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Dysregulation of the miR‑30a/BiP axis 
by cigarette smoking accelerates oral cancer 
progression
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Abstract 

Background:  Cigarette smoking is the most significant cause of oral cancer progression. Cigarette smoke conden‑
sate (CSC) has been shown to induce endoplasmic reticulum (ER) stress. Binding immunoglobulin protein (BiP) being 
as an ER stress regulator, has been reported to be implicated in malignant behaviors. Therefore, the aim of this study 
was to investigate the role of the ER stress-responsive protein, BiP, in CSC-induced oral squamous cell carcinoma 
(OSCC) malignancy.

Methods:  The biological role of BiP in CSC-induced tumor progression was investigated in OSCC cells (YD38 and 
SCC25) and in a tumor xenograft mouse model. The expressions of related genes were investigated using quantitative 
RT-PCR and Western blot analysis. Cell migration and invasion were assessed using scratch wound healing and Tran‑
swell invasion assays. The effects of conditioned media from OSCC cells on the angiogenic activities of endothelial 
cells were analyzed using a tube formation assay. The interaction between miR-30a and BiP mRNA was detected using 
a luciferase reporter assay.

Results:  Our results demonstrated that CSC increased the expression of BiP in time- and dose-dependent manners 
in YD38 and SCC25 cells, and that silencing BiP abrogated CSC-induced cell invasion and tumor-associated angio‑
genesis. Notably, the putative miR-30a binding site was observed in the 3′untranslated region (UTR) of BiP mRNA, 
and miR-30a suppressed BiP expression by targeting 3′UTR of BiP transcript. In addition, CSC increased the expression 
of BiP in OSCC cells by downregulating miR-30a. We also showed that BiP promoted invasion and tumor-associated 
angiogenesis by increasing the production and secretion of vascular endothelial growth factor in CSC-exposed OSCC 
cells. Moreover, BiP inhibition suppressed OSCC growth and reduced tumor vessel density in tumor-bearing mice 
administered with CSC.

Conclusions:  These observations suggest that epigenetic regulation of BiP via miR-30a downregulation is involved in 
CSC-induced OSCC progression.
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Background
Oral cancer is the sixth most prevalent cancer world-
wide [1]. The main treatments for oral cancer are sur-
gery, radiotherapy, and chemotherapy [2]. The current 
standard chemotherapeutic agents are cisplatin, 5-fluo-
rouracil (5-FU), and doxorubicin [3]. According to its 
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pathological features, oral cancer has been divided into 
different subtypes, namely oral squamous cell carcinoma 
(OSCC), melanoma (from melanocytes), mucoepider-
moid carcinoma (from salivary glands), adenoid cystic 
carcinoma (from salivary glands), sarcomas (from palate), 
and lymphoma (from lymphocytes) [4]. The five-year 
survival rate of melanoma, mucoepidermoid carcinoma, 
adenoid cystic carcinoma, sarcomas, and lymphoma is 
15, 50, 70, 45 and 50%, respectively [4–8]. Among oral 
cancer, OSCC accounts for over 90% of all cases [1, 9]. 
In spite of therapeutic advances in oral cancer, the five-
year survival rate of OSCC patients has not remarkably 
improved, and is still around 50% [9]. A late diagnosis 
and distant metastasis remain clinical challenges for oral 
cancer patients [2]. Hence, it is important to understand 
the pathogenesis and disease progression of OSCC. 
Many risk factors have been linked to the development 
of oral cancer, including cigarette smoking, alcohol con-
sumption, betel nut chewing, and viral infections [10]. 
Among them, cigarette smoking is the most common 
risk factor for oral malignancy [11]. Cigarette smoke is a 
complex mixture of over 7000 different compounds [12]. 
More than 70 of these compounds have been identified 
as carcinogens, which are highly associated with can-
cer development, such as oral and lung cancer [12, 13]. 
Smokers have been demonstrated to have a 5- to 25-fold 
higher risk of developing oral cancer compared with 
non-smokers [13]. Moreover, cigarette smoking has been 
shown to contribute to the cancer-associated transfor-
mation of oral epithelial cells [14]. In addition, cigarette 
smoke condensate (CSC) treatment has been reported 
to increase the invasion and migration of OSCC cells 
[15]. These findings suggest the role of cigarette smok-
ing in the carcinogenesis and disease progression of oral 
cancer. Several oncogenic signaling pathways have been 
proposed to be involved in CSC-induced tumor malig-
nancy, including PI3K/Akt, NFκB, Wnt/β-catenin and 
MAPK pathways [14, 16, 17]. In addition to the activation 
of oncogenic signaling, epigenetic dysregulation has been 
demonstrated to be a potential cause of cancer pheno-
types, including head and neck, colorectal, lung, breast, 
and liver cancer [18, 19]. However, little is known about 
the role of epigenetic alterations in CSC-induced oral 
cancer progression.

Epigenetic modifications of chromatin through DNA 
methylation, histone modification, chromatin remod-
eling, nucleosome changes and non-coding RNA regu-
lation are crucial regulators of gene expression [20]. 
Dysregulation of epigenetic regulation is frequently 
associated with cancer development and progression 
due to increased expressions of oncogenes and silenc-
ing of tumor suppressor genes [21]. Therefore, epigenetic 
therapeutic approaches have evolved as a novel strategy 

in cancer treatment [22]. A growing body of evidence 
has demonstrated that microRNAs (miRNAs) are aber-
rantly expressed in various types of cancer, such as acute 
myeloid leukemia (AML), oral, breast, lung, and colo-
rectal cancer, and that they are critical in tumorigen-
esis and tumor metastasis [23–25]. miRNAs are a class 
of small non-coding RNA with a length ranging from 
18 to 24 nucleotides, and they usually function as nega-
tive regulators of gene expression [26]]. Mechanistically, 
miRNAs regulate the post-transcriptional expression of 
genes by binding to the 3′untranslated region (UTR) of 
target mRNAs, leading to mRNA degradation or trans-
lation repression [26]. miRNA-30a (miR-30a) belongs to 
the miR-30 family, and it has been reported to suppress 
tumor malignant behaviors [27]. In OSCC, miR-30a has 
been shown to dampen cell proliferation, invasion, migra-
tion and cisplatin resistance both in vitro and in vivo [28, 
29]. Clinically, the expression of miR-30a has been dem-
onstrated to be lower in oral cancer tissues compared to 
adjacent non-cancerous tissues [2]. Of note, exposure to 
cigarette smoke has been reported to result in the down-
regulation of miR-30a in lung cancer [30, 31]. However, 
the underlying mechanisms of miR-30a in CSC-induced 
tumor malignancy, especially in oral cancer, have yet to 
be clearly defined.

Binding immunoglobulin protein (BiP) belongs to 
the HSP70 family. It is the master regulator of unfolded 
protein response during endoplasmic reticulum (ER) 
stress, and is crucial for protein folding and maturation 
in ER [32]. BiP has been demonstrated to be normally 
expressed at low basal levels in adult organs but at higher 
expressions in patients with cancer, such as pancreatic, 
breast, prostate, lung, and liver cancer, and to be asso-
ciated with tumor malignancy [32, 33]. In addition, the 
upregulation of BiP has been closely correlated with poor 
outcomes in OSCC patients [34]. Recently, miRNAs have 
emerged as important regulators of the expressions of 
ER stress-responsive proteins, including BiP [35]. Previ-
ous studies have reported that miR-30a mimics can lead 
to a lower expression of BiP [36–38], which implies the 
regulatory role of miR-30a in BiP expression. Further-
more, cigarette smoke has been shown to upregulate BiP 
expression in both non-malignant and malignant cells 
[39–41]. However, the involvement of miR-30a-regulated 
BiP expression in CSC-induced oral cancer progression 
has not been investigated.

The aim of this study was to investigate the role of BiP 
in CSC-induced tumor malignancy and evaluate the 
involvement of miR-30a in CSC-mediated BiP expres-
sion in OSCC. Our results demonstrated that the miR-
30a-BiP-vascular endothelial growth factor (VEGF) 
regulatory axis controlled tumor malignancy in tobacco-
related oral cancer.
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Methods
Cell lines and cell culture
The human  OSCC cell lines, YD38 and SCC25, were 
cultured in RPMI medium (31800-022, GIBCO, Egg-
enstein, Germany) containing 10% fetal bovine serum 
(FBS) (10437-028, GIBCO, Eggenstein, Germany) and 
1% penicillin–streptomycin-amphotericin B (PSA) 
(03-033, Biological industries, Cromwell, CT, USA). 
YD38 cells were obtained from Dr. Yook (Namseoul 
University, Korea). SCC25 cells were kindly provided 
by Dr. Shine-Gwo Shiah (National Institute of Can-
cer Research, National Health Research Institutes, 
Miaoli, Taiwan). Human umbilical vein endothelial cells 
(HUVECs) were obtained from ScienCell (San Diego, 
CA, USA) and maintained in endothelial cell medium 
(ECM) (1001, ScienCell, San Diego, CA, USA) supple-
mented with 5% FBS, 1% endothelial cell growth supple-
ment (ECGS) and 1% penicillin–streptomycin solution. 
All cell lines were confirmed to be mycoplasma-free.

Drugs and antibodies
CSC (NC1560725, Murty Pharmaceuticals, Lexing-
ton, KY, USA) was prepared by smoking University of 
Kentucky’s 3R4F Standard Research Cigarettes dis-
solved in DMSO. VEGF recombinant protein (100–20) 
was purchased from Peprotech, Rocky Hill, NJ, USA. 
The primary antibodies used in the study included 
BiP (BD610978), E-cadherin (BD610181) and ZO-1 
(BD610966, BD Biosciences, San Jose,  CA,  USA), 
fibronectin (ab32419) and VEGF (ab214424, Abcam, 
Cambridge, MA, USA), vimentin (CST5741) and 
GAPDH (CST5174, Cell Signaling, Beverly, MA, USA). 
The horseradish peroxidase (HRP)-conjugated second-
ary antibodies were purchased from Jackson Immu-
noResearch Laboratories Inc. (West Grove, PA, USA).

RNA interference
Both siRNA and miRNA were designed and synthesized 
by Dharmacon  (Lafayette, CO, USA). The sequence 
of siRNA used to target BiP was 5’-CCA​CCA​AGA​
UGC​UGA​CAU​U-3’, and for the non-targeted control 
5’-UAG​CGA​CUA​AAC​ACA​UCA​A-3’. The sequence of 
miR-30a mimics was 5’-UGU​AAA​CAU​CCU​CGA​CUG​
GAAG-3’, and the  negative control was 5’-CUC​UUU​
CUA​GGA​GGU​UGU​GAUU-3’. The siRNA and miRNA 
were transfected into cells using GenMute  siRNA 
transfection reagent (SL100568, SignaGen Laborato-
ries,  Ijamsville, MD,  USA) according to the manufac-
turer’s instructions. In brief, cells were seeded in 6-well 
culture plates and incubated overnight. The cells were 

transfected with 10 nM siRNA or miRNA mimics, and 
subsequently used for the following experiments.

RNA extraction and quantitative reverse transcription 
polymerase chain reaction (qRT‑PCR)
Total RNA was extracted using TRIzol reagent 
(15596018, Invitrogen, Carlsbad, CA, USA). Complemen-
tary DNA (cDNA) was synthesized from mRNA using a 
high-capacity cDNA synthesis kit (4368813, Applied Bio-
systems, Carlsbad, CA, USA), and from miRNA using a 
qSTAR miRNA qPCR detection system (HP100042, Ori-
Gene, Rockville,  MD, USA). qRT-PCR was carried out 
on a Roche LightCycler 480 system (Roche, Basel, Swit-
zerland) using SYBR Green I Master mix (BIO-98005, 
Bioline Inc., Boston, MA, USA). The primer sequences 
are listed in Table  1. The results were normalized to 
either GAPDH for mRNA expression or U6 for miRNA 
expression.

Western blot analysis
Proteins were extracted with radioimmunoprecipita-
tion assay (RIPA) lysis buffer containing protease and 
phosphatase inhibitors (78447, Biological industries, 
Cromwell, CT, USA) for 30  min, and the protein con-
centration was measured using a BCA assay kit (23227, 
Thermo Fisher, Pittsburgh, PA, USA) according to the 
manufacturer’s protocols. The proteins were electro-
phoresed with 8% sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE) and transferred 
onto polyvinylidene difluoride (PVDF) membranes 
(Millipore,  Bedford, MA,  USA). After blocking with 5% 
non-fat milk in 0.1% TBS-T for 1  h at room tempera-
ture, the membranes were incubated with specific pri-
mary antibodies overnight at 4℃. The primary antibodies 
were diluted  in 5% non-fat milk and the dilutions were 
as follows: anti-BiP (1:4000), anti-E-cadherin (1:4000), 
anti-ZO-1 (1:1000), anti-fibronectin (1:1000), anti-VEGF 
(1:1000), anti-vimentin (1:1000), and anti-GAPDH 
(1:5000). The membranes were subsequently washed with 

Table 1  The primer sequences used for quantitative RT-PCR

Gene 5’-3’ Sequences

BiP Forward TGA​CAT​TGA​AGA​CTT​CAA​AGCT​

Reverse CTG​CTG​TAT​CCT​CTT​CAC​CAGT​

miR-30a Forward AAC​ATC​CTC​GAC​TGG​AAG​

Reverse GAA​CAT​GTC​TGC​GTA​TCT​C

VEGF Forward GCC​TTG​CCT​TGC​TGC​TCT​AC

Reverse TGA​TTC​TGC​CCT​CCT​CCT​TCTG​

GAPDH Forward CCA​CAT​CGC​TCA​GAC​ACC​AT

Reverse TGA​CCA​GGC​GCC​CAATA​
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0.1% TBS-T and incubated with HRP-conjugated sec-
ondary antibodies for an additional 1  h. All bands were 
detected and analyzed using an ECL reagent kit (T-Pro 
Biotechnologies, Taipei City, Taiwan) and a UVP bioim-
aging system (Analytik Jena, Jena, Germany).

Invasion assay
The invasion assay was carried out using Matrigel‐
coated Transwell inserts with an 8-μm pore size (351152, 
Corning  Inc., Corning,  NY,  USA). Cells were seeded 
at 2.5 × 104 into the upper chambers of the Transwell 
inserts. After incubation for 24  h, the inserts were 
fixed with methanol and stained with propidium iodide 
(PI) (P4170, Sigma-Aldrich, St. Louis, MO, USA). The 
invaded cells across the membranes were visualized and 
photographed using a fluorescence microscope equipped 
with a camera at a magnification of 200X. The average 
number of invaded cells were counted from five micro-
scopic fields per chamber of three independent experi-
ments using ImageJ software.

Scratch wound healing assay
Cell migration was assessed using a scratch wound heal-
ing assay. Cells were seeded in 6-well culture plates and 
cultured as a monolayer to confluence in complete cul-
ture media. Subsequently, the cell monolayers were 
scratched using a sterile micropipette tip and washed 
with PBS to remove suspended cells. The distance of the 
scratch closure was observed and photographed under a 
microscope equipped with a camera at 0 and 12  h. The 
wound area was determined using ImageJ software.

Luciferase reporter gene assay
The 3′UTR of BiP containing the putative miR-30a bind-
ing site was cloned into the pMirTarget 3′UTR assay vec-
tor (SC216266, OriGene, Rockville, MD, USA). YD38 
and SCC25 cells were transfected with pBiP-3′UTR 
plasmid using Lipofectamine 2000 transfection reagent 
(11668019, Invitrogen, Carlsbad, CA, USA). The activ-
ity of luciferase was measured using a luciferase assay kit 
(16184, Thermo Fisher, Pittsburgh, PA, USA) according 
to the manufacturer’s instructions. The red fluorescence 
intensity was used to normalize firefly luciferase activity.

Enzyme‑linked immunosorbent assay
The amount of VEGF in conditioned media (CM) har-
vested from YD38 and SCC25 cells was assayed using a 
human VEGF ELISA kit (BMS-277, Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s instructions.

Tube formation assay
A tube formation assay was performed using an in vitro 
angiogenesis kit (ECM625, Merck Millipore, Darmstadt, 

Germany) according to the manufacture’s protocols. 
Briefly, HUVECs were seeded at 2 × 104 in 96-well culture 
plates pre-coated with supplied ECMatrix, and incubated 
with CM harvested from OSCC cells. After incubation 
for 6 h, tube formation of HUVECs was observed using 
an inverted light microscope, and quantified by measur-
ing the length of tube-like structures using an angiogen-
esis analyzer for ImageJ software.

Histological and immunohistochemical staining
Tumor tissue sections were deparaffinized in xylene and 
rehydrated in a series of graded ethanol. Histological 
analysis of tumor tissues was carried out using hematox-
ylin and eosin (H&E) staining (HAE-1, ScyTek Laborato-
ries, Logan, Utah, USA). Immunohistochemical staining 
was performed using a Novolink polymer detection sys-
tem (RE7150-K, Leica Biosystems Newcastle Ltd., New-
castle, UK) according to the manufacturer’s instructions. 
Heat-induced antigen retrieval was performed in Tris–
EDTA buffer (pH 9.0) containing 10 mM Tris-base, 1 mM 
EDTA solution and 0.05% Tween-20 for 30 min. Endog-
enous peroxidase was quenched with peroxidase block, 
and non-specific protein binding was blocked using 
protein block. Subsequently, the slides were incubated 
with the appropriate primary antibodies overnight at 
4 ℃, followed by incubation with the provided Novolink 
polymer for 1 h. The primary antibodies were diluted in 
protein block and the dilutions were as follows: anti-
BiP (1:100), anti-VEGF (1:100), and anti-CD31 (1:100). 
The signals were developed with 3,3′-Diaminobenzidine 
(DAB) solution, and the nuclei were counterstained with 
hematoxylin. Quantification of histochemical staining 
was performed using ImageJ software.

Animal study
Four-week-old male athymic nude mice were purchased 
from the National Laboratory Animal Center (Taipei, 
Taiwan), and housed in the animal center at the National 
Defense Medical Center (Taipei, Taiwan) with free access 
to food and water. All experiments  were conducted in 
compliance with institutional guidelines approved by 
the Institutional Animal Care and Use Committee of 
the National Defense Medical Center. SCC25 (1.5 × 106) 
cells transfected with scramble shRNA control (SCC25-
shV) or BiP shRNA (SCC25-shBiP) (Academia Sinica 
RNAi core, Taipei, Taiwan) in sterile PBS mixed 1:1 with 
Matrigel (354234, Corning Inc., Corning, NY, USA) were 
subcutaneously injected into the right flank of the nude 
mice. When the tumors reached a volume of 100 mm3, 
the mice were randomly divided into vehicle control 
and treatment groups (n = 5 per group). CSC (20  mg/
kg body weight) or PBS (vehicle control) was admin-
istered intraperitoneally every other day for 3  weeks 
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as previously described [42, 43]. Tumor growth was 
monitored once a week using Vernier calipers, and the 
tumor volume was calculated according to the formula: 
V = (width2 × length)/2. The body weight of the nude 
mice was also recorded once a week. At the end of treat-
ment, the mice were sacrificed using carbon dioxide 
(CO2) inhalation with a 30–70% flow rate in a chamber at 
least for 7 min. The tumors were dissected and weighed.

Statistical analysis
The Student’s t test and one-way ANOVA followed by 
Bonferroni’s post hoc test were used to determine the 
statistical significance between two groups and among 
multiple groups, respectively. All statistical analyses and 
graphic representations were conducted using Graph-
Pad Prism software (GraphPad Software Inc., San Diego, 
CA, USA). The results are expressed as the mean ± SEM. 
A P value < 0.05 was considered to indicate a significant 
difference.

Results
CSC induced the expression of BiP in OSCC cells in time‑ 
and dose‑dependent manners
Cigarette smoking is a significant risk factor for oral can-
cer development and progression, and it has been dem-
onstrated to trigger ER stress-associated responses [11, 
44]. Therefore, the effect of CSC on the expression of BiP 
was investigated in OSCC cells (YD38 and SCC25) after 
exposure to various doses (40 and 120  μg/ml) of CSC 
for 48  h or 120  μg/ml CSC for 24 and 48  h. Dose- and 

time-dependent increases in the mRNA and protein 
expressions of BiP were observed in OSCC cells treated 
with CSC (Fig. 1). These results suggested the stimulatory 
effect of CSC on the expression of BiP in OSCC cells. 
Given that the most significant change in BiP expression 
was observed in cells exposed to 120  μg/ml of CSC for 
48  h, this dose and time point of CSC treatment were 
subsequently used in the following experiments.

CSC stimulated EMT change, migration, invasion 
and tumor‑associated angiogenesis in OSCC cells
Previous studies have reported that BiP is involved in the 
regulation of tumor function, including epithelial–mes-
enchymal transition (EMT) change, migration, invasion, 
and tumor-associated angiogenesis, and that VEGF is a 
downstream regulator of BiP participating in these path-
ological processes [45–47]. Therefore, the effect of CSC 
on the expression of VEGF and malignant behaviors were 
evaluated in YD38 and SCC25 cells after treatment with 
120  μg/ml CSC for 48  h. We found that CSC increased 
the expression of VEGF in OSCC cells, and that the lev-
els of secreted VEGF were significantly higher in the CM 
collected from OSCC cells incubated with CSC compared 
to those from the control cells (Fig.  2A, B). OSCC cells 
exposed to CSC displayed an elongated, spindle-shaped 
morphology and loose cell–cell adhesion compared to the 
control cells (Fig. 2C). To further examine whether these 
morphological changes were consistent with the molecu-
lar characteristics of EMT, the expressions of epithelial 
(E-cadherin and ZO-1) and mesenchymal (fibronectin 

Fig. 1  CSC significantly increased BiP expression in OSCC cells in dose- and time-dependent manners. A and B Dose-dependent effects (40 
and 120 μg/ml) of CSC on the expression of BiP in YD38 and SCC25 cells were investigated by qRT-PCR and Western blot analysis. C and D 
Time-dependent effects of CSC (24 and 48 h) on the expression of BiP were examined by qRT-PCR and Western blot analysis. GAPDH was used as 
the internal control. All data are presented as the mean ± SEM. SEM, error bars. *P < 0.05 by one-way ANOVA followed by Bonferroni’s post hoc test
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and vimentin) markers were analyzed in OSCC cells after 
exposure to CSC. As shown in Fig.  2D, CSC promoted 
EMT in OSCC cells as evidenced by a loss of epithelial 
markers and induction of mesenchymal markers. Migra-
tion and invasion were also increased in OSCC cells after 

treatment with CSC (Fig. 2E, F). Furthermore, CM har-
vested from CSC-exposed cells significantly stimulated 
tube formation of endothelial cells (HUVECs) (Fig. 2G). 
These results indicated that malignant behaviors, includ-
ing EMT, migration, invasion and angiogenesis, were 

Fig. 2  CSC promoted EMT, migration and invasion in OCSS cells, and increased tumor-associated tube formation of HUVECs. OSCC cells were 
treated with/without 120 μg/ml CSC for 48 h. A The expressions of BiP and vascular endothelial growth factor (VEGF) were analyzed by Western 
blot analysis. B The amount of VEGF in conditioned media (CM) derived from OSCC was examined by ELISA. C Representative images of epithelial–
mesenchymal transition (EMT) morphological changes in OSCC cells after the indicated treatments (Scale bar, 100 μm). D The expressions of 
epithelial markers (E‐cadherin and ZO-1) and mesenchymal markers (fibronectin and vimentin) were detected by Western blot analysis. E The 
migratory ability of OSCC cells was evaluated using a wound-healing assay. Representative images were taken at 0 and 12 h after wound scratching 
(Scale bar, 100 μm). Solid black lines indicate wound borders. Quantification of wound closure was determined using ImageJ software. The ability 
of migration was calculated as the average reduction in area at 12 h compared to 0 h. F The invasion ability was determined using a Transwell 
invasion assay. OSCC cells were seeded into the upper chamber of Matrigel-coated inserts. After 24 h, the invaded cells were fixed with methanol 
and stained with propidium iodide (PI). Representative images are shown (Scale bar, 50 μm). Quantification of the invaded cells was performed 
using ImageJ software. G Tube formation activities of HUVECs were evaluated using a tube formation assay. HUVECs were seeded in 96-well culture 
plates pre-coated with ECMatrix and incubated with CM harvested from OSCC cells with/without CSC treatment. After 6 h, tube formation was 
observed under an inverted microscope and photographed. Representative images are shown (Scale bar, 100 μm). Quantitative analysis of total 
tube length was conducted using an angiogenesis analyzer for ImageJ software. GAPDH was used as the internal control. All data are presented as 
the mean ± SEM. SEM, error bar. *P < 0.05 by Student’s t test
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significantly stimulated by treating OSCC cells with the 
indicated dose and time point of CSC.

BiP inhibition suppressed CSC‑induced OSCC invasion 
and tumor‑associated angiogenesis by downregulating 
VEGF
To further investigate the role of BiP in CSC-promoted 
tumor function, YD38 and SCC25 cells with/without BiP 
silencing were subjected to CSC treatment. As shown in 
Fig.  3A and B, CSC significantly increased the expres-
sions of BiP and VEGF, and these effects were suppressed 
in BiP-silenced cells. In addition, depletion of BiP expres-
sion resulted in a decrease in the amount of VEGF in 
CM harvested from CSC-treated OSCC cells (Fig.  3C). 
CSC-induced cell invasion and tumor-associated tube 
formation of HUVECs were also inhibited by knockdown 
of BiP expression (Fig. 3D and E). Moreover, addition of 
VEGF into the CM derived from BiP-silenced cells after 
CSC treatment markedly rescued the CSC-promoted 
tumor-associated angiogenesis (Fig.  3F). These results 
indicated that BiP modulated CSC-stimulated malignant 
behaviors by increasing the production and secretion of 
VEGF.

miR‑30a downregulation epigenetically regulated BiP 
expression and malignant behaviors in CSC‑exposed OSCC 
cells
miR-30a has been demonstrated to suppress the expres-
sion of BiP in renal cell carcinoma [36]. To investigate 
the involvement of miR-30a in CSC-induced BiP expres-
sion, the effect of CSC on the expression of miR-30a was 
evaluated. As demonstrated in Fig. 4A, the expression of 
miR-30a was downregulated in YD38 and SCC25 cells 
after treatment with CSC. Notably, we observed one 
putative binding site of miR-30a located in the 3′UTR 
of BiP mRNA (Fig. 4B). To analyze the effect of CSC on 
the interaction between miR-30a and BiP mRNA, lucif-
erase activity was detected in miR-30a-overexpressing 
cells transfected with pBiP-3′UTR reporter plasmids after 
CSC exposure. Increased luciferase activity was observed 
in OSCC cells after CSC exposure, and this effect was 
reversed by miR-30a overexpression (Fig. 4C). Moreover, 
the stimulatory effect of CSC on the expressions of BiP 
and VEGF was suppressed in miR-30a-overexpressing 
cells (Fig.  5A and B). Overexpression of miR-30a also 
decreased the secretion of VEGF from CSC-exposed cells 
(Fig.  5C). Transwell invasion and tube formation assays 
showed that CSC-induced invasion and angiogenesis 
were inhibited by overexpressing miR-30a (Fig.  5D and 
E). These results indicated the regulatory role of miR-30a 
in CSC-induced BiP expression and tumor malignancy in 
OSCC.

BiP inhibition reversed CSC‑induced OSCC growth 
and angiogenesis in tumor‑bearing mice
In order to further clarify the role of BiP in CSC-
induced OSCC progression, mice were subcutaneously 
implanted with SCC25-shV or SCC25-shBiP cells fol-
lowed by treatment with either PBS or CSC (Fig. 6A). 
There were no significant differences in body weight 
changes among the mice in all groups (Fig. 6B). Tumor 
growth was markedly increased in the mice injected 
with CSC compared to those injected with PBS, and 
the stimulatory effect of CSC on cell growth was inhib-
ited by BiP silencing (Fig. 6C–E). As shown in results 
of H&E staining, tumor tissues from mice treated 
with CSC were characterized with increased mito-
genic and angiogenic properties, and that this effect 
was suppressed by BiP inhibition (Fig.  6F). Further-
more, immunohistochemical staining showed that the 
expressions of VEGF and CD31 were increased in the 
tumor tissues from mice treated with CSC. However, 
these effects were reversed by depletion of BiP expres-
sion (Fig. 6F). These in vivo results further confirmed 
that BiP was involved in CSC-induced tumor growth 
and angiogenesis in OSCC.

Discussion
Cigarette smoking is a significant carcinogenic factor 
for OSCC progression. However, the effect of cigarette 
smoking on the molecular pathogenesis in OSCC is 
unclear. Our results demonstrated that CSC stimulated 
invasion and tumor-associated angiogenesis by inducing 
the expression of BiP, and a subsequent increase in VEGF 
expression. In addition, miR-30a participated in the epi-
genetic regulation of BiP expression after CSC exposure.

Previous studies have demonstrated that miR-30a can 
function as an oncogene or a tumor suppressor gene in 
cancer [27]. Liu et al. reported that miR-30a was down-
regulated in melanoma cells and tissues, and that the 
overexpression of this molecule significantly suppressed 
cell proliferation, invasion and migration in melanoma 
[48]. In colorectal cancer, miR-30a has been shown to 
inhibit EMT and cell motility, and to be inversely corre-
lated with tumor stage and status of lymph node metas-
tasis [49]. These findings are consistent with our results 
that miR-30a acts as a tumor suppressor in cancer. On 
the other hand, miR-30a activated by the Wnt/β-catenin 
pathway has been demonstrated to promote invasion of 
glioma cells [50]. Moreover, miR-30a has been reported 
to be upregulated in metastatic nasopharyngeal carci-
noma (NPC) compared to primary NPC tumors [51]. 
The overexpression of miR-30a has also been shown 
to significantly increase the invasion and metastasis of 
NPC cells, and to be associated with a poor prognosis 
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Fig. 3  BiP modulated CSC-induced invasion of OSCC cells and tumor-associated angiogenesis by upregulating VEGF. YD38 and SCC25 cells 
transfected with either non-targeting siRNA or BiP siRNA were treated with 120 μg/ml CSC for 48 h. A and B The mRNA and protein expressions of 
BiP and VEGF were detected by qRT-PCR and Western blot analysis, respectively. C ELISA was used to detect the amount of VEGF in conditioned 
media (CM) harvested from OSCC cells. D The ability of cell invasion was examined using a Transwell invasion assay. OSCC cells after the indicated 
treatments were seeded into the inserts pre-coated with Matrigel and incubated for 24 h. Subsequently, the cells were fixed with methanol and 
stained with propidium iodide (PI). Representative images are shown (Scale bar, 50 μm). The PI-stained cells were quantified using ImageJ software. 
E The effect of OSCC cell-derived CM on the angiogenicity of HUVECs was examined using a tube formation assay. HUVECs in CM from OSCC cells 
were seeded in 96-well culture plates containing ECMatrix. Tube formation of HUVECs was observed and imaged after 6 h (Scale bar, 100 μm). Total 
tube length was quantified using an angiogenesis analyzer for ImageJ software. F The downstream role of VEGF in BiP-mediated tumor-associated 
tube formation of HUVECs was evaluated by addition of 10 ng/ml of VEGF recombinant protein into CM harvested from BiP-silenced cells after 
treated with CSC. HUVECs incubated with OSCC-derived CM with/without VEGF addition were seeded in 96-well culture plates containing ECMatrix. 
After 6 h, tube formation of HUVECs was observed and photographed under a microscopy equipped with a camera (Scale bar, 100 μm). Total tube 
length was determined using an angiogenesis analyzer for ImageJ software. SC, non-targeting siRNA-transfected cells. BiP-KD, BiP siRNA-transfected 
cells. GAPDH was used as the internal control. V, VEGF recombinant protein. All data are presented as the mean ± SEM. SEM, error bar. *P < 0.05 by 
one-way ANOVA followed by Bonferroni’s post hoc test



Page 9 of 14Chien et al. Cancer Cell Int          (2021) 21:578 	

in NPC patients [51]. These findings indicate that the 
biological role of miR-30a may be different depending 
on the type of cancer. Hence, a better understanding of 
the downstream target genes regulated by miR-30a is 
needed to clarify its functional role in cancer. miR-30a 
has been demonstrated to have a suppressive effect on 
OSCC progression by targeting downstream oncogenes 
[2, 28]. For example, miR-30a has been shown to sensi-
tize OSCC cells to cisplatin by modulating the expression 
of the anti-apoptotic molecule, Bcl-2 [28]. Ruan et  al. 
reported that miR-30a was associated with decreased 
cell migration and invasion by suppressing the expres-
sion of fibroblast activation protein (FAP) in OSCC [2]. 
Moreover, miR-30a has been shown to inhibit the growth 
of OSCC cells by repressing the expression of DNMT3B 
[52]. Notably, our results demonstrated that BiP was the 
downstream target of miR-30a, and that a lower expres-
sion of BiP was observed in miR-30a-overexpressing 
cells after CSC exposure. Therefore, our findings provide 
evidence that miR-30a plays a tumor suppressive role in 
OSCC, and that downregulation of miR-30a and a con-
sequent increase in the expression of BiP are involved in 
CSC-induced tumor progression.

Our results further demonstrated that BiP was involved 
in CSC-induced invasion and angiogenesis in OSCC. 
Moreover, we also found that BiP promoted VEGF pro-
duction and secretion in OSCC cells after CSC expo-
sure. Traditionally, BiP is regarded to be a molecular 

chaperone in ER controlling protein folding and regulat-
ing unfolded protein response [53]. Increasing evidence 
has demonstrated that BiP is a multifunctional protein 
located in different cellular compartments, and that it is 
implicated in tumor malignancy [54]. For example, Shu 
et  al. reported that mitochondrial BiP associated with 
Raf-1 inhibited cytochrome c release from mitochon-
dria, and that it protected cells from ER stress-induced 
apoptosis in non-small cell lung cancer [55]. In addi-
tion, Casas showed that relocation of BiP to the plasma 
membrane could act as a signal receptor and activate 
downstream oncogenic pathways, thereby increasing cell 
proliferation and conferring chemoresistance in pros-
tate and gastric cancer [56, 57]. Moreover, BiP has been 
detected in CM from hepatocellular carcinoma (HCC) 
cells and serum samples of HCC patients [58]. Secreted 
BiP then physically interacts with EGFR, activates EGFR-
SRC-STAT3 signaling, and contributes to resistance to 
targeted therapy [58]. Several factors have been reported 
to trigger cellular trafficking of BiP [59–62]. For example, 
inflammatory cytokines and the ER stress inducer, thap-
sigargin, have been shown to induce membrane translo-
cation of BiP in pancreatic beta cells and HeLa cervical 
cancer cells, respectively [59, 60]. Moreover, the ectopic 
expression of BiP has been shown to lead to cell surface 
localization of this molecule independently of ER stress 
[61]. Of note, increased secretion of BiP into bron-
choalveolar lavage fluid has been observed in cigarette 

Fig. 4  CSC induced BiP expression in OSCC cells by downregulating miR-30a. A YD38 and SCC25 cells were treated with either vehicle control or 
120 μg/ml CSC for 48 h. The expression of miR-30a was evaluated using qRT-PCR. B Sequence alignment of miR-30a with the target sequence on 
the 3-UTR of BiP transcript. C The direct target relationship between miR-30a and BiP was confirmed using a luciferase assay. OSCC cells transfected 
with negative control (miR-NC) or miR-30a mimics were further transfected with pBiP-3’UTR plasmids followed by CSC treatment. Luciferase activity 
was detected using a luciferase assay. All data are presented as the mean ± SEM. SEM, error bar. *P < 0.05 by Student’s t test or one-way ANOVA 
followed by Bonferroni’s post hoc test
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Fig. 5  miR-30a was involved in CSC-induced BiP expression and OSCC malignancy. YD38 and SCC25 cells transfected with miR negative control 
(miR-NC) or miR-30a mimics were treated with 120 μg/ml CSC for 48 h. A and B The expressions of BiP and VEGF were examined by qRT-PCR and 
Western blot analysis. C The secretion of VEGF from OSCC cells was detected by ELISA. D The invasion ability was evaluated using a Transwell 
invasion assay. OSCC cells after the indicated treatments were allowed to invade through Matrigel-coated inserts for 24 h. The invaded cells were 
then fixed with methanol and stained with propidium iodide (PI). Representative images are shown (Scale bar, 50 μm). The amount of PI-stained 
cells was determined using ImageJ software. E The effect of OSCC cell-derived conditioned media (CM) on the angiogenic activities of HUVECs 
was determined using a tube formation assay. Representative images show the tube formation of HUVECs in CM from OSCC cells at 6 h (Scale bar, 
100 μm). Total tube length was analyzed using an angiogenesis analyzer for ImageJ software. GAPDH was used as the internal control. All data are 
presented as the mean ± SEM. SEM, error bar. *P < 0.05 by one-way ANOVA followed by Bonferroni’s post hoc test
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smokers compared to non-smokers [62]. Therefore, fur-
ther studies are warranted to evaluate the effect of CSC 
on the subcellular distribution of BiP and its biological 
role in OSCC.

Conclusions
In conclusion, our results demonstrated that BiP was 
involved in CSC-induced malignant behaviors both 
in  vitro and in  vivo. Mechanistically, miR-30a regulated 

the expression of BiP in OSCC cells after CSC exposure. 
In addition, BiP increased the expression and secretion 
of VEGF in CSC-treated OSCC cells (Fig. 7). These find-
ings not only provide a non-canonical mechanism for 
the regulation of the ER stress responsive protein, BiP, in 
OSCC cells after exposure to CSC, but also offer a poten-
tial therapeutic strategy for tobacco-related oral cancer.

Fig. 6  BiP inhibition suppressed CSC-stimulated OSCC progression in nude mice. SCC25 cells transfected with scramble shRNA control (SCC25-shV) 
or BiP shRNA (SCC25-shBiP) (1.5 × 106 cells/mice) were injected subcutaneously into nude mice. Treatment was initiated when the tumor volume 
reached approximately 100 mm3, and the tumor-bearing mice were given intraperitoneal injections of either PBS or 20 mg/kg CSC every other 
day for 3 weeks. Body weight and tumor volumes were measured once every week. Following treatment, the mice were sacrificed and the tumor 
tissues were subjected to immunohistochemical staining for BiP, VEGF and CD31. CD31 was served as a marker of blood vessels. A Timeline of the 
animal experiments. B Average body weight changes of the mice. C Images of excised tumors (n = 5 per group). D and E Average tumor growth 
curve and tumor weight of OSCC tumors in the mice with different treatments. F Representative images showing the hematoxylin and eosin (H&E) 
staining and the immunohistochemical staining of BiP, VEGF and CD31 in tumor tissues. The relative intensity of immunohistochemical staining was 
determined using ImageJ software. All data are presented as the mean ± SEM. SEM, error bar. *P < 0.05 by one-way ANOVA followed by Bonferroni’s 
post hoc test. Scale bar, 50 μm
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