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Abstract 

Background: Compared with the proneural (PN) subtype of glioblastoma (GBM), the mesenchymal (MES) subtype 
is more invasive and immune evasive and is closely related to poor prognosis. Here, we used transcriptome data and 
experimental evidence to indicate that CUB domain-containing protein 1 (CDCP1) is a novel regulator that facilitates 
the transformation of PN-GBM to MES-GBM.

Methods: The mRNA expression data of CDCP1 in glioma were collected from the TCGA, CGGA and GEO databases, 
and in vitro experiments verified CDCP1 expression in glioma tissue samples. Independent prognostic analysis 
revealed the correlation of the CDCP1 expression level and patient survival. Bioinformatics analysis and experiments 
verified the biological function of CDCP1. Multivariate proportional hazards models and a PPI network were used to 
select key genes. A prognostic risk model for predicting the survival of glioma patients was constructed based on the 
selected genes.

Results: The results showed that the expression of CDCP1 increased with increasing tumor grade and that the 
overexpression of CDCP1 correlated with a poor prognosis. CDCP1 was highly expressed in MES-GBM but weakly 
expressed in PN-GBM. The risk model (considering CDCP1 combined with CD44 and ITGAM expression) could repre-
sent a tool for predicting survival and prognosis in glioma patients.

Conclusions: Our study indicates that CDCP1 plays an important role in facilitating the transformation of PN-GBM to 
MES-GBM.
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Background
Glioma accounts for approximately 30% of all central 
nervous system (CNS) tumors and 80% of malignant 
primary brain tumors [1]. Despite the progress made in 
the past decade, glioblastoma (GBM, WHO grade IV) is 

still one of the most difficult tumor types to treat. The 
median survival time of glioblastoma patients is only 
12–15  months [2]. According to the TCGA database, 
GBM has four intrinsic molecular subtypes: mesenchy-
mal (MES), classical (CL), neural (NL), and proneural 
(PN) [3, 4]. The distinct molecular subtypes have prog-
nostic value for predicting survival and can also be used 
to predict sensitivity to TMZ chemotherapy. Compared 
with those with the PN subtype, GBM patients with the 
MES subtype are more resistant to radiotherapy and 
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chemotherapy and have increased invasiveness and a rel-
atively poorer prognosis [5]. Previous studies have shown 
increased expression of immune response-related genes 
in MES-GBM [6–8]. Maria et  al. found that MES-GBM 
was the most immunogenic among the four subtypes, 
while the proneural subtype was the least immunogenic 
[9].

With the development of sequencing technology, bio-
informatics can be used to identify the key driving factors 
of each specific cancer patient, realize a more personal-
ized cancer treatment plan, and pave the way for new 
drugs targeting specific proteins [10]. Tumor analyses 
based on The Cancer Genome Atlas (TCGA), Chinese 
Glioma Genome Atlas (CGGA), and Gene Expression 
Omnibus (GEO) databases have not only revealed a 
panorama of alteration signatures in the tumor-related 
genome but also established the basis for comparative 
studies of relevant types of tumors [11–13].

At present, immunotherapy is the most attractive ther-
apy for glioma, and intensive research is underway [14]. 
Combined immunotherapy, such as the combination of 
PD-L1, indoximod (IDO), and CTLA-4 inhibitors, can 
encourage the immune system to recognize and attack 
tumor cells, thus improving the prognosis of patients [15, 
16]. Lucio Palma showed that lymphocytic infiltration 
had a significant effect on the prognosis of GBM patients 
[17].

CUB domain-containing protein 1 (CDCP1) is a trans-
membrane glycoprotein that contains three extracellular 
CUB domains. In 2001, Scherl-Mostageer and cowork-
ers first discovered its high expression in human colo-
rectal and lung tumors [18]. Since then, an increasing 
number of studies have found that targeting CDCP1 is 
effective in preclinical models of lung [19, 20], prostate 
[21, 22], breast [23, 24], and ovarian [25, 26] cancers. 
CDCP1 plays a key role in the invasion, migration and 
drug resistance of various tumors [27–29]. Robin et  al. 
revealed that patients with high expression of CDCP1 
had poor prognosis [30]. Fei et al. indicated that the miR-
1272/ADAM9/CDCP1 pathway may serve as a targetable 
pathway for the prevention of glioma [31]. Our previous 
studies suggested that the expression of CDCP1 in MES-
GBM was significantly higher than that in PN-GBM [32], 
but the role and mechanism of CDCP1 in glioma are 
still unclear. Further work is needed to understand these 
molecular events.

In this study, data obtained from public datasets 
(TCGA, CGGA, and GEO) and specimens collected from 
resected glioma samples revealed that CDCP1 expression 
was higher in glioma tissue than in normal brain tissue. 
Moreover, high expression of CDCP1 correlated with a 
poor prognosis of glioma, as revealed by survival analy-
sis. GO enrichment analysis, KEGG pathway analysis 

and experimental verification showed that CDCP1 was 
mainly involved in the Epithelial-mesenchymal transi-
tion (EMT) process and immune infiltration. Correlation 
(COR) analysis showed that CDCP1 was highly expressed 
in MES-GBM and weakly expressed in PN-GBM. CDCP1 
was found to play an important role in facilitating the 
transformation from PN-GBM to MES-GBM (PMT). We 
established a risk model (which considered the expres-
sion of CDCP1 combined with CD44 and ITGAM) 
and verified that it can be used to predict prognosis in 
glioma/GBM.

Materials and methods
Clinical tissue sample collection
A total of 132 glioma tissue samples and 35 normal brain 
tissue samples were collected from the Department of 
Neurosurgery, Nanfang Hospital of Southern Medi-
cal University. The patients underwent surgery between 
2016 and 2019 and did not receive chemotherapy or radi-
otherapy before surgery. A total of 132 glioma tissue sam-
ples (35 WHO II grade, 42 WHO III grade, and 55 WHO 
IV grade) were histologically and pathologically classified 
by pathologists according to the 2016 WHO standards. 
Thirty-five normal brain tissue samples (15 from women, 
20 from men) were obtained from patients undergoing 
epilepsy surgery, and normal tissue samples around the 
tumor were obtained as controls. The Ethics Committee 
of Nanfang Hospital approved all experiments, and all 
patients signed written informed consent forms.

Analysis of CDCP1 expression in various tumors in GEPIA
Gene Expression Profiling Interactive Analysis (GEPIA) 
is an online tool based on TCGA and Genotype-Tissue 
Expression (GTEx) data [33]. The expression of CDCP1 
among various tumor patients and healthy people was 
assessed through the online GEPIA database.

Patients and datasets
RNA-sequencing (RNA-seq) data and clinical informa-
tion used in this study for bioinformatics analysis were 
obtained from public datasets, including GEO, TCGA 
(https:// cance rgeno me. nih. gov/) and CGGA (http:// 
www. cgga. org. cn/). We excluded patients whose overall 
survival (OS) data were not available. GSE50161 (https:// 
www. ncbi. nlm. nih. gov/ gds/? term= GSE50 161) includes 
13 normal samples and 34 GBM samples. The CGGA 
dataset contained 966 glioma samples (270 WHO II 
grade, 322 WHO III grade, and 374 WHO IV grade). The 
TCGA dataset contained 667 glioma samples (511 LGGs 
and 156 GBMs) and 5 normal samples.

https://cancergenome.nih.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/gds/?term=GSE50161
https://www.ncbi.nlm.nih.gov/gds/?term=GSE50161
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Independent prognostic analysis
Based on the median expression level of CDCP1 in 
glioma patients, the patients were divided into high 
expression groups and low expression groups. Then, 
survival analysis and an independent prognostic 
analysis were conducted with the "survival" package 
(p < 0.05). The correlations between CDCP1, IDH1, 
MGMT promoter methylation, and 1p/19q deletion 
were analyzed with the "ggpubr" package [34, 35].

Functional analysis
Gene set enrichment analysis (GSEA) was employed to 
analyze the biological function of a single gene. To ana-
lyze the main function of the different genes, the "clus-
terProfiler" package [36] was used for GO and KEGG 
analyses. The p value cutoff was set as 0.05. The results 
were plotted by using the ggplot2 package. The results 
were annotated by Pathview in the R Bioconductor 
package (https:// www. bioco nduct or. org/).

Correlation analysis of different genes
With  log2(fold change) > 0.5 and p < 0.05 as the screen-
ing criteria, the expression matrix was analyzed, and 
the differential genes related to CDCP1 were identified 
through the "pheatmap" and "limma" packages of the R 
language.

Construction and module analysis of the PPI network
STRING is an online tool used to evaluate protein–
protein interaction (PPI) networks [37]. The signifi-
cantly differentially expressed genes were input into 
the STRING network, the confidence threshold was 
set as 0.15 [38], the PPI network of the differentially 
expressed genes was constructed, and the unconnected 
points were hidden. The PPI network obtained from 
STRING was introduced into Cytoscape software [39]. 
Cytoscape software was used to visualize the network. 
The MCODE plug-in of Cytoscape was used to identify 
the functional modules [40]. Submodules were sorted 
by score. The higher the score was, the stronger the 
protein correlation in the module.

Centrality analysis of the PPI network and screening of key 
genes
The analysis of centrality determines the degree, 
betweenness, and closeness of network nodes [41]. Key 
genes were predicted by using the Cytoscape plug-in 
CytoNCA, and the degree centrality (DC), between-
ness centrality (BC) and closeness centrality (CC) of 
the key genes were calculated. DC is a measure of the 
importance of a single node that describes the num-
ber of edges connecting nodes [42]. BC is the shortest 

path between any two nodes in the computing network 
[43]. CC is the average length of the shortest path from 
each node to other nodes [44, 45]. The top 2% of nodes 
for the three parameters were used for further analy-
sis. Then, the top 2% of genes for each parameter were 
combined with the analysis results of the module, and 
the key genes with high centrality values were located 
in the first module.

CIBERSORT
CIBERSORT was used to estimate the proportions of 
immune cells and stromal cells from normalized gene 
expression profiles with a deconvolution algorithm [46]. 
The immune cell subtypes included naive B cells, mem-
ory B cells, plasma cells, CD8 + T cells, naive CD4 + T 
cells, resting memory CD4 + T cells, activated memory 
CD4 + T cells, follicular helper T cells (Tfhs), regulatory 
T cells (Tregs), gamma delta T cells (γδ T cells), rest-
ing NK cells, activated NK cells, monocytes, M0 mac-
rophages, M1 macrophages, M2 macrophages, activated 
dendritic cells, resting dendritic cells, activated mast 
cells, eosinophils, and neutrophils.

ESTIMATE
The ESTIMATE algorithm in the estimate package of 
the R language was used to estimate the proportions of 
immune matrix components in the tumor microenviron-
ment (TME) of each sample, and the results were pre-
sented in the form of three scores, namely, the immune 
score, stromal score and ESTIMATE score, which are 
positively correlated with immunity, the matrix and their 
sum. Therefore, the higher the score, the greater the pro-
portions of corresponding components in the TME.

Construction of a prognostic risk model
A prognostic risk model was constructed to evaluate the 
accuracy of the prognostic models with a single variable, 
and a multivariate prognostic model was constructed 
based on the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve. The prognostic 
risk models comprising a single gene and multiple genes 
were constructed by using the "pROC" package of the 
R language. The multivariate analysis was based on the 
results of the univariate analysis. ROC curves show the 
sensitivity and specificity of a binary diagnostic deci-
sion for varying cutoff points based on a single quantita-
tive diagnostic variable or based on multiple diagnostic 
variables.

Construction of the prognostic risk model
A multivariate Cox regression model (including patient 
age, sex, and WHO grade) was used to evaluate the 

https://www.bioconductor.org/
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relationship between each gene and the OS of glioma 
patients with the R programming language. P < 0.05 was 
considered statistically significant. Risk characteristics 
were established according to the regression coefficient 
of weighted gene expression, and the risk score formula 
was constructed as follows:

In the formula, I is the number of selected genes,  Expn 
is the expression value of each gene, and  HRn is the 
multivariate Cox regression hazard ratio (HR). Glioma 
patients were divided into low-risk and high-risk groups 
according to the median risk score, and the perfor-
mance of prognostic risk characteristics was measured 
by Kaplan–Meier analysis. The results were visualized 
as survival curves by the R package "survival". To better 
predict the 1-year, 3-year, and 5-year survival rates of 
glioma patients, the risk signature and several clinico-
pathological factors were included, and a nomogram was 
established by using the "rms" package of R based on the 
results of the multivariate analysis.

Western blot analysis
Western blotting was performed according to our previ-
ous studies [47] with rabbit polyclonal antibodies against 
CDCP1 (Cell Signaling Technology, catalog 4115S, 
human, 1:1000), N-cadherin (Cell Signaling Technology, 
catalog #13116, human, 1:1000), vimentin (Cell Signal-
ing Technology, catalog #5741, human, 1:1000), slug (Cell 
Signaling Technology, catalog #9585, human, 1:1000), 
and CD44 (Abcam, catalog #ab189524, human, 1:1000). 
An HRP-conjugated anti-rabbit or anti-mouse IgG anti-
body was used as the secondary antibody (Cell Signal-
ing Technology, catalog #5174S, human, 1:2000). Signals 
were detected using enhanced chemiluminescence rea-
gents (Pierce, Rockford, IL, USA).

Immunohistochemistry
Paraffin sections were deparaffinized and rehydrated. 
Heat-induced antigen retrieval was carried out for 
15 min in citrate buffer. After endogenous peroxidase was 
blocked with 3% hydrogen peroxide and nonspecific anti-
gens were blocked with 5% bovine serum albumin, incu-
bation was performed with antibodies against CDCP1 
(Abcam, catalog #ab1377, human, 1:100), CD44 (Abcam, 
catalog #ab189524, human, 1:100), and ITGAM (Cell 
Signaling Technology, catalog #23743, human, 1:100). 

risk model =

I
∑

n=1

(

Expn ∗HRn

)

The next day, the secondary antibody was added after 
washing with PBS three times. Subsequently, sections 
were counterstained with hematoxylin before examina-
tion by microscopy.

Immunohistochemistry staining evaluation
Two pathologists examined and scored the immuno-
histochemically stained sections without knowledge of 
the clinical parameters. Staining intensity was scored 
as 0 (negative), 1 (weak), 2 (moderate), or 3 (strong). 
The positive staining area was classified with a score 
of 0 (< 5%), 1 (6–25%), 2 (26–50%), 3 (51–75%), and 4 
(> 76%).

Cell culture and lentivirus infection
The human glioma cell lines U87 and LN229 and the 
human colorectal carcinoma cell line HCT116 were 
purchased from the American Type Culture Collection 
(ATCC). In the laboratory, all cell lines were grown in 
Dulbecco’s modified Eagle’s medium (DMEM) (Bio-
logical Industries) supplemented with 10% fetal bovine 
serum (FBS, Gemini Foundation). We used a lentivirus 
(LV) encoding green fluorescent protein (eGFP, 30 kDa) 
and an LV encoding CDCP1 cDNA (LV-CDCP1, Lot# 
EX-H2069-Lv122, GeneCopoeia) of the eGFP gene. 
Then, LV-CDCP1 and the lentivirus of the negative 
control group carrying eGFP (LVCon, GeneCopoeia) 
were used to infect U87 and LN229 glioma cells. Fur-
ther analysis was performed 72 h post transfection.

Cell migration assay
Cell migration assays were carried out with Transwell 
assays. Approximately 5 ×  104 cells in 100 μL DMEM 
were seeded onto a polycarbonate membrane inserted 
into a Transwell chamber (BD Biosciences). Five hun-
dred microliters of complete medium was added as a 
chemoattractant in the lower chamber. After the cells 
were incubated for the appropriate time, the adher-
ent lower chamber cells were fixed with paraformal-
dehyde and stained with 0.2% crystal violet solution. 
The images were captured in five predetermined fields 
under a microscope.

Statistical analysis
The R language (version 3.5.3) was used for statistical 
analysis. Kaplan–Meier survival curves based on each 
key gene, forest maps of the independent prognostic 
variables of each key gene, and box diagrams of mul-
tiple variables were generated. P < 0.05 (bilateral) was 
considered statistically significant.
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Results
CDCP1 mRNA expression increases with increasing glioma 
grade
CDCP1 has been widely studied in various tumors, 
and the expression of CDCP1 in various common 
tumors was analyzed through GEPIA. The expression 
of CDCP1 in bladder urothelial carcinoma (BLCA), 
breast invasive carcinoma (BRCA), cervical squamous 
cell carcinoma and endocervical adenocarcinoma 
(CESC), colon adenocarcinoma (COAD), glioblastoma 
(GBM), kidney chromophobe (KICH), lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LUSC), 

ovarian serous cystadenocarcinoma (OV), pancreatic 
adenocarcinoma (PAAD), testicular germ cell tumors 
(TGCTs) and uterine corpus endometrial carcinoma 
(UCEC) was significantly increased (Fig. 1A).

To clarify the role of CDCP1 in human glioma, 
CDCP1 mRNA expression was measured in 698 gli-
oma tissues and 5 normal tissues from the TCGA 
database, 970 glioma tissues from the CGGA data-
base, and 34 GBM tissues and 13 normal tissues from 
the GSE50161 dataset. According to the analysis of the 
TCGA and GEO databases, CDCP1 expression was 
higher in GBM tissues than in normal brain (NB) tis-
sues (Fig. 1B, C  p< 0.0001). CDCP1 mRNA significantly 
increased with increasing WHO grade (Fig. 1D, E). To 
further confirm these results, we examined the CDCP1 
expression level in glioma tissues (grade II, n = 35; 
grade III, n = 42; and grade IV, n = 55) (Additional 
file  1: Table  S10) and normal brain tissues (n = 35) by 
immunohistochemistry (Fig.  2A, B). Consistent with 
the results described above, CDCP1 expression signifi-
cantly increased with increasing WHO grade. Further-
more, we examined the protein expression of CDCP1 in 
27 GBM tissues and 6 normal brain tissues and found 
that CDCP1 was highly expressed in GBM (Fig. 2C).

Patients with high CDCP1 expression have a poor 
prognosis
To investigate the prognostic value of CDCP1 expres-
sion in glioma, Kaplan–Meier analysis with the log-rank 
test was used to examine the relationship between the 
expression of CDCP1 and patient survival. With sur-
vival data obtained from the TCGA and CGGA data-
bases, we assessed whether higher CDCP1 expression 
was associated with worse overall survival (OS). The 
median OS times of glioma patients with high and low 
expression of CDCP1 were 13 and 20 months, respec-
tively, in the TCGA database (Fig.  3A, p< 0.0001). The 
median OS times of glioma patients with high and low 
expression of CDCP1 were 18 and 41 months, respec-
tively, in the CGGA database (Fig. 3B,  p< 0.0001). Then, 
multivariate Cox regression analysis was performed 
to determine the prognostic value of CDCP1, and the 
results showed that CDCP1 was an independent prog-
nostic factor in TCGA and CGGA data. Independent 
prognostic analysis showed that the HR was 1.1 (95% 
confidence interval, CI: 1.02–1.2) in the TCGA data 
and 1.3 (95% confidence interval, CI: 1.13–1.4) in the 
CGGA data (Fig. 3C, D). In the CGGA database analy-
sis, we also found that CDCP1 was expressed at higher 
levels in the unmethylated MGMT promoter CPG 
island group than in the methylated MGMT promoter 
CPG island group (p < 0.0001) (Additional file  1: Fig. 

Fig. 1 The expression of CDCP1 in glioma. A The expression 
of CDCP1 in GBM and other tumors (BLCA bladder urothelial 
carcinoma, BRCA: breast invasive carcinoma, CESC cervical squamous 
cell carcinoma and endocervical adenocarcinoma, COAD colon 
adenocarcinoma, GBM glioblastoma, KICH kidney chromophobe, 
LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, 
OV ovarian serous cystadenocarcinoma, PAAD pancreatic 
adenocarcinoma, READ rectum adenocarcinoma, STAD stomach 
adenocarcinoma, TGCT  testicular germ cell tumors, UCEC uterine 
corpus endometrial carcinoma). In the TCGA data B and GSE50161 
(C), the expression of CDCP1 in GBM tissue was significantly higher 
than that in normal brain tissue. In the TCGA data D and CGGA data 
(E), CDCP1 mRNA expression increased with increasing glioma grade
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S1A). The expression of CDCP1 in the 1p/19q code-
letion group was higher than that in the group with-
out 1p/19q deletion (Additional file  1: Fig. S1B). The 
expression of CDCP1 in the IDH1 wild-type (WT) 
group was higher than that in the IDH1 mutant (MUT) 
group (Additional file 1: Fig. S1C).

The expression of CDCP1 is positively correlated 
with invasion, migration and immune infiltration
We analyzed the molecular mechanism by which CDCP1 
promotes the malignant progression of GBM, and gene 
set enrichment analysis (GSEA) was used to predict the 
possible biological functions of CDCP1 in GBM. TCGA 
data and CGGA data showed that the expression of 
CDCP1 mRNA was significantly correlated with EMT-
related processes (such as cell adhesion, focal adhesion, 
and cell migration) and immune infiltration processes 
(such as lymphocyte migration, interleukin 6 production, 
and B cell receptor signaling) (Fig. 4A, B and Additional 
file 2: Fig. S2A, B).

To analyze the molecular mechanism by which CDCP1 
promotes the malignant progression of GBM, we further 
mined the gene expression matrix of the CGGA data-
base. After data processing and data analysis of the gene 

expression matrix of the CGGA database, 970 samples 
were analyzed. We screened 4007 related differentially 
expressed genes (1923 downregulated, 2084 upregulated) 
(Fig.  4C). The 20 upregulated genes and 20 downregu-
lated genes most related to CDCP1 expression were visu-
alized in the form of a heatmap (Fig. 4D). We found that 
the 40 genes with the strongest correlation with CDCP1 
were also significantly correlated (Additional file  3: Fig. 
S3); for example, COL1A1 was negatively correlated with 
Oligo1 and positively correlated with COL1A2. GO func-
tional analysis and KEGG pathway enrichment analyses 
were carried out for the 1923 downregulated genes and 
2084 upregulated genes. The 2084 upregulated genes 
were associated with immune infiltration-related func-
tions and EMT process-related functions. For example, 
the GO and KEGG terms related to immune infiltration 
were response to regulation of T cell activation, regula-
tion of the immunological response, leukocyte migra-
tion, and leukocyte migration. The GO and KEGG terms 
related to the EMT process were response to regulation 
of cell–cell adhesion, positive regulation of cell adhesion, 
and the NF-κB signaling pathway (Fig. 4E, F). The possi-
ble biological functions of the 1923 downregulated genes 
were analyzed, and the cAMP signaling pathway and 

Fig. 2 The expression of CDCP1 was verified in glioma specimens from a southern hospital. Immunohistochemistry A verified CDCP1 expression 
in 35 samples of WHO grade II, 42 samples of WHO grade III and 55 samples of WHO grade IV glioma, and analysis of the immune scores B 
demonstrated that CDCP1 expression increased significantly with increasing WHO grade. Western blot C confirmed that CDCP1 expression was 
significantly increased in GBM (in the HCT116 human colorectal cancer cell line with high CDCP1 expression)
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oxidative phosphorylation were mainly enriched (Addi-
tional file 4: Fig. S4A, B).

Overexpression of CDCP1 promotes GBM cell migration
To confirm the biological function of CDCP1 in GBM 
revealed by the bioinformatic analysis, the expression of 
several EMT-associated proteins was examined in U87 
and LN229 cells. After CDCP1 overexpression in U87 
and LN229 cells, the expression of N-cadherin, vimen-
tin, and slug was upregulated (Fig. 5A). In the Transwell 
assay, the percentage of migrated cells in the LV-CDCP1 
group was significantly higher than that in the LVCon 
group (p < 0.05) (Fig. 5B, C).

Identification of key genes
Analysis of the correlation between the 4007 related 
differentially expressed genes and CDCP1 yielded 789 
highly correlated differentially expressed genes (the cri-
teria were correlation coefficient = 0.5 and p < 0.05). To 
further explore the possible specific molecular mecha-
nism by which CDCP1 affects the prognosis of GBM 
patients from a systematic perspective, a PPI network 
was constructed through the online STRING database. 
Then, the PPI network was imported into Cytoscape. 
The PPI network consisted of 718 genes and 8097 edges. 
In the PPI network, the top 5 genes with the greatest 
weight were IL6 (degree = 216), ITGAM (degree = 165), 

Fig. 3 Kaplan–Meier survival curve and multivariate Cox regression analyses of the CDCP1 risk score in the TCGA A–C (n = 667) and CGGA (B-D) 
datasets(n = 966)
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Fig. 4 Functional analysis of CDCP1 in GBM. GSEA (A-B) of GO functions and KEGG pathways of CDCP1 in the CGGA data. Identification of 
differentially expressed genes related to changes in CDCP1 expression (C–D). GO functional analysis E and KEGG pathway analysis F of 2408 
upregulated genes
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PTPRC (degree = 164), IL10 (degree = 160), and CXCL8 
(degree = 158) (Fig. 6A).

To identify more closely related key genes in the com-
plex PPI network, we used MCODE to conduct a module 
analysis of the network. We found 25 modules in the PPI 
network. The first module, composed of 44 genes that 
had the strongest interaction, scored 36.61. This mod-
ule was located at the center of the entire network and 
included 44 nodes and 787 edges. The results indicated 
that the protein associations in the first module may 
be the strongest and most important part of the entire 
network.

To further assess the key genes in the complex PPI 
network, centrality analysis was performed. We stud-
ied the top 2% of the related genes of each parameter 
and obtained the degree, betweenness, and closeness of 
11 genes by taking the intersection. Combined with the 
results of the module analysis, STAT3, PTPRC, FN1, 
IL1B, CXCL8, CD44, TLR2, IL10, IL6, and ITGAM 
were identified for further analysis because these ten 
genes with high centrality values were located in the first 
module. Among the key genes associated with CDCP1, 
CD44 and STAT3 are markers of MES-GBM (Fig.  6B). 

Therefore, we suspect a potential connection between 
CDCP1 and MES-GBM.

Overexpression of CDCP1 promotes the transformation 
of PN‑GBM to MES‑GBM
In the past decade, according to the molecular pheno-
type, transcriptome and methylation analyses have clas-
sified GBM tumors into four subtypes: the anterior nerve 
type (PN-GBM), nerve type (NL-GBM), classical type 
(CL-GBM) and interstitial type (MES-GBM). According 
to these four types of GBM, we found through a database 
analysis that CDCP1 was highly expressed in MES-GBM 
and weakly expressed in PN-GBM (Additional file 1: Fig. 
S5).

The expression of CDCP1 was positively correlated 
with the expression of mesenchymal (MES) GBM mark-
ers such as CD44, STAT3, and TGFB1, while the expres-
sion of CDCP1 was negatively correlated with the 
expression of Olig2, ASCL1 and DLL3 in proneural (PN) 
GBM (Fig.  6C–H). The high expression of a combina-
tion of mesenchymal markers (e.g., CD44 and STAT3) is 
reminiscent of the EMT process that has been linked to 
dedifferentiated and transdifferentiated tumors [48]. The 

Fig. 5 Verification of CDCP1 function in vitro. Transwell assays A and cell migration assays B showed that CDCP1 overexpression promoted the 
migration ability of glioma cells in vitro ( Wilcoxon rank-sum test)(the magnification is 200 times). Western blotting C was performed to detect the 
expression of N-cadherin, vimentin and Slug in the LV-CDCP1 and LV-Con groups

Fig. 6 Analysis of the molecular mechanism of CDCP1 in GBM. Identification of key genes in the PPI network (A-B). High expression of CDCP1 was 
associated with MES-GBM. The correlation between CDCP1 expression and the mesenchymal C–E or proneural C–H signature was assessed using 
the CGGA database. Immunohistochemistry verification of the correlation between CDCP1 and CD44 expression (I). Western blot verification of the 
correlation between CDCP1 and CD44 expression J (Wilcoxon rank-sum test)

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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increase in CDCP1 expression may promote the transfor-
mation of PN-GBM to MES-GBM, which is associated 
with poor prognosis. Immunohistochemistry of 55 GBM 
patients confirmed that CDCP1 was significantly posi-
tively correlated with CD44 protein expression (Fig. 6I), 
with a correlation coefficient of 0.531 (Table  1). In U87 
and LN229 cells, compared with the LVCon group, the 
LV-CDCP1 group had upregulated CD44 expression 
(Fig.  6J). In conclusion, these data suggest that CDCP1 
is overexpressed in MES-GBM and prove that the over-
expression of CDCP1 is significantly correlated with 
increased invasiveness and a relatively poor prognosis.

Verification of the significant positive correlation 
between CDCP1 expression and immune infiltration
We analyzed GBM data from the CGGA database and 
obtained the proportions of 22 common tumor-infiltrat-
ing immune cells in each sample with the CIBERSORT 
method. The tumor-infiltrating immune cells in GBM 
patients were mainly M2 macrophages (Additional file 6: 
Fig. S6A). Next, the correlations between these 22 kinds 
of tumor-infiltrating immune cells was analyzed. The 
results showed that memory B cells were negatively cor-
related with naive B cells, and  CD8+ T cells were posi-
tively correlated with activated memory  CD4+ T cells 
(Additional file 6: Fig. S6B).

As shown in Additional file 7: Fig. S7, with an increase 
in the expression of CDCP1, the expression levels of 
CD44, STAT3, TGFB1, CXCL8, FN1, IL1B, IL10, IL6, 
and ITGAM increased, whereas the expression levels of 
OLIG2, ASCL1, DLL3, BEX1, CDK5R1, CKB, NRXN2, 
CSPG5 and MAP2 decreased. The results also veri-
fied that the expression of CDCP1 was negatively cor-
related with the expression of PN-GBM markers (BEX1, 
CDK5R1, CKB, NRXN2, CSPG5 and MAP2).

As shown in Fig.  7A, the expression of CDCP1 was 
positively correlated with the expression of immune 
infiltration markers (PTPRC, FN1, IL1B, CXCL8, CD44, 
TLR2, IL10, IL6 and ITGAM), with correlation coeffi-
cients above 0.5. Immunohistochemistry analysis of 55 
samples from GBM patients confirmed that CDCP1 was 
significantly positively correlated with ITGAM protein 
expression, with a correlation coefficient of 0.565 (Fig. 7B 
and Table 2). With CIBERSORT analysis, we found that 

the expression of CDCP1 was related to a variety of 
infiltrating immune cells. The tumor tissues with high 
CDCP1 expression showed a specific immunopheno-
type, with prominent M2 macrophages (P = 0.007). There 
were significant differences in the proportions of  CD4+ T 
cells, activated NK cells and neutrophils between tumors 
with high and low CDCP1 expression (p < 0.05) (Fig. 7C). 
Through the ESTIMATE algorithm, we found that the 
stromal score, immune score and ESTIMATE score in 
the GBM group with high CDCP1 expression were sig-
nificantly higher than those in the GBM group with low 
CDCP1 expression (Additional file 7: Fig. S7A–C).

The prognostic risk model based on CDCP1, CD44 
and ITGAM has high diagnostic value
From the PPI network analysis, we found that CDCP1 
can directly affect CD44, FN1 and PTPRC and indirectly 
affect seven other genes to exert its functions (Fig.  8A). 
The PPI network was composed of 10 key genes and 
consisted of 11 nodes and 48 edges, with an average of 
4.36 edges per node. We found that CDCP1 may directly 
affect the transformation of PN-GBM to MES-GBM by 
acting on CD44. To further study the possible mecha-
nism by which CDCP1 promotes the transformation 
of PN-GBM to MES-GBM, we identified 10 key genes 
through the above strategies, among which some genes 
(CD44 [49], STAT3 [50], IL6 [51], and TLR2 [52]) have 
been reported to be related to the migration and inva-
sion of GBM cells; therefore, CDCP1 is indeed related to 
the migration and invasion of GBM. On the other hand, 
these results suggest that other genes, such as ITGAM, 
may be related to invasion and migration. Among the 10 
key genes, ITGAM, which is related to GBM immune 
infiltration, had the highest correlation with CDCP1, 
with a COR value of 0.668.

Based on the above results, we speculate that CDCP1 
may promote the transformation of PN-GBM to MES-
GBM by affecting the EMT process and immune infil-
tration of GBM and thus affect the prognosis of glioma 
patients. Thus, we generated an ROC curve based on the 
multivariate model of the interaction of CDCP1, CD44, 
and ITGAM. ROC curves were used to evaluate the 
predictive efficacy of CDCP1, CD44, ITGAM, and their 
combination in GBM patients. The areas under the curve 
(AUCs) for CDCP1, CD44, ITGAM and the markers 
combined were 0.558, 0.642, 0.528 and 0.692, respectively 
(Fig. 8B).

Based on the PPI network and correlation analy-
ses of the key genes, three genes (CDCP1, CD44, and 
ITGAM) were integrated to establish a prognostic 
risk model. The risk scores from the prognostic risk 
model were calculated using the following formula: 

Table 1 Correlation between the protein expression of CDCP1 
and CD44 in GBM tissue samples

CD44 CDCP1(Number of case) COR P

Positive Negative

Positive 29 5 0.531  < 0.01

Negative 7 14
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Fig. 7 Analysis of CDCP1 in immune infiltration in GBM. CDCP1 was positively correlated with immune infiltration markers (A). 
Immunohistochemistry verification of the correlation between CDCP1 and ITGAM expression (B). Correlation analysis between CDCP1 expression 
and various types of infiltrating immune cells (C)
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risk score = (1.25 * expression level of CDCP1) + (1.19 
* expression level of CD44) + (1.09 * expression level 
of ITGAM). Glioma/GBM patients were divided into 
low-risk (n = 485/n = 187, respectively) and high-risk 
(n = 485/n = 187, respectively) groups according to the 
median risk score. The survival curve showed a poorer 
prognosis in the high-risk group than in the low-risk 
group (Fig. 8C-D). The prognostic risk model was verified 
with glioma patients from the TCGA database (Addi-
tional file  9: Fig. S9A–C). These findings show that our 
risk model can well indicate the prognosis of glioma/
GBM patients.

Combined CDCP1, CD44 and ITGAM expression can be 
used to predict the prognosis of glioma patients
To confirm the prognostic value of the risk signature, we 
constructed a nomogram based on the prognostic risk 
model, and we determined the clinical relevance and 
prognostic value of age, glioma type (primary glioma and 
recurrent glioma), sex, radiotherapy, TMZ chemother-
apy, and IDH status. The 1-year, 3-year, and 5-year sur-
vival rates can be estimated from the total scores, which 
are the sum of the scores for each item, as shown in the 
nomogram (Fig.  8E–F). Analyses of the nomogram not 
only proved that the prognostic risk model is reliable but 
also showed that the accuracy of predicting survival in 
each patient was high. On the other hand, by comparing 
the factors in the nomograms, we found that the prog-
nostic risk model had a high score, and this model played 
an important role.

Discussion
Our study is the first to report that CDCP1 is a poten-
tial biomarker of the malignant phenotype of glioma and 
confirmed that the expression of CDCP1 increases with 
the grade of glioma. Based on these findings and the 
findings of the biological/functional analysis of CDCP1 
in glioma, we hypothesize that CDCP1 can significantly 
promote the migration and invasion of glioma cells. To 
further analyze the potential molecular mechanism of 
CDCP1, we grouped patients in the CGGA database 
according to the median expression of CDCP1 and 

obtained 4007 differentially expressed genes. Then, we 
analyzed the correlation between these differentially 
expressed genes and CDCP1 and obtained 789 genes with 
high correlation. According to COR analysis, CDCP1 was 
highly expressed in MES-GBM and weakly expressed in 
PN-GBM. Subsequently, a PPI network of the 789 genes 
was obtained through the online website STRING, and 
10 key genes (STAT3, PTPRC, FN1, IL1B, CXCL8, CD44, 
TLR2, IL10, IL6, and IFGAM) were identified through 
the MCODE and CytoNCA plug-ins of Cytoscape. We 
found that these 10 genes were positively correlated with 
CDCP1. Next, we established a prognostic risk model 
based on the expression of CDCP1, CD44 and ITGAM 
and verified the reliability and accuracy of our prognos-
tic risk model by generating multivariate ROC curves and 
constructing a nomogram incorporating the diagnostic 
risk model and clinicopathological factors.

CD44 is a 99-kDa single-pass, transmembrane molecule 
that is very widely expressed in physiological and patho-
logical contexts. Higher levels of CD44 make tumors more 
malignant, and patients with high levels of CD44 have short 
survival times [53–55]. Integrin alpha M (ITGAM, located 
on 16p11.2), also known as CD11b or complement recep-
tor 3, which encodes the α-chain of the αMβ2 integrin, is an 
integrin adhesion molecule. CD11b + cells are the predomi-
nant infiltrating inflammatory cells in human gliomas [56].

A large number of studies have shown that CDCP1 affects 
patient prognosis by affecting the tumor. Recent oncology 
studies revealed that targeting CDCP1 reduced migration 
and tumor burden in high-grade serous ovarian cancer [57]. 
HJ Wright et al. indicated the therapeutic potential of target-
ing CDCP1 cleavage subtypes, as doing so inhibits triple-
negative breast cancer metastasis [58]. Lijun et al. reported 
that the increased expression of CDCP1 promotes prolifera-
tion, migration, invasion, and EMT in cervical cancer [59]. 
However, the function and potential molecular mechanism 
of CDCP1 in glioma remain unclear.

We showed that CDCP1 plays an important role in glioma 
patients by examining data from the TCGA, CGGA and 
GEO databases. Then, bioinformatics analysis and experi-
mental verification demonstrated that CDCP1’s function is 
mainly related to EMT and immune infiltration, which are 
highly consistent with the characteristics of MES-GBM and 
the tumor microenvironment. COR analysis revealed that 
CDCP1 was highly expressed in MES-GBM and weakly 
expressed in PN-GBM. Therefore, we established a pre-
dictive risk model and verified the reliability of the model 
by performing immunohistochemistry and constructing a 
nomogram. Ultimately, we speculate that CDCP1, CD44 and 
ITGAM can be used to better diagnose glioma and predict 
the prognosis of glioma patients.

Table 2 Correlation between the protein expression of CDCP1 
and ITGAM in GBM tissue samples

ITGAM CDCP1(Number of case) COR P

Positive Negative

Positive 27 3 0.565  < 0.01

Negative 9 16
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Fig. 8 Establishment and verification of the prognostic risk model. Construction of a PPI network with key genes and CDCP1 (A). Establishment 
of the prognostic risk model comprising CDCP1, CD44 and ITGAM expression (B). Survival curves for glioma C and GBM D patients based on the 
prognostic risk model. Nomogram based on the risk model and clinicopathological factors. E: Glioma patient data. F: GBM patient data
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Conclusions
In conclusion, we analyzed and verified that CDCP1 
promotes the transformation of PN-GBM to MES-
GBM by promoting the EMT process and immune infil-
tration, and we identified CD44 and ITGAM, which 
may interact with CDCP1, through a series of screening 
methods. By combining CDCP1, CD44 and ITGAM, 
a prognostic risk model was established and validated 
to predict 1-year, 3-year, and 5-year survival in glioma 
patients. The risk model was associated with glioma/
GBM patient age, glioma type, sex, radiotherapy, TMZ 
chemotherapy, and IDH status. In summary, the risk 
model in our study can be used as a prognostic bio-
marker for gliomas.
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