124] 2019
2017
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Table 1 (continued)

CircRNA GENE
Related miRNA

Expression Targeted molecules/
pathways

Function References (DOI)

Has‑circ‑001569 miR145 Up ABC1
E2f5
BAG4

The regulator in cell 
proliferation and inva‑
sion

[125] 2016

circ_0007142 miR‑122‑5p Down CDC25A Proliferation, colony 
formation, migration, 
and invasion

[48] 2020

CircCSNK1G1 miR‑455‑3p Down MYO6 Proliferation, migra‑
tion and invasion cell 
growth and metastasis,

[126] 2020

CircTADA2A miR‑374a‑3p. MiR‑
374a‑3p

Down KLF14 Tumor suppressor in 
CRC 

[127] 2020

circ‑SMAD7 Down circ‑SMAD7 could 
inhibit cell migration 
and invasion of CRC by 
suppressing the EMT 
process,

[128] 2020

Circ_cse1l Down eIF4A3
PCNA

circ_cse1l inhibited the 
proliferation of CRC 

[129] 2020

ITGA5 circRNA miR‑107, Down FOXJ3 Act as a tumor suppres‑
sor in CRC 

[130] 2020

CircDDX17 miR‑31‑5p/ Down KANK1 Tumor suppressor
blocked CRC progres‑
sion
Strengthened che‑
mosensitivity of CRC 
to 5‑Fu

[131] 2020

Hsa_circ_0137008 microRNA‑338‑5p Down Inhibited the progres‑
sion of CRC 

[132] 2020

CircNOL10 miR‑135a‑5p; miR‑
135b‑5p

Down KLF9 Mediating proliferation, 
cell cycle, migration, 
and invasion

[133] 2020

circ_0021977 miR‑10b‑5p Down P21; P53 Suppresses prolif‑
eration, migration, and 
invasion by CRC cells

[47] 2020

circRNACBL11 YWHAE Up Mir6778‑5p Suppress cell prolifera‑
tion

[134] 2019

Circ. CDYL c‑Myc
cyclin D1

Down miR‑150‑5p/ Inhibits CRC cell growth 
and migration

[135] 2019

circITGA7 ITGA7
REB1
Ras’s pathway
ASXL1

Down miR‑370‑3p
mir‑3187‑3p

Inhibits colorectal 
cancer growth and 
metastasis

[44]
[45]

2019
2018

hsa_circ_0009361 Mir582‑3p Down APC2/Wnt/β‑catenin Inhibits CRC progres‑
sion

[43] 2019

hsa_circ_0000523 METTL3
dKK1
WNT/β‑catenin

Down Mir‑31 Correlated to the 
tumorigenesis‑
Proliferation

[136] 2018

circITCH DDX17
WNT/β‑catenin

Down miR‑7, miR‑17, miR‑214 Proliferation ( −) [31] 2015
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regulating miR-21 and miR-31 levels [45]. Other cir-
cRNAs with biomarker potential are summarized in 
Table 3.

circRNAs as therapeutic targets in colorectal cancer
Targeted therapy has been widely used in the clinic due 
to its excellent efficacy, and it can work on cancerous 
cells by directly inhibiting cell proliferation, differentia-
tion, and migration [50]. Indeed, monoclonal antibodies, 
for instance, are currently an important player in tar-
geted therapies [51]. circRNAs moderate drug resistance 
by sponging microRNAs both in traditional chemothera-
peutic drugs, advanced targeted drugs, and immuno-
therapeutic drugs. For example, therapeutic targeting of 
ciRS-7 may become a promising strategy for colorectal 
cancer patients, since higher expression of ciRS-7 cor-
related with multiple clinicopathologic factors, such as 
advanced T-stage, lymph node, and distant metastasis, 
and ciRS-7 overexpression promotes the EGFR/RAF1/
MAPK pathway by inhibiting miR-7 activity [121, 155]. 
Yang et  al. indicated that high expression of circPTK2 
positively correlated with poorer survival, showing 
CircPTK2 can bind to vimentin and promote EMT 
growth and metastasis in CRC cells, therefore ciRS-7 
may become a therapeutic target for CRC metastasis 
[51]. The relation between circPTK2 in CRC is shown in 
Fig. 3.

Another highly expressed circRNA in CRC tissue is 
Circ_001680 which was observed to enhance the pro-
liferation and migration capacity of CRC cells. Fluo-
rescence reporter assays confirmed that circ_001680 
alters the expression of BMI1 by targeting miR-340. 
More importantly, Circ_001680 was found to pro-
mote the propogation of cancer stem cells in CRC and 
induce resistance against Irinote by modifying the miR-
340 target gene BMI1 n [53]. Safe and effective delivery 
of ncRNAs is a significant therapeutic paradigm for all 
cancers. Since unmodified oligonucleotides are not sta-
ble in circulation, modifications of oligonucleotides are 
essential to increasing efficacy and stability. Most cur-
rent oligonucleotide therapies need an additional deliv-
ery system to achieve these desired biological effects. 
Several options need to be considered in selecting a 
delivery system, including stability, evasion of the innate 
immune system, avoidance of non-specific interactions 
with serum proteins, and non-target cells. One of the 
common strategies to increase the circulation time for 
therapeutic oligonucleotides is shielding the exterior of 
delivery vehicles with polyethylene glycol (PEG). This 
strategy may prevent the non-specific function of par-
ticles with immune cells and other non-target tissues. 
Although a variety of delivery systems has been devel-
oped in the laboratory, challenges remain in bringing 
the full potential of RNAi to clinical approaches [156]. 

Table 2 The characteristics of circRNAs in CRC as a chemotherapy resistance

CircRNA GENE related miRNA Expression Targeted molecules/
pathways

Function References (DOI) Year

Hsa_circ_0079662 Up TNF‑α
HOXA9

Induces the resistance mecha‑
nism of the chemotherapy drug 
oxaliplatin through the TNF‐α 
pathway

[66] 2020

Hsa_circ_0005963 miR‑122 Up PKM2 chemoresistance. In vitro and 
in vivo

[69] 2020

Circ_0007031 miR‑760 Up DCP1A Regulate the Growth and 
Chemoradiotherapy Resistance

[84] 2020

CircDDX17 miR‑31‑5p Down KANK1 Tumor suppressor
Strengthened chemosensitivity 
of CRC to 5‑Fu

[131] 2020

Circ‑PRKDC miR‑375 Up FOXM1 Axis and WBT/β‑Catenin Enhanced 5‑FU resistance in 
CRC 

[85] 2020

Circ‑0001313 mir‑3383p
mir33b5p
mir935p

Up Ccdc66 Promote resistance to radio‑
therapy and 5fu

[124] 2019

Circ 32,883 Mir501‑5p Up EmL5 Promote resistance to folfox 2019

Circ0007006 Mir300
653‑5p
628‑5p

Up Promote resistance to 5fu [122] 2017

Circ0000504 Mir485‑5p Up Tubgcp3
Stat3

Promote resistance to 5fu [122] 2017
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circRNAs however, offer significant increases in stability 
over current strategies.

Conclusions and perspectives
Following advancements in high-throughput sequencing, 
the field of circRNAs has attracted more attention and is 
currently an area of intense interest in the field of can-
cer research. circRNAs are an ideal biomarker in cancer, 

and are stably expressed in exosomes, blood, and saliva, 
where specific circRNAs have been indicated as promis-
ing prognostic or diagnostic biomarkers already.

Abnormal expression of circRNAs has been observed 
in a wide range of human malignancies and their dys-
regulation can alter gene expression networks, leading 
to dramatic changes in cell fates, including cancer initi-
ation and progression. circRNAs can be both oncogenic 

Table 3 circRNAs with Biomarker potential in CRC 

CircRNA GENE related miRNA Expression Targeted molecules/
pathways

Function References (DOI)

Hsa_circ_0002320 Down Noninvasive diagnostic blood 
biomarker for CRC prognosis

[140] 2020

circMBOAT2 miR‑519d‑3p Up
tissues
serum

TROAP) A novel tumor marker and 
regulates proliferation/migra‑
tion

[141] 2020

hsa_circ_0060927 Up Potential diagnostic markers [142] 2020

circ‑CCDC66 miR‑33b/miR‑93/ Up DNMT3B/EZH2/
MYC/YAP1

Promoting CRC growth and 
metastasis

[91] 2020

circ_0005075 Up Wnt/β‑catenin pathway Potential target for the prog‑
nosis biomarker

[143] 2020

Hsa_circ_0004831 Up WNT and p53 signaling 
pathway

Prognostic biomarker [144] 2020

hsa_circ_104916 Down Prognosis biomarker
Inhibiting CRC cell prolifera‑
tion, migration, invasion, and 
inducing apoptosis

[145] 2019

hsa_circ_0004585 Up Potential diagnostic bio‑
marker for CRC 

[146] 2019

hsa‑circ‑0004771 Up Nvel potential diagnostic 
biomarker

[147] 2019

circ‑PPP1R12A
Has‑circ‑ 000,423

Up Hippo/YAP Prognosis Prognostic biomarker
Promoting pathogenesis and 
metastasis

[148] 2019

circ‑MTO1 Down WNT/β‑catenin Prognostic biomarker, Inhibit‑
ing cell proliferation and 
invasion

[149] 2018

hsa_circ_0001649 SHARE Down Novel diagnostic biomarker
Expression level is closely 
associated with pathological 
differentiation

[150] 2018

Has _circ_ 14,717 Down P16 Prognostic biomarker
Inhibiting CRC cell prolifera‑
tion, colony formation, and 
growth

[151] 2018

hsa_circ_0026344 miR‑21/miR‑31 Down Prognostic biomarker
Inhibiting CRC cell growth 
and invasion and induces 
apoptosis

[45] 2018

Has‑circ‑0000711 Down Diagnostic Prognostic 
biomarker

[152] 2018

Cirs‑7 CDR1
EGFR/RAF1/MAPK pathway

Up Mir‑7 Prognostic biomarker [27] 2018

hsa_circ_0000567 SETD3 Down [153] 2018

hsa_circ_001988 FBXW7 Down Potential diagnostic bio‑
marker

[42] 2015

hsa_circ_0003906 Down Diagnostic biomarker [154]] 2015
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and anti-oncogenic, so could potentially be utilized 
in the treatment and prognosis of colorectal cancer. 
Although recent advances on circRNAs have high-
lighted some interesting insights, much work remains 
to be done to translate circRNAs into clinical applica-
tion for clinical patient benefit. Major hurdles include 
the development of an efficient siRNAs delivery system, 
and the assessment of safety and side effects, yet, clearly 
circRNAs have significant potential for the treatment 
and diagnosis of CRC.
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